Okrąg o równaniu
o_1:x^2+y^2-18x+4y+49=0 przekształcono przez
jednokładność o środku S i skali
k, w wyniku czego otrzymano okrąg o równaniu
o_2:(x-1)^2+(y-2)^2=4. Oblicz
k i wyznacz współrzędne punktu
S=(x_S, y_S).
Podaj k.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 3.2 (1 pkt)
Podaj x_S+y_S.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-30315
Podpunkt 4.1 (2 pkt)
Dany jest trójkąt o wierzchołkach A=(-3,6),
B=(-2,0) i C=(-5,7).
Trójkąt A_1B_1C_1 jest obrazem trójkąta
ABC w jednokładności o środku
S=(-2,4) i skali k=-3.
Wyznacz współrzędne wszystkich wierzchołków trójkąta
A_1B_1C_1.
Podaj sumę odciętych wszystkich wierzchołków trójkąta
A_1B_1C_1.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 4.2 (2 pkt)
Podaj sumę rzędnych wszystkich wierzchołków trójkąta
A_1B_1C_1.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat