Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Pierwiastek arytmetyczny. Pierwiastek stopnia nieparzystego

Działania na pierwiastkach - poziom podstawowy

Zadanie 1.  1 pkt ⋅ Numer: pp-10353 ⋅ Poprawnie: 552/830 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Oblicz wartość wyrażenia w=\frac{\sqrt{18}+\sqrt{8}}{\sqrt{2}}. Wynik zapisz w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{N}.
Odpowiedź:
w= \cdot
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10364 ⋅ Poprawnie: 340/437 [77%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{\sqrt{48}-\sqrt{27}}{\sqrt{3}}. Wynik zapisz w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{N}.
Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10356 ⋅ Poprawnie: 290/312 [92%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Zapisz wyrażenie \sqrt[3]{32}-\sqrt[3]{4} w najprostszej postaci k\sqrt[m]{n}, gdzie k,m,n\in\mathbb{N}.

Podaj liczby k i n.

Odpowiedzi:
k= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10368 ⋅ Poprawnie: 535/639 [83%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oceń prawdziwość poniższych równości:
Odpowiedzi:
T/N : \sqrt{(-3)^2}=3 T/N : \sqrt[3]{-27}=-3
T/N : \sqrt{27}=3\sqrt{3}  
Zadanie 5.  1 pkt ⋅ Numer: pp-10367 ⋅ Poprawnie: 397/505 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oceń prawdziwość poniższych równości:
Odpowiedzi:
T/N : \sqrt{(-4)^2}=-4 T/N : -\sqrt[3]{4}=\sqrt[3]{-4}
Zadanie 6.  1 pkt ⋅ Numer: pp-10348 ⋅ Poprawnie: 164/185 [88%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Zapisz wyrażenie \left(\sqrt{8}+1\right)^4-\left(\sqrt{8}-1\right)^4 w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10372 ⋅ Poprawnie: 317/366 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Oblicz wartość wyrażenia w= \frac{\sqrt[5]{-5^5}\cdot 5^{-1}} {25}\cdot 5^2 .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10351 ⋅ Poprawnie: 266/328 [81%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{2-a^2}{\sqrt{2}+a} dla a=\sqrt{18}. Wynik zapisz w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{Z}.
Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10374 ⋅ Poprawnie: 214/302 [70%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Zapisz wyrażenie \sqrt[3]{7\sqrt{7}} w najprostszej postaci \sqrt[m]{p^n}, gdzie m,n,p\in\mathbb{N}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10343 ⋅ Poprawnie: 196/260 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Niech k=2-3\sqrt{2}, zaś m=1+3\sqrt{2}. Zapisz wartość wyrażenia k^2+12m w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10341 ⋅ Poprawnie: 394/516 [76%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Niech k=2-3\sqrt{2}, zaś m=1+3\sqrt{2}. Zapisz wartość wyrażenia k^2-6m w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a i b.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10360 ⋅ Poprawnie: 367/433 [84%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Zapisz wyrażenie \sqrt{12\sqrt[3]{4\sqrt{256}}} w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10359 ⋅ Poprawnie: 378/452 [83%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Zapisz wyrażenie \sqrt{175}-\sqrt{63} w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10325 ⋅ Poprawnie: 166/244 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Oblicz część ułamkową liczby, która jest równa wartości wyrażenia \sqrt{\frac{121}{5}}+\sqrt{\frac{5}{121}} .
Odpowiedź:
u= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10365 ⋅ Poprawnie: 271/315 [86%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Zapisz wyrażenie (2\sqrt{72}-\sqrt{8}-\sqrt{32})^{-1} w najprostszej nieskracalnej postaci \frac{m\sqrt{n}}{k}, gdzie m,n,k\in\mathbb{Z}.

Podaj liczby m, n i k.

Odpowiedź:
\frac{m\sqrt{n}}{k}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-10370 ⋅ Poprawnie: 151/160 [94%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Zapisz wyrażenie \sqrt{\frac{1}{9}+\frac{1}{49}} w najprostszej nieskracalnej postaci \frac{m\sqrt{n}}{k}, gdzie m,n,k\in\mathbb{N}.

Podaj liczby m, n i k.

Odpowiedź:
\frac{m\sqrt{n}}{k}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10369 ⋅ Poprawnie: 383/477 [80%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{\sqrt[7]{-128}\cdot 2^{-2}}{8}\cdot \left(-\frac{1}{2}\right)^{-3} .
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 18.  1 pkt ⋅ Numer: pp-11591 ⋅ Poprawnie: 115/122 [94%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Równością nieprawdziwą jest:
Odpowiedzi:
A. \sqrt[3]{189}=3\sqrt[3]{3} B. \sqrt[3]{-27}=-3
C. \sqrt{(-3)^2}=3 D. \sqrt{27}=3\sqrt{3}
Zadanie 19.  1 pkt ⋅ Numer: pp-11424 ⋅ Poprawnie: 734/897 [81%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Oblicz wartość wyrażenia w= \sqrt[3]{\frac{5}{3}}\cdot\sqrt[3]{\frac{81}{40}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 20.  1 pkt ⋅ Numer: pp-10331 ⋅ Poprawnie: 486/635 [76%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{\sqrt{8}}{\sqrt{18}-\sqrt{8}}. Wynik zapisz w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{N}.
Odpowiedź:
a\sqrt{b}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 21.  1 pkt ⋅ Numer: pp-10333 ⋅ Poprawnie: 74/141 [52%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 « Liczbą niewymierną nie jest długość przekątnej kwadratu, o boku długości:
Odpowiedzi:
A. \sqrt{6} B. 1+\sqrt{32}
C. 25 D. \sqrt{8}-\frac{1}{\sqrt{8}}
Zadanie 22.  1 pkt ⋅ Numer: pp-10326 ⋅ Poprawnie: 210/262 [80%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Zapisz wyrażenie \frac{\sqrt{27}}{\sqrt[3]{81}} w najprostszej postaci \sqrt[m]{p}, gdzie m,p\in\mathbb{N}.

Podaj liczby m i p.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
p= (wpisz liczbę całkowitą)
Zadanie 23.  1 pkt ⋅ Numer: pp-10363 ⋅ Poprawnie: 131/157 [83%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Oblicz wartość wyrażenia w=\sqrt[3]{-27^4}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 24.  1 pkt ⋅ Numer: pp-11588 ⋅ Poprawnie: 99/137 [72%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Oblicz wartośc wyrażenia w=\frac{6}{\sqrt{7}-1}-\frac{6}{\sqrt{7}+1} .
Odpowiedź:
w= \cdot
(wpisz dwie liczby całkowite)
Zadanie 25.  1 pkt ⋅ Numer: pp-11586 ⋅ Poprawnie: 155/173 [89%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Która równość jest prawdziwa:
Odpowiedzi:
A. -4^2=(-4)^2 B. 4^3=(-4)^3
C. -\sqrt[3]{4}=\sqrt[3]{-4} D. \sqrt{(-4)^2}=-4
Zadanie 26.  1 pkt ⋅ Numer: pp-10320 ⋅ Poprawnie: 463/516 [89%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Oblicz wartość wyrażenia w=\frac{\sqrt{125}-\sqrt{45}}{2\sqrt{5}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 27.  1 pkt ⋅ Numer: pp-10324 ⋅ Poprawnie: 164/199 [82%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Zapisz wyrażenie \frac{\sqrt[3]{4}\cdot \sqrt[3]{-16}} {-8} w postaci potęgi o podstawie, która jest liczbą pierwszą.

Podaj wykładnik k tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 28.  1 pkt ⋅ Numer: pp-10362 ⋅ Poprawnie: 120/174 [68%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
Oblicz wartość wyrażenia w=\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+\frac{2}{\sqrt{3}+2} .
Odpowiedź:
w= \cdot
(wpisz trzy liczby całkowite)
Zadanie 29.  1 pkt ⋅ Numer: pp-10322 ⋅ Poprawnie: 296/322 [91%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Oblicz wartośc wyrażenia w= \left( \frac{1} {\left(\sqrt[3]{27}+\sqrt[4]{625}+2\right)^0} \right)^2 .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 30.  1 pkt ⋅ Numer: pp-10321 ⋅ Poprawnie: 249/307 [81%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Zapisz wyrażenie 2^{1\frac{1}{3}}\cdot \sqrt[3]{2^5} w postaci potęgi 2^k.

Podaj wykładnik k tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 31.  1 pkt ⋅ Numer: pp-10344 ⋅ Poprawnie: 169/198 [85%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Prawdziwa jest równość \frac{m-4}{7-\sqrt{7}}=\frac{7+\sqrt{7}}{7}.

Podaj wartość parametru m.

Odpowiedź:
m=\frac{a\sqrt{b}}{c}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 32.  1 pkt ⋅ Numer: pp-10345 ⋅ Poprawnie: 192/218 [88%] Rozwiąż 
Podpunkt 32.1 (1 pkt)
 Oblicz wartość wyrażenia w= \frac{2}{\sqrt{7}-1}-\frac{2}{1+\sqrt{7}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 33.  1 pkt ⋅ Numer: pp-10346 ⋅ Poprawnie: 214/264 [81%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 « Zapisz wyrażenie \sqrt[7]{36\sqrt{6}} w postaci \sqrt[14]{6^p}.

Podaj wykładnik p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 34.  1 pkt ⋅ Numer: pp-10347 ⋅ Poprawnie: 253/482 [52%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 « Zapisz liczbę odwrotną do wartości wyrażenia \frac{\sqrt[3]{64^2}:16^{\frac{1}{2}}} {16\sqrt[3]{16}} w postaci 4^p.

Podaj p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 35.  1 pkt ⋅ Numer: pp-10371 ⋅ Poprawnie: 399/480 [83%] Rozwiąż 
Podpunkt 35.1 (1 pkt)
 Wyrażenie w=2\sqrt{18}-\sqrt{8} zapisz w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{Z}.
Odpowiedź:
w= \cdot
(wpisz dwie liczby całkowite)
Zadanie 36.  1 pkt ⋅ Numer: pp-10349 ⋅ Poprawnie: 178/221 [80%] Rozwiąż 
Podpunkt 36.1 (1 pkt)
 Która z podanych liczb jest niewymierna:
Odpowiedzi:
A. \left(2-\sqrt{5}\right)^2 B. (\sqrt{5}-2)(2+\sqrt{5})
C. \frac{\sqrt{4}-\sqrt{2}}{\sqrt{4}+\sqrt{2}}+\sqrt{8} D. (1-\sqrt{5})^2+(1+\sqrt{5})^2
Zadanie 37.  1 pkt ⋅ Numer: pp-10350 ⋅ Poprawnie: 147/170 [86%] Rozwiąż 
Podpunkt 37.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{(\sqrt{8}-\sqrt{2})^2}{(\sqrt{8}+\sqrt{2})^2} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 38.  1 pkt ⋅ Numer: pp-10373 ⋅ Poprawnie: 315/370 [85%] Rozwiąż 
Podpunkt 38.1 (1 pkt)
 Oblicz wartość wyrażenia \sqrt[3]{-27^{-1}}\cdot 81^{\frac{3}{4}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 39.  1 pkt ⋅ Numer: pp-10352 ⋅ Poprawnie: 314/466 [67%] Rozwiąż 
Podpunkt 39.1 (1 pkt)
 « Która z podanych liczb jest niewymierna:
Odpowiedzi:
A. 8^{\frac{2}{3}} B. \left(1+\sqrt{6}\right)^2
C. \sqrt[3]{2}\cdot\sqrt[3]{108} D. \frac{\sqrt{125}}{\sqrt{5}}
Zadanie 40.  1 pkt ⋅ Numer: pp-10354 ⋅ Poprawnie: 257/310 [82%] Rozwiąż 
Podpunkt 40.1 (1 pkt)
 Oblicz wartość wyrażenia w= \frac{3+\sqrt{8}-\sqrt{18}+\sqrt{338}}{4\sqrt{2}+1} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 41.  1 pkt ⋅ Numer: pp-10355 ⋅ Poprawnie: 175/217 [80%] Rozwiąż 
Podpunkt 41.1 (1 pkt)
 Oblicz wartość wyrażenia w= \sqrt{11\cdot 121+25\cdot 121}-\sqrt{145^2-144^2} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 42.  1 pkt ⋅ Numer: pp-10342 ⋅ Poprawnie: 538/674 [79%] Rozwiąż 
Podpunkt 42.1 (1 pkt)
 Liczbę 4\sqrt{2}-\left(1+2\sqrt{2}\right)^2 zapisz w najprostszej postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Z}, zaś c\in\mathbb{N}.
Odpowiedź:
a+b\sqrt{c}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 43.  1 pkt ⋅ Numer: pp-10357 ⋅ Poprawnie: 198/307 [64%] Rozwiąż 
Podpunkt 43.1 (1 pkt)
 « Zapisz wyrażenie 3^{3}\sqrt[3]{81} w postaci 9^p.

Podaj p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 44.  1 pkt ⋅ Numer: pp-10358 ⋅ Poprawnie: 242/283 [85%] Rozwiąż 
Podpunkt 44.1 (1 pkt)
 Oblicz wartość wyrażenia w= \left[2^{-2}+\left(\frac{1}{6}\right)^{-1}\right]^{\frac{1}{2}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 45.  1 pkt ⋅ Numer: pp-11460 ⋅ Poprawnie: 166/267 [62%] Rozwiąż 
Podpunkt 45.1 (1 pkt)
 Zapisz wyrażenie \frac{\sqrt[4]{5}\cdot 5^5\cdot \sqrt{125}\cdot \sqrt[4]{25}} {625\cdot \sqrt{\frac{1}{25}}\cdot \sqrt[4]{125}} w postaci 5^p.

Podaj wykładnik p tej potęgi.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 46.  1 pkt ⋅ Numer: pp-11498 ⋅ Poprawnie: 515/804 [64%] Rozwiąż 
Podpunkt 46.1 (1 pkt)
 « Zapisz wyrażenie 3\sqrt[9]{81\sqrt{3}} w postaci 3^p.

Podaj wykładnik p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 47.  1 pkt ⋅ Numer: pp-11758 ⋅ Poprawnie: 927/1035 [89%] Rozwiąż 
Podpunkt 47.1 (1 pkt)
 Liczba \sqrt[3]{-\frac{64}{16}}\cdot\sqrt[3]{2} jest równa:
Odpowiedzi:
A. -2 B. -8
C. 8 D. -1
E. -\frac{1}{2} F. 2
Zadanie 48.  1 pkt ⋅ Numer: pp-11803 ⋅ Poprawnie: 721/844 [85%] Rozwiąż 
Podpunkt 48.1 (1 pkt)
 Liczba 3\sqrt{20}-\sqrt{245} jest równa:
Odpowiedzi:
A. -1 B. 5^{\frac{1}{2}}
C. 0 D. -2\sqrt{5}
E. -1\cdot 5^{\frac{1}{2}} F. -2\sqrt{5}
Zadanie 49.  1 pkt ⋅ Numer: pp-11878 ⋅ Poprawnie: 327/352 [92%] Rozwiąż 
Podpunkt 49.1 (1 pkt)
 Liczba \sqrt{50}:\sqrt[3]{27} jest równa:
Odpowiedzi:
A. \frac{10\sqrt{2}}{3} B. \frac{5\sqrt{2}}{6}
C. \frac{5\sqrt{2}}{2} D. \frac{10\sqrt{2}}{9}
E. \frac{5\sqrt{2}}{3} F. \frac{25\sqrt{2}}{9}
Zadanie 50.  1 pkt ⋅ Numer: pp-12080 ⋅ Poprawnie: 200/225 [88%] Rozwiąż 
Podpunkt 50.1 (1 pkt)
 Liczba \sqrt{7}\cdot(\sqrt{7}-\sqrt{2})+\sqrt{2}\cdot(\sqrt{7}-\sqrt{2}) jest równa:
Odpowiedzi:
A. 14\sqrt{14} B. 9+7\sqrt{14}
C. -5 D. -14\sqrt{14}
E. 5 F. 9-7\sqrt{14}
Zadanie 51.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 51.1 (1 pkt)
 « Liczba m+n\sqrt{6}, gdzie m,n\in\mathbb{Z}, spełnia równanie 4x-31=\sqrt{6}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 51.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm