Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Kąt między prostymi

Zadania dla klasy trzeciej liceum ogólnokształcącego - poziom rozszerzony

 

Zadanie 1.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20359  
Podpunkt 1.1 (1 pkt)
 Przekątna AC rombu ABCD, w którym A=(x_a,y_a) i D=(x_d,y_d), zawarta jest w prostej ax+by+c=0. Wyznacz B=(x_b,y_b)

Podaj x_b.

Dane
x_a=2
y_a=\frac{5}{2}=2.500000000000000
x_d=6
y_d=\frac{11}{2}=5.500000000000000
a=1
b=-3
c=\frac{11}{2}=5.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 1.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20363  
Podpunkt 2.1 (1 pkt)
 « Punkt B=(x_b,y_b) jest symetryczny do punktu A=(x_a,y_a) względem prostej o równaniu ax+by+c=0

Podaj x_b.

Dane
x_a=-9
y_a=-\frac{1}{2}=-0.500000000000000
a=2
b=-1
c=4.0000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 2.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20364  
Podpunkt 3.1 (2 pkt)
 » Proste y=a_1x+b_1 oraz y=a_2x+b_2 przecinaja się pod kątem ostrym \alpha.

Podaj \sin\alpha.

Dane
a_1=1
b_1=-12
a_2=2-\sqrt{3}=0.267949192431
b_2=14-\sqrt{3}=12.2679491924311230
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20365  
Podpunkt 4.1 (2 pkt)
 « Proste y=a_1x+b_1 oraz y=a_2x+b_2 przecinają się pod kątem ostrym \alpha.

Podaj \sin\alpha.

Dane
a_1=\frac{\sqrt{3}}{3}=0.5773502691896258
b_1=\frac{-12+\sqrt{3}}{3}=-3.4226497308103742
a_2=-\frac{\sqrt{3}}{3}=-0.5773502691896258
b_2=\frac{-3-\sqrt{3}}{3}=-1.5773502691896258
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20366  
Podpunkt 5.1 (1 pkt)
 Punkty A=(x_a,y_a) i C=(x_c,y_c) są przeciwległymi wierzchołkami prostokąta ABCD, zaś wierzchołek D tego prostokąta należy do prostej y+c=0. Wyznacz B=(x_b,y_b).

Podaj najmniejsze możliwe x_b.

Dane
x_a=6
y_a=-\frac{5}{3}=-1.666666666666667
x_c=-6
y_c=\frac{7}{3}=2.333333333333333
c=\frac{17}{3}=5.666666666666667
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (1 pkt)
 Podaj największe możliwe x_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20367  
Podpunkt 6.1 (1 pkt)
 » Prosta x+2y+\frac{7}{3}=0 zawiera przekątną AC kwadratu ABCD o obwodzie 16\sqrt{10} i wierzchołku B=\left(3,\frac{22}{3}\right).
Wyznacz A=(x_a,y_a) (odwrotnie do ruchu wskazówek zegara).

Podaj x_a+y_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Wyznacz D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara).

Podaj x_d+y_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20368  
Podpunkt 7.1 (2 pkt)
» Proste x+y-1=0 i x-\sqrt{3}y=0 przecinają się pod kątem ostrym \alpha.

Podaj \alpha.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20369  
Podpunkt 8.1 (1 pkt)
Prosta x+(9-m^2)y-4m=0 przecina prostą o równaniu 3x+3y-4=0 pod kątem \beta=45^{\circ}. Wyznacz m.

Podaj najmniejsze możliwe m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-20370  
Podpunkt 9.1 (2 pkt)
« Odcinek o długości 4 zawarty jest w prostej o równaniu 3x-4y-22=0. Symetralna tego odcinka przecięła oś Oy w punkcie A=(0,2). Wyznacz współrzedne końców tego odcinka.

Podaj sumę odciętej i rzędnej tego punktu, który ma obie współrzędne całkowite.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
Podaj odciętą drugiego z punktów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
Podaj rzędną drugiego z punktów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-20360  
Podpunkt 10.1 (2 pkt)
W rombie o boku długości 5 końcami przekątnej są punkty A=(-9,5) i B=(-1,9). Wyznacz współrzędne pozostałych wierzchołków tego rombu.

Podaj sumę rzędnych dwóch pozostałych wierzchołków.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Podaj sumę odciętych dwóch pozostałych wierzchołków.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-20361  
Podpunkt 11.1 (2 pkt)
 «« W rombie o polu 300 punkt S=(2, 1) jest punktem przecięcia przekątnych, a punkt A=(1,-6) jednym z wierzchołków tego rombu. Wyznacz pozostałe wierzchołki.

Punkty B=(x_B,y_B) i D=(x_D,y_D) są dwoma przeciwległymi wierzchołkami tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj min(x_B, x_D).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (2 pkt)
 Podaj max(x_B, x_D).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-20362  
Podpunkt 12.1 (2 pkt)
«« Punkty A=(-3,-5) i B=(1,-7) są kolejnymi wierzchołkami czworokąta ABCD (odwrotnie do ruchu wskazówek zegara) wpisanego w okrąg, którego osią symetrii jest prosta x-y-2=0.
Wyznacz C=(x_c,y_c) i D=(x_d,y_d).

Podaj x_c+y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
Podaj x_d+y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30267  
Podpunkt 13.1 (1 pkt)
 Przez punkt A=(x_a,y_a) przechodzą proste y=a_1x+b_1 i y=a_2x+b_2, które z prostą o równaniu 2x-y+c=0 tworzą kąt o mierze 45^{\circ}.

Podaj min(a_1,a_2).

Dane
x_a=-1
y_a=-3
c=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (1 pkt)
 Podaj max(a_1,a_2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.3 (1 pkt)
 Podaj min(b_1,b_2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.4 (1 pkt)
 Podaj max(b_1,b_2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 14.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30268  
Podpunkt 14.1 (1 pkt)
 « Przez punkt A=(x_a,y_a) przechodzą proste y=a_1x+b_1 i y=a_2x+b_2, które z prostą o równaniu \sqrt{3}x-y+c=0 tworzą kąt o mierze 60^{\circ}.

Podaj min(a_1,a_2).

Dane
x_a=-1
y_a=-3
c=-1+\sqrt{3}=0.7320508075688773
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 14.2 (1 pkt)
 Podaj max(a_1,a_2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 14.3 (1 pkt)
 Podaj min(b_1,b_2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 14.4 (1 pkt)
 Podaj max(b_1,b_2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 15.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30269  
Podpunkt 15.1 (1 pkt)
 » Przez punkt A=(x_a,y_a) przechodzą proste y=a_1x+b_1 i y=a_2x+b_2, które z prostą o równaniu x-y+c=0 tworzą kąt o mierze 30^{\circ}.

Podaj \min(a_1,a_2).

Dane
x_a=0
y_a=-4
c=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 15.2 (1 pkt)
 Podaj \max(a_1,a_2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 15.3 (1 pkt)
 Podaj \min(b_1,b_2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 15.4 (1 pkt)
 Podaj \max(b_1,b_2).
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 16.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30270  
Podpunkt 16.1 (2 pkt)
« Punkty A=(-4,-2) i C=(0,0) są wierzchołkami rombu o kącie ostrym 60^{\circ} przy wierzchołku B. Wyznacz B=(x_B,y_B) i D=(x_D,y_D) (odwrotnie do wskazówek zegara).

Podaj x_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 16.2 (2 pkt)
Podaj y_B.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 17.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30271  
Podpunkt 17.1 (2 pkt)
Punkt P=(-2,2) jest środkiem symetrii rombu ABCD, w którym \overrightarrow{AC}=[12,6] i \overrightarrow{AB}\parallel k:y=-\frac{1}{2}x-1. Wyznacz B=(x_b,y_b) i D=(x_d,y_d) .

Podaj x_b+y_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 17.2 (2 pkt)
Podaj x_d+y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 18.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30272  
Podpunkt 18.1 (2 pkt)
» Czworokąt ABCD na rysunku jest równoległobokiem:

Podaj x_E.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 18.2 (2 pkt)
Podaj y_E.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 19.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30273  
Podpunkt 19.1 (4 pkt)
Poprowadzono styczne do paraboli y=\frac{1}{4}x^2+3 przechodzące przez początek układu współrzędnych. Oblicz miarę stopniową kąta ostrego między tymi stycznymi.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm