Punkty A=(x_a,y_a) i
B=(x_b,y_b) są końcami odcinka
AB, a punkt S=(x_s,y_s)
środkiem jednokładności. Wyznacz
A'=(x_{a'},y_{a'})=J^k_S(A) i
B'=(x_{b'},y_{b'})=J^k_S(B).
Odcinki AB i CD o końcach
A=(x_a,y_a), B=(x_b,y_b),
C=(x_c,y_c) i D=(x_d,y_d)
są jednokładne w jednokładności J. Wyznacz środek
i skalę tej jednokładności.
Dany jest trójkąt ABC, w którym
A=(x_a,y_a), B=(x_b,y_b) i
C=(x_c,y_c). Obrazem trójkąta
ABC w jednokładności o środku
S=(x_s,y_s) i skali ujemnej
k, jest trójkąt A'B'C', w
którym środkowa poprowadzona z wierzchołka A' ma
długość 10.