Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Funkcja logarytmiczna

Zadania dla klasy trzeciej liceum ogólnokształcącego - poziom rozszerzony

 

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10153  
Podpunkt 1.1 (1 pkt)
 Wyznacz dziedzinę funkcji określonej wzorem f(x)=\log_{x}{(ax-1)}. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Dane
a=5
Odpowiedzi:
x_{min}= (wpisz liczbę zapisaną dziesiętnie)
x_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10156  
Podpunkt 2.1 (1 pkt)
 Oceń, które z podanych punktów należą do wykresu funkcji określonej wzorem f(x)=\log_{a}{x}:
Dane
a=4
Odpowiedzi:
T/N : (1024, 4) T/N : \left(\frac{1}{16}, -2\right)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10159  
Podpunkt 3.1 (1 pkt)
 Ile liczb całkowitych należy do dziedziny funkcji określonej wzorem g(x)=\log_{8}{(81-x^2)}?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20294  
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów p i q wiedząc, że dziedziną funkcji f(x)=\log_{\frac{1}{2}}{(x-p)}+q jest przedział (1,+\infty) i do wykresu należy punkt P=\left(129,-5\right).

Podaj p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
 Podaj q.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20297  
Podpunkt 5.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\log_{x-8}{3}-\log_{x-6}{(-x+12)}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych końców tych przedziałów, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (1 pkt)
 Podaj ten z końców tych przedziałów, który nie jest ani najmniejszy, ani też największy.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pr-20298  
Podpunkt 6.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\log_{x^2-1}{(x^4+6x^3x^2-32x)}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych końców przedziałów, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największy z tych końców przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.3 (1 pkt)
 Podaj sumę tych ujemnych końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pr-20299  
Podpunkt 7.1 (1 pkt)
 » Wyznacz dziedzinę funkcji f(x)=\log{\frac{2x-1}{x+\frac{3}{2}}}+\log_{0,5}{(2-2x)}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych końców przedziałów, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj największy z tych końców przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
 Podaj ten z końców przedziałów, który jest liczbą i nie jest ani najmniejszy, ani też największy.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20300  
Podpunkt 8.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\log_{\frac{x-8}{x-4}}{\left(x^3-22x^2+153x-324\right)} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich końców tych przedziałów, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj największy z tych wszystkich końców tych przedziałów, który jest liczbą.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20301  
Podpunkt 9.1 (1 pkt)
» Wyznacz dziedzinę funkcji f(x)=\log_{\frac{x}{x+2}}{(x^3-3x^2+4)} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj długość najkrótszego z tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj sumę wszystkich końców tych przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20302  
Podpunkt 10.1 (2 pkt)
» Wyznacz dziedzinę funkcji f(x)=\log_{x+2}{\frac{x^2-7x}{x^2+2x}} .

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20303  
Podpunkt 11.1 (2 pkt)
» Dla jakich wartości parametru m dziedziną funkcji g(x)=\sqrt{ \log{ \left(x^2+4x+3m\right) } } jest zbiór \mathbb{R}?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20304  
Podpunkt 12.1 (1 pkt)
Dana jest funkcja f(x)=\log_{\frac{\sqrt{2}}{2}}{\left(-x^2+12x-20\right)} . Wyznacz D_f.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
Wyznacz f_{min}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20295  
Podpunkt 13.1 (1 pkt)
«« Dana jest funkcja h(x)=\log_{\frac{-x}{x+5}}{\frac{x^2+5x+4}{x+1}} . Wyznacz D_h.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami całkowitymi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (1 pkt)
Podaj sumę tych wszystkich końców przedziałów, które nie są liczbami całkowitymi.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 14.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20296  
Podpunkt 14.1 (1 pkt)
Dla jakich wartości parametru m\in\mathbb{R} dziedziną funkcji g(x)=\log{ \left( \frac{m}{2x^2+2mx+\frac{m}{2}+3} \right) } . jest zbiór \mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 14.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 15.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20313  
Podpunkt 15.1 (1 pkt)
« Dana jest funkcja g(x)=x^2+\log_{1024}{x}\cdot |2\log_{x}{32}|-4 . Wyznacz ZW_g.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę tych wszystkich końców przedziałów, które są liczbami.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 15.2 (1 pkt)
Podaj długość najkrótszego z tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 16.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20315  
Podpunkt 16.1 (1 pkt)
Rozwiąż graficznie nierówność \log_{7}{\frac{7\sqrt{7}}{x}} \geqslant \log_{5}{(\sqrt{5}x)}+1 w liczbach dodatnich.

Podaj największą z liczb spełniających tę nierówność.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 16.2 (1 pkt)
Podaj długość rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm