Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Pierwiastek arytmetyczny. Pierwiastek stopnia nieparzystego

Działania na pierwiastkach - poziom podstawowy

Zadanie 1.  1 pkt ⋅ Numer: pp-10353 ⋅ Poprawnie: 550/828 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz wartość wyrażenia w=\frac{\sqrt{8}+\sqrt{18}}{\sqrt{2}}. Wynik zapisz w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{N}.
Odpowiedź:
w= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10364 ⋅ Poprawnie: 339/437 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{\sqrt{75}-\sqrt{48}}{\sqrt{3}}. Wynik zapisz w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{N}.
Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10356 ⋅ Poprawnie: 288/312 [92%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Zapisz wyrażenie \sqrt[3]{48}-\sqrt[3]{6} w najprostszej postaci k\sqrt[m]{n}, gdzie k,m,n\in\mathbb{N}.

Podaj liczby k i n.

Odpowiedzi:
k= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10368 ⋅ Poprawnie: 533/637 [83%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oceń prawdziwość poniższych równości:
Odpowiedzi:
T/N : \sqrt{125}=5\sqrt{5} T/N : \sqrt[3]{875}=5\sqrt[3]{5}
T/N : \sqrt[3]{-125}=-5  
Zadanie 5.  1 pkt ⋅ Numer: pp-10367 ⋅ Poprawnie: 397/505 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oceń prawdziwość poniższych równości:
Odpowiedzi:
T/N : 9^3=(-9)^3 T/N : \sqrt{(-9)^2}=-9
Zadanie 6.  1 pkt ⋅ Numer: pp-10348 ⋅ Poprawnie: 164/185 [88%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Zapisz wyrażenie \left(\sqrt{5}+1\right)^4-\left(\sqrt{5}-1\right)^4 w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10372 ⋅ Poprawnie: 317/366 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Oblicz wartość wyrażenia w= \frac{\sqrt[5]{-3^5}\cdot 3^{-1}} {9}\cdot 3^2 .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10351 ⋅ Poprawnie: 266/328 [81%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{5-a^2}{\sqrt{5}+a} dla a=\sqrt{20}. Wynik zapisz w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{Z}.
Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10374 ⋅ Poprawnie: 214/302 [70%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Zapisz wyrażenie \sqrt[3]{3\sqrt{3}} w najprostszej postaci \sqrt[m]{p^n}, gdzie m,n,p\in\mathbb{N}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10343 ⋅ Poprawnie: 196/260 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Niech k=1-\sqrt{2}, zaś m=1+\sqrt{2}. Zapisz wartość wyrażenia k^2+12m w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10341 ⋅ Poprawnie: 394/516 [76%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Niech k=1-\sqrt{2}, zaś m=1+\sqrt{2}. Zapisz wartość wyrażenia k^2-6m w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10360 ⋅ Poprawnie: 367/433 [84%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Zapisz wyrażenie \sqrt{8\sqrt[3]{2\sqrt{16}}} w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10359 ⋅ Poprawnie: 377/452 [83%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Zapisz wyrażenie \sqrt{27}-\sqrt{12} w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10325 ⋅ Poprawnie: 166/244 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Oblicz część ułamkową liczby, która jest równa wartości wyrażenia \sqrt{\frac{9}{7}}+\sqrt{\frac{7}{9}} .
Odpowiedź:
u= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10365 ⋅ Poprawnie: 271/315 [86%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Zapisz wyrażenie (2\sqrt{128}-\sqrt{72}-\sqrt{18})^{-1} w najprostszej nieskracalnej postaci \frac{m\sqrt{n}}{k}, gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m, n i k.

Odpowiedź:
\frac{m\sqrt{n}}{k}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-10370 ⋅ Poprawnie: 151/160 [94%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Zapisz wyrażenie \sqrt{\frac{1}{25}+\frac{1}{49}} w najprostszej nieskracalnej postaci \frac{m\sqrt{n}}{k}, gdzie m,n,k\in\mathbb{N}.

Podaj liczby m, n i k.

Odpowiedź:
\frac{m\sqrt{n}}{k}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10369 ⋅ Poprawnie: 383/477 [80%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{\sqrt[7]{-128}\cdot 3^{-2}}{27}\cdot \left(-\frac{1}{3}\right)^{-3} .
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 18.  1 pkt ⋅ Numer: pp-11591 ⋅ Poprawnie: 114/122 [93%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Równością nieprawdziwą jest:
Odpowiedzi:
A. \sqrt{(-5)^2}=5 B. \sqrt{125}=5\sqrt{5}
C. \sqrt[3]{-125}=-5 D. \sqrt[3]{875}=5\sqrt[3]{5}
Zadanie 19.  1 pkt ⋅ Numer: pp-11424 ⋅ Poprawnie: 734/897 [81%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Oblicz wartość wyrażenia w= \sqrt[3]{\frac{5}{3}}\cdot\sqrt[3]{\frac{81}{40}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 20.  1 pkt ⋅ Numer: pp-10331 ⋅ Poprawnie: 485/635 [76%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{\sqrt{12}}{\sqrt{27}-\sqrt{12}}. Wynik zapisz w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Odpowiedź:
a\sqrt{b}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 21.  1 pkt ⋅ Numer: pp-10333 ⋅ Poprawnie: 74/141 [52%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 « Liczbą niewymierną nie jest długość przekątnej kwadratu, o boku długości:
Odpowiedzi:
A. 144 B. 1+\sqrt{32}
C. \sqrt{8}-\frac{1}{\sqrt{8}} D. \sqrt{13}
Zadanie 22.  1 pkt ⋅ Numer: pp-10326 ⋅ Poprawnie: 210/262 [80%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Zapisz wyrażenie \frac{\sqrt{8}}{\sqrt[3]{16}} w najprostszej postaci \sqrt[m]{p}, gdzie m,p\in\mathbb{N}.

Podaj liczby m i p.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
p= (wpisz liczbę całkowitą)
Zadanie 23.  1 pkt ⋅ Numer: pp-10363 ⋅ Poprawnie: 131/157 [83%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Oblicz wartość wyrażenia w=\sqrt[3]{-8^4}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 24.  1 pkt ⋅ Numer: pp-11588 ⋅ Poprawnie: 99/137 [72%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Oblicz wartośc wyrażenia w=\frac{5}{\sqrt{6}-1}-\frac{5}{\sqrt{6}+1} .
Odpowiedź:
w= \cdot
(wpisz dwie liczby całkowite)
Zadanie 25.  1 pkt ⋅ Numer: pp-11586 ⋅ Poprawnie: 154/173 [89%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Która równość jest prawdziwa:
Odpowiedzi:
A. -9^2=(-9)^2 B. 9^3=(-9)^3
C. \sqrt{(-9)^2}=-9 D. -\sqrt[3]{9}=\sqrt[3]{-9}
Zadanie 26.  1 pkt ⋅ Numer: pp-10320 ⋅ Poprawnie: 462/515 [89%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Oblicz wartość wyrażenia w=\frac{\sqrt{27}-\sqrt{12}}{2\sqrt{3}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 27.  1 pkt ⋅ Numer: pp-10324 ⋅ Poprawnie: 164/199 [82%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Zapisz wyrażenie \frac{\sqrt[3]{4}\cdot \sqrt[3]{-16}} {-8} w postaci potęgi o podstawie, która jest liczbą pierwszą.

Podaj wykładnik k tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 28.  1 pkt ⋅ Numer: pp-10362 ⋅ Poprawnie: 120/174 [68%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
Oblicz wartość wyrażenia w=\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+\frac{2}{\sqrt{3}+2} .
Odpowiedź:
w= \cdot
(wpisz trzy liczby całkowite)
Zadanie 29.  1 pkt ⋅ Numer: pp-10322 ⋅ Poprawnie: 296/322 [91%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Oblicz wartośc wyrażenia w= \left( \frac{1} {\left(\sqrt[3]{8}+\sqrt[4]{81}+2\right)^0} \right)^2 .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 30.  1 pkt ⋅ Numer: pp-10321 ⋅ Poprawnie: 249/307 [81%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Zapisz wyrażenie 2^{1\frac{1}{3}}\cdot \sqrt[3]{2^5} w postaci potęgi 2^k.

Podaj wykładnik k tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 31.  1 pkt ⋅ Numer: pp-10344 ⋅ Poprawnie: 169/198 [85%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Prawdziwa jest równość \frac{m+2}{3-\sqrt{3}}=\frac{3+\sqrt{3}}{3}.

Podaj wartość parametru m.

Odpowiedź:
m=\frac{a\sqrt{b}}{c}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 32.  1 pkt ⋅ Numer: pp-10345 ⋅ Poprawnie: 192/218 [88%] Rozwiąż 
Podpunkt 32.1 (1 pkt)
 Oblicz wartość wyrażenia w= \frac{7}{\sqrt{3}-1}-\frac{7}{1+\sqrt{3}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 33.  1 pkt ⋅ Numer: pp-10346 ⋅ Poprawnie: 213/263 [80%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 « Zapisz wyrażenie \sqrt[13]{9\sqrt{3}} w postaci \sqrt[26]{3^p}.

Podaj wykładnik p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 34.  1 pkt ⋅ Numer: pp-10347 ⋅ Poprawnie: 253/482 [52%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 « Zapisz liczbę odwrotną do wartości wyrażenia \frac{\sqrt[3]{8^2}:4^{\frac{1}{2}}} {8\sqrt[3]{4}} w postaci 2^p.

Podaj p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 35.  1 pkt ⋅ Numer: pp-10371 ⋅ Poprawnie: 399/480 [83%] Rozwiąż 
Podpunkt 35.1 (1 pkt)
 Wyrażenie w=2\sqrt{8}-\sqrt{18} zapisz w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{Z}.
Odpowiedź:
w= \cdot
(wpisz dwie liczby całkowite)
Zadanie 36.  1 pkt ⋅ Numer: pp-10349 ⋅ Poprawnie: 178/221 [80%] Rozwiąż 
Podpunkt 36.1 (1 pkt)
 Która z podanych liczb jest niewymierna:
Odpowiedzi:
A. (1-\sqrt{3})^2+(1+\sqrt{3})^2 B. \frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}+\sqrt{35}
C. (\sqrt{3}-5)(5+\sqrt{3}) D. \left(5-\sqrt{3}\right)^2
Zadanie 37.  1 pkt ⋅ Numer: pp-10350 ⋅ Poprawnie: 146/169 [86%] Rozwiąż 
Podpunkt 37.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{(\sqrt{12}-\sqrt{3})^2}{(\sqrt{12}+\sqrt{3})^2} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 38.  1 pkt ⋅ Numer: pp-10373 ⋅ Poprawnie: 315/370 [85%] Rozwiąż 
Podpunkt 38.1 (1 pkt)
 Oblicz wartość wyrażenia \sqrt[3]{-8^{-1}}\cdot 16^{\frac{3}{4}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 39.  1 pkt ⋅ Numer: pp-10352 ⋅ Poprawnie: 314/466 [67%] Rozwiąż 
Podpunkt 39.1 (1 pkt)
 « Która z podanych liczb jest niewymierna:
Odpowiedzi:
A. \frac{\sqrt{48}}{\sqrt{3}} B. \left(3+\sqrt{3}\right)^2
C. \sqrt[3]{2}\cdot\sqrt[3]{32} D. 8^{\frac{2}{3}}
Zadanie 40.  1 pkt ⋅ Numer: pp-10354 ⋅ Poprawnie: 257/310 [82%] Rozwiąż 
Podpunkt 40.1 (1 pkt)
 Oblicz wartość wyrażenia w= \frac{2+\sqrt{72}-\sqrt{8}+\sqrt{200}}{7\sqrt{2}+1} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 41.  1 pkt ⋅ Numer: pp-10355 ⋅ Poprawnie: 175/217 [80%] Rozwiąż 
Podpunkt 41.1 (1 pkt)
 Oblicz wartość wyrażenia w= \sqrt{7\cdot 196+29\cdot 196}-\sqrt{113^2-112^2} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 42.  1 pkt ⋅ Numer: pp-10342 ⋅ Poprawnie: 538/674 [79%] Rozwiąż 
Podpunkt 42.1 (1 pkt)
 Liczbę 4\sqrt{7}-\left(1+2\sqrt{7}\right)^2 zapisz w najprostszej postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Z}, zaś c\in\mathbb{N}.
Odpowiedź:
a+b\sqrt{c}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 43.  1 pkt ⋅ Numer: pp-10357 ⋅ Poprawnie: 198/307 [64%] Rozwiąż 
Podpunkt 43.1 (1 pkt)
 « Zapisz wyrażenie 2^{8}\sqrt[3]{16} w postaci 4^p.

Podaj p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 44.  1 pkt ⋅ Numer: pp-10358 ⋅ Poprawnie: 242/283 [85%] Rozwiąż 
Podpunkt 44.1 (1 pkt)
 Oblicz wartość wyrażenia w= \left[2^{-2}+\left(\frac{1}{56}\right)^{-1}\right]^{\frac{1}{2}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 45.  1 pkt ⋅ Numer: pp-11460 ⋅ Poprawnie: 166/267 [62%] Rozwiąż 
Podpunkt 45.1 (1 pkt)
 Zapisz wyrażenie \frac{\sqrt[4]{5}\cdot 5^3\cdot \sqrt{125}\cdot \sqrt[4]{25}} {625\cdot \sqrt{\frac{1}{25}}\cdot \sqrt[4]{125}} w postaci 5^p.

Podaj wykładnik p tej potęgi.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 46.  1 pkt ⋅ Numer: pp-11498 ⋅ Poprawnie: 515/804 [64%] Rozwiąż 
Podpunkt 46.1 (1 pkt)
 « Zapisz wyrażenie 2\sqrt[7]{8\sqrt{2}} w postaci 2^p.

Podaj wykładnik p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 47.  1 pkt ⋅ Numer: pp-11758 ⋅ Poprawnie: 858/957 [89%] Rozwiąż 
Podpunkt 47.1 (1 pkt)
 Liczba \sqrt[3]{-\frac{216}{128}}\cdot\sqrt[3]{2} jest równa:
Odpowiedzi:
A. -\frac{3}{2} B. -\frac{8}{3}
C. -\frac{2}{3} D. 9
E. \frac{3}{2} F. -9
Zadanie 48.  1 pkt ⋅ Numer: pp-11803 ⋅ Poprawnie: 712/833 [85%] Rozwiąż 
Podpunkt 48.1 (1 pkt)
 Liczba 3\sqrt{112}-\sqrt{28} jest równa:
Odpowiedzi:
A. 10 B. 7^{\frac{1}{2}}
C. 11\sqrt{7} D. 10\cdot 7^{\frac{1}{2}}
E. 20\sqrt{7} F. 9\sqrt{7}
Zadanie 49.  1 pkt ⋅ Numer: pp-11878 ⋅ Poprawnie: 314/339 [92%] Rozwiąż 
Podpunkt 49.1 (1 pkt)
 Liczba \sqrt{343}:\sqrt[3]{216} jest równa:
Odpowiedzi:
A. \frac{7\sqrt{7}}{3} B. \frac{7\sqrt{7}}{12}
C. \frac{7\sqrt{7}}{9} D. \frac{7\sqrt{7}}{6}
E. \frac{35\sqrt{7}}{18} F. \frac{7\sqrt{7}}{4}
Zadanie 50.  1 pkt ⋅ Numer: pp-12080 ⋅ Poprawnie: 191/217 [88%] Rozwiąż 
Podpunkt 50.1 (1 pkt)
 Liczba \sqrt{3}\cdot(\sqrt{3}-\sqrt{10})+\sqrt{10}\cdot(\sqrt{3}-\sqrt{10}) jest równa:
Odpowiedzi:
A. 13-3\sqrt{30} B. 6\sqrt{30}
C. -6\sqrt{30} D. 7
E. -7 F. 13+3\sqrt{30}
Zadanie 51.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 51.1 (1 pkt)
 « Liczba m+n\sqrt{5}, gdzie m,n\in\mathbb{Z}, spełnia równanie 3x-5=\sqrt{5}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 51.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm