Wzory skróconego mnożenia
Zadania dla liceum ogólnokształcącego - poziom podstawowy
kwadrat sumy
kwadrat różnicy
róznica kwadratów
rozkładanie na czynniki
Zadanie 1. 1 pkt ⋅ Numer: pp-10469 ⋅ Poprawnie: 537/787 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Oblicz wartość wyrażenia
w=
\sqrt{112}-\left(\sqrt{2}-\sqrt{14}\right)^2
.
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10339 ⋅ Poprawnie: 1269/1816 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zapisz wyrażenie
7\sqrt{3}-\left(2+4\sqrt{3}\right)^2
w najprostszej postaci
a+b\sqrt{c} .
Odpowiedź:
a+b\sqrt{c}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10470 ⋅ Poprawnie: 518/1034 [50%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wyznacz liczbę odwrotną do liczby
5+2\sqrt{6} .
Odpowiedź:
m+n\sqrt{k}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10338 ⋅ Poprawnie: 316/444 [71%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zapisz wyrażenie
\left(\frac{15-\sqrt{15}}{\sqrt{15}}\right)^2
w najprostszej postaci
m+n\sqrt{k} , gdzie
m,n,k\in\mathbb{Z} .
Odpowiedź:
m+n\sqrt{k}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11555 ⋅ Poprawnie: 96/128 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dane jest wyrażenie
W(x)=\frac{1}{16}\left(\frac{x+8}{x-8}-\frac{x-8}{x+8}\right) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : wyrażenie W(x) można przekształcić do postaci równoważnej \frac{2x}{x^2-64}
T/N : wartość W(x) jest określona dla każdej liczby x\in\mathbb{R}-\{-8\}
Zadanie 6. 1 pkt ⋅ Numer: pp-11553 ⋅ Poprawnie: 152/229 [66%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Dana jest liczba
x=p-(\sqrt{10}-\sqrt{3})^2 , gdzie
p\in\mathbb{R} .
Liczba x jest wymierna, gdy:
Odpowiedzi:
T/N : p=30
T/N : p=30-2\sqrt{30}
T/N : p=-\sqrt{30}
Zadanie 7. 1 pkt ⋅ Numer: pp-10444 ⋅ Poprawnie: 463/656 [70%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
» Zapisz wyrażenie
\left(2-5\sqrt{2}\right)^2
w najprostszej postaci
m+n\sqrt{k} ,
gdzie
m,n,k\in\mathbb{Z} .
Odpowiedź:
m+n\sqrt{k}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10445 ⋅ Poprawnie: 536/747 [71%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Zapisz wyrażenie
\left(3-\sqrt{2}\right)^2+4\left(2-\sqrt{2}\right)
w najprostszej postaci
m+n\sqrt{k} , gdzie
m,n,k\in\mathbb{Z} .
Odpowiedź:
m+n\sqrt{k}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10446 ⋅ Poprawnie: 428/741 [57%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zapisz wyrażenie
\frac{\sqrt{10}+3}{\sqrt{10}-3}
w najprostszej postaci
\frac{m+n\sqrt{k}}{p} ,
gdzie
m,n,k,p\in\mathbb{Z} .
Podaj liczby m , n ,
k i p .
Odpowiedź:
Zadanie 10. 1 pkt ⋅ Numer: pp-10337 ⋅ Poprawnie: 344/449 [76%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dane są liczby
x=9+\sqrt{2} i
y=4-\sqrt{2} .
Zapisz iloraz
\frac{x}{y} w najprostszej nieskracalnej postaci
\frac{m+n\sqrt{k}}{p} , gdzie
m,n,k\in\mathbb{Z} i
p\in\mathbb{N_{+}} .
Odpowiedź:
Zadanie 11. 1 pkt ⋅ Numer: pp-10366 ⋅ Poprawnie: 178/272 [65%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
«« Zapisz iloczyn odwrotności liczby
\sqrt{7-\sqrt{48}}
i liczby
\sqrt{7+\sqrt{48}} w najprostszej postaci
m+n\sqrt{k} , gdzie
m,n,k\in\mathbb{Z} .
Odpowiedź:
m+n\sqrt{k}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10452 ⋅ Poprawnie: 403/687 [58%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
» Zapisz wyrażenie
\left(\sqrt{2}-1\right)^2+(\sqrt{6}-1)(\sqrt{6}+1)
w najprostszej postaci
m+n\sqrt{k} , gdzie
m,n,k\in\mathbb{Z} .
Odpowiedź:
m+n\sqrt{k}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 13. 1 pkt ⋅ Numer: pp-11500 ⋅ Poprawnie: 791/1026 [77%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Zapisz wartość wyrażenia:
\left(\sqrt{50}-7\sqrt{2}\right)^2
w najprostszej postaci
a\sqrt{b} ,
gdzie
a,b\in\mathbb{Z} .
Odpowiedź:
a\sqrt{b}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 14. 1 pkt ⋅ Numer: pp-10441 ⋅ Poprawnie: 349/398 [87%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Oblicz wartośc wyrażenia
w=\frac{9}{\sqrt{3}-1}-\frac{9}{\sqrt{3}+1} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 15. 1 pkt ⋅ Numer: pp-10442 ⋅ Poprawnie: 345/477 [72%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
« Dla każdej liczby rzeczywistej
x wyrażenie
49x^2-42x+9 jest równe:
Odpowiedzi:
A. (7x-3)(x+3)
B. (49x+3)(7x-3)
C. (7x-3)(7x-3)
D. (7x+3)(7x-3)
Zadanie 16. 1 pkt ⋅ Numer: pp-10471 ⋅ Poprawnie: 297/392 [75%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Oblicz wartość wyrażenia
w=
\left(
\sqrt{5+\sqrt{24}}-\sqrt{5-\sqrt{24}}
\right)^2
.
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 17. 1 pkt ⋅ Numer: pp-10472 ⋅ Poprawnie: 444/604 [73%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
Dla
a=2\sqrt{2} i
b=\sqrt{32} oblicz wartość wyrażenia
w=(b-a)^2 .
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 18. 1 pkt ⋅ Numer: pp-10473 ⋅ Poprawnie: 211/266 [79%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
» Równość
(13+\sqrt{13})^2=(x\sqrt{13}-13)^2 jest
prawdziwa dla:
Odpowiedzi:
A. x=-1
B. x=13\sqrt{13}
C. x=\sqrt{13}
D. x=-\sqrt{13}
Zadanie 19. 1 pkt ⋅ Numer: pp-10468 ⋅ Poprawnie: 345/442 [78%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
Wiedząc, że
x=\sqrt{525} i
y=\sqrt{21} , oblicz wartość wyrażenia
w=(y-x)^2 .
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10448 ⋅ Poprawnie: 189/279 [67%]
Rozwiąż
Podpunkt 20.1 (1 pkt)
Wyznacz wartość
a , dla której zachodzi równość
\left(a+2\sqrt{2}\right)^2=a^2+36\sqrt{2}+8
.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 21. 1 pkt ⋅ Numer: pp-10437 ⋅ Poprawnie: 311/362 [85%]
Rozwiąż
Podpunkt 21.1 (1 pkt)
Oblicz o ile wartość wyrażenia
(x+14)^2 jest większa od
wartości wyrażenia
x^2+28x .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 22. 1 pkt ⋅ Numer: pp-10438 ⋅ Poprawnie: 797/997 [79%]
Rozwiąż
Podpunkt 22.1 (1 pkt)
Wartość wyrażenia
7-(x-3)^2 jest równa:
Odpowiedzi:
A. -x^2+6x-2
B. -x^2+6x
C. -x^2+12x-2
D. -x^2-6x-2
Zadanie 23. 1 pkt ⋅ Numer: pp-10451 ⋅ Poprawnie: 221/324 [68%]
Rozwiąż
Podpunkt 23.1 (1 pkt)
Zbiorem rozwiązań nierówności
x^2+24x\geqslant -144
jest:
Odpowiedzi:
A. \langle 12,+\infty)
B. \mathbb{R}
C. \emptyset
D. (-\infty, -12\rangle\cup\langle 0,+\infty)
Zadanie 24. 1 pkt ⋅ Numer: pp-10439 ⋅ Poprawnie: 489/668 [73%]
Rozwiąż
Podpunkt 24.1 (1 pkt)
Wyrażenie
49-(3x+1)^2 jest równe:
Odpowiedzi:
A. (6-3x)(7+3x)
B. (6-3x)(8+3x)
C. (6-3x)^2
D. 49-9x^2
Zadanie 25. 1 pkt ⋅ Numer: pp-10455 ⋅ Poprawnie: 425/500 [85%]
Rozwiąż
Podpunkt 25.1 (1 pkt)
Oblicz wartość wyrażenia
w=1800001^2-1799999^2 .
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 26. 1 pkt ⋅ Numer: pp-10454 ⋅ Poprawnie: 102/133 [76%]
Rozwiąż
Podpunkt 26.1 (1 pkt)
» Wyrażenie
\left(\sqrt{144n}-\sqrt{n}\right)^2
można zapisać w postaci
p\cdot n .
Podaj wartość współczynnika p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 27. 1 pkt ⋅ Numer: pp-10458 ⋅ Poprawnie: 224/268 [83%]
Rozwiąż
Podpunkt 27.1 (1 pkt)
Równość
\left(a\sqrt{2}-2\sqrt{c}\right)^2=166-36\sqrt{2}
jest prawdziwa dla:
Odpowiedzi:
A. a=8 \wedge c=1
B. a=10 \wedge c=2
C. a=9 \wedge c=4
D. a=9 \wedge c=1
Zadanie 28. 1 pkt ⋅ Numer: pp-10466 ⋅ Poprawnie: 199/213 [93%]
Rozwiąż
Podpunkt 28.1 (1 pkt)
Równość
\left(3\sqrt{2}-a\right)^2=82-48\sqrt{2}
zachodzi, gdy:
Odpowiedzi:
A. a=8\sqrt{2}
B. a=7
C. a=8
D. a=9
Zadanie 29. 1 pkt ⋅ Numer: pp-10465 ⋅ Poprawnie: 148/175 [84%]
Rozwiąż
Podpunkt 29.1 (1 pkt)
Wartość wyrażenia
(m+15)^2 jest większa od wartości
wyrażenia
m^2+225 o:
Odpowiedzi:
A. 60m^2
B. 30m
C. 30
D. 60m
Zadanie 30. 1 pkt ⋅ Numer: pp-10459 ⋅ Poprawnie: 155/200 [77%]
Rozwiąż
Podpunkt 30.1 (1 pkt)
Oblicz wartość wyrażenia
w=\left(\frac{1}{8+3\sqrt{7}}-(8+3\sqrt{7})\right)^2 .
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 31. 1 pkt ⋅ Numer: pp-10464 ⋅ Poprawnie: 362/635 [57%]
Rozwiąż
Podpunkt 31.1 (1 pkt)
Wyrażenie
\left(x+7\right)^2-\left(2x-4\right)^2 jest równe:
Odpowiedzi:
A. \left(-3x+3\right)\left(x-11\right)
B. \left(3x+1\right)\left(x-11\right)
C. -3\left(x+1\right)\left(x-11\right)
D. -3\left(x+1\right)\left(x-3\right)
Zadanie 32. 1 pkt ⋅ Numer: pp-10463 ⋅ Poprawnie: 290/418 [69%]
Rozwiąż
Podpunkt 32.1 (1 pkt)
Wyrażenie 25-(4x-1)^2 jest równe:
Odpowiedzi:
A. (6-4x)(4x+4)
B. 24-16x^2
C. (4+4x)(4-6x)
D. (5-4x)(x-1)
Zadanie 33. 1 pkt ⋅ Numer: pp-10462 ⋅ Poprawnie: 180/215 [83%]
Rozwiąż
Podpunkt 33.1 (1 pkt)
Wyrażenie \frac{1}{x-1}-\frac{1}{x+1} jest równe:
Odpowiedzi:
A. \frac{x}{x^2-1}
B. \frac{x}{(x-1)^2}
C. \frac{2}{(x+1)^2}
D. \frac{2}{x^2-1}
Zadanie 34. 1 pkt ⋅ Numer: pp-10204 ⋅ Poprawnie: 79/97 [81%]
Rozwiąż
Podpunkt 34.1 (1 pkt)
Dane są liczby
a=88888^2 oraz
b=88887\cdot 88889 .
Wówczas:
Odpowiedzi:
A. a^2=b^2-1
B. b-a=1
C. a-b=1
D. a=b
Zadanie 35. 1 pkt ⋅ Numer: pp-10334 ⋅ Poprawnie: 131/233 [56%]
Rozwiąż
Podpunkt 35.1 (1 pkt)
Zapisz wyrażenie
w=11\sqrt{2}-\frac{\sqrt{2}+1}{\sqrt{2}-1}
w najprostszej postaci
a+b\sqrt{c} , gdzie
a,b,c\in\mathbb{Z} .
Odpowiedź:
w=
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 36. 1 pkt ⋅ Numer: pp-10332 ⋅ Poprawnie: 189/290 [65%]
Rozwiąż
Podpunkt 36.1 (1 pkt)
« Liczbą wymierną nie jest:
Odpowiedzi:
A. \left(\frac{7}{\sqrt{3}}\right)^2
B. (9-\sqrt{3})(18+\sqrt{3})
C. (8-\sqrt{3})(8+\sqrt{3})
D. (8-3\pi)+(8+3\pi)
Zadanie 37. 1 pkt ⋅ Numer: pp-10330 ⋅ Poprawnie: 258/333 [77%]
Rozwiąż
Podpunkt 37.1 (1 pkt)
Odpowiedzi:
A. \left(\sqrt{2}-3\right)^2
B. \pi+4
C. \left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)
D. \left(\sqrt{2}\right)^{-1}+3
Zadanie 38. 1 pkt ⋅ Numer: pp-11461 ⋅ Poprawnie: 27/38 [71%]
Rozwiąż
Podpunkt 38.1 (1 pkt)
Oblicz liczbę odwrotną do liczby
\sqrt{9+3\sqrt{8}}\cdot\sqrt{9-3\sqrt{8}} .
Odpowiedź:
Zadanie 39. 1 pkt ⋅ Numer: pp-10440 ⋅ Poprawnie: 520/585 [88%]
Rozwiąż
Podpunkt 39.1 (1 pkt)
Oblicz wartość wyrażenia
w=(\sqrt{14}-\sqrt{15})^2+2\sqrt{210} .
Odpowiedź:
w=
(wpisz liczbę całkowitą)
Zadanie 40. 1 pkt ⋅ Numer: pp-11501 ⋅ Poprawnie: 484/847 [57%]
Rozwiąż
Podpunkt 40.1 (1 pkt)
Wyznacz najmniejszą liczbę całkowitą, która spełnia nierówność
7\left(x-1\right)^2-x(7x+3)\leqslant 18
.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 41. 1 pkt ⋅ Numer: pp-11526 ⋅ Poprawnie: 83/174 [47%]
Rozwiąż
Podpunkt 41.1 (1 pkt)
Dane są liczby:
a=\frac{8+3\sqrt{7}}{2}
i
b=\frac{8-3\sqrt{7}}{4} . Oblicz
\frac{b}{a} .
Odpowiedź:
Zadanie 42. 1 pkt ⋅ Numer: pp-10436 ⋅ Poprawnie: 714/1150 [62%]
Rozwiąż
Podpunkt 42.1 (1 pkt)
Dla każdej liczby rzeczywistej
x , wyrażenie
4x^2-20x+25 jest równe:
Odpowiedzi:
A. (2x-5)(x+5)
B. (2x-5)(2x-5)
C. (2x+5)^2
D. (2x-5)(2x+5)
Zadanie 43. 1 pkt ⋅ Numer: pp-10447 ⋅ Poprawnie: 193/253 [76%]
Rozwiąż
Podpunkt 43.1 (1 pkt)
Wyrażenie
\frac{x-81y}{\sqrt{x}+9\sqrt{y}}
jest równe:
Odpowiedzi:
A. \sqrt{x}+9\sqrt{y}
B. \sqrt{x}-9\sqrt{y}
C. \sqrt{x-9y}
D. \sqrt{x+9y}
Zadanie 44. 1 pkt ⋅ Numer: pp-11760 ⋅ Poprawnie: 916/981 [93%]
Rozwiąż
Podpunkt 44.1 (1 pkt)
Dla każdej liczby rzeczywistej
a wyrażenie
(5a-2)^2-(5a+2)^2
jest równe:
Odpowiedzi:
A. -40a
B. 21
C. 4a
D. 0
E. 50a^2-40a
F. 50a^2+40a
Zadanie 45. 1 pkt ⋅ Numer: pp-11782 ⋅ Poprawnie: 993/1039 [95%]
Rozwiąż
Podpunkt 45.1 (1 pkt)
Liczba
(1+\sqrt{18})^2-(1-\sqrt{18})^2 jest równa:
Odpowiedzi:
A. 2+6\sqrt{2}
B. 2-6\sqrt{2}
C. 0
D. -36
E. 12\sqrt{2}
F. -6\sqrt{2}
Zadanie 46. 1 pkt ⋅ Numer: pp-11807 ⋅ Poprawnie: 830/863 [96%]
Rozwiąż
Podpunkt 46.1 (1 pkt)
Wartość wyrażenia
\left(2-\sqrt{7}\right)^2+\left(\sqrt{7}-2\right)^2 jest równa:
Odpowiedzi:
A. 18-2\sqrt{7}
B. 22-4\sqrt{7}
C. 0
D. 22
E. 22-8\sqrt{7}
F. 11+8\sqrt{7}
Zadanie 47. 1 pkt ⋅ Numer: pp-11849 ⋅ Poprawnie: 297/354 [83%]
Rozwiąż
Podpunkt 47.1 (1 pkt)
Liczba
(4\sqrt{180}-2\sqrt{5})^2 jest równa:
Odpowiedzi:
A. 2412
B. 2426
C. 2415
D. 2420
E. 2424
F. 2422
Zadanie 48. 1 pkt ⋅ Numer: pp-11910 ⋅ Poprawnie: 424/438 [96%]
Rozwiąż
Podpunkt 48.1 (1 pkt)
Liczba
\left(5-4\sqrt{5}\right)^2 jest równa:
Odpowiedzi:
A. 52-40\sqrt{5}
B. 105-20\sqrt{5}
C. 105-40\sqrt{5}
D. 210-40\sqrt{5}
E. 420-40\sqrt{5}
F. 105-80\sqrt{5}
Zadanie 49. 2 pkt ⋅ Numer: pp-11940 ⋅ Poprawnie: 96/255 [37%]
Rozwiąż
Podpunkt 49.1 (2 pkt)
Dla każdej liczby rzeczywistej
x i dla każdej liczby rzeczywistej
y
wyrażenie
49-(x^2+2xy+y^2) jest równe:
Odpowiedzi:
T/N : \left[7-(x+y)\right]\cdot\left[7+(x-y)\right]
T/N : \left[7-(x+2y)\right]^2
T/N : -\left[(x+y)-7\right]\cdot\left[(x+y)+7\right]
T/N : \left[7+(x+2y)\right]^2
T/N : \left[7-(x+2y)\right]\cdot\left[7+(x-2y)\right]
T/N : \left[7-(x+y)\right]\cdot\left[7+(x+y)\right]
Zadanie 50. 1 pkt ⋅ Numer: pp-11959 ⋅ Poprawnie: 40/55 [72%]
Rozwiąż
Podpunkt 50.1 (1 pkt)
Liczby rzeczywiste
x i
y
są dodatnie oraz
x\neq y .
Wyrażenie \frac{3}{x+y}+\frac{7}{x-y} można przekształcić
do postaci:
Odpowiedzi:
A. \frac{+4y}{x^2-y^2}
B. \frac{10x-4y}{x^2-y^2}
C. \frac{10x+4y}{x-y}
D. \frac{3x+7y}{x-y}
E. \frac{10x}{x^2-y^2}
F. \frac{10x+4y}{x^2-y^2}
Zadanie 51. 1 pkt ⋅ Numer: pp-11983 ⋅ Poprawnie: 854/869 [98%]
Rozwiąż
Podpunkt 51.1 (1 pkt)
Dla każdej liczby rzeczywistej
a i dla każdej liczby
rzeczywistej
b wartość wyrażenia
(3a-b)^2-(3a+b)^2 jest równa wartości wyrażenia:
Odpowiedzi:
A. 12a^2
B. 3b^2
C. -12ab
D. 12ab
Zadanie 52. 1 pkt ⋅ Numer: pp-12004 ⋅ Poprawnie: 78/481 [16%]
Rozwiąż
Podpunkt 52.1 (1 pkt)
Liczba
(7\sqrt{6}+\sqrt{2})^2 jest równa:
Odpowiedzi:
A. 296+16\sqrt{3}
B. 320
C. 16\sqrt{3}
D. 296+4\sqrt{3}
E. 296+8\sqrt{3}
F. 302
Zadanie 53. 1 pkt ⋅ Numer: pp-12024 ⋅ Poprawnie: 308/346 [89%]
Rozwiąż
Podpunkt 53.1 (1 pkt)
Liczba
(\sqrt{6}-\sqrt{3})^2-5\sqrt{2} jest równa:
Odpowiedzi:
A. 9-16\sqrt{6}
B. 9-11\sqrt{6}
C. 9-16\sqrt{2}
D. 9-6\sqrt{2}
E. 9-11\sqrt{3}
F. 9-11\sqrt{2}
Zadanie 54. 1 pkt ⋅ Numer: pp-12084 ⋅ Poprawnie: 200/192 [104%]
Rozwiąż
Podpunkt 54.1 (1 pkt)
Dla każdej liczby rzeczywistej
x wyrażenie
(x-4)^2-(7+x)^2 jest równe:
Odpowiedzi:
A. -20x-35
B. -24x-33
C. -22x-35
D. -22x-31
E. -22x-33
F. -23x-33
Zadanie 55. 1 pkt ⋅ Numer: pp-12110 ⋅ Poprawnie: 218/214 [101%]
Rozwiąż
Podpunkt 55.1 (1 pkt)
Dla każdej liczby rzeczywistej
x i dla każdej liczby rzeczywistej
y wyrażenie
(3x+6y)^2 jest równe:
Odpowiedzi:
A. 9x^2+18xy+36y
B. 9x^2+36y
C. 9x^2+36xy+36y
D. 3x^2+36xy+6y
E. 9x^2+36xy+6y
F. 3x^2+36xy+36y
Zadanie 56. 1 pkt ⋅ Numer: pp-12368 ⋅ Poprawnie: 158/183 [86%]
Rozwiąż
Podpunkt 56.1 (1 pkt)
Dla każdej liczby rzeczywistej
x różnej od
-2 ,
0 oraz
2 wartość wyrażenia
\frac{15x}{x^2-4}:\frac{3x^2}{x+2} jest równa wartości wyrażenia:
Odpowiedzi:
A. -5x
B. \frac{5}{x(x+2)}
C. \frac{1}{15x}
D. \frac{5}{x(x-2)}
E. \frac{-5}{x+2}
F. \frac{1}{15x}
Zadanie 57. 1 pkt ⋅ Numer: pp-12382 ⋅ Poprawnie: 461/391 [117%]
Rozwiąż
Podpunkt 57.1 (1 pkt)
Liczba
\left(\sqrt{72}-\sqrt{2}\right)^2 jest równa:
Odpowiedzi:
A. 75
B. 25
C. 75
D. 72
E. 100
F. 50
Zadanie 58. 1 pkt ⋅ Numer: pp-12385 ⋅ Poprawnie: 371/406 [91%]
Rozwiąż
Podpunkt 58.1 (1 pkt)
Dla każdej liczby rzeczywistej
x wartość wyrażenia
(2x+6)^2-(6x-2)^2 jest równa
wartości wyrażenia:
Odpowiedzi:
A. -32x^2-32
B. -32x^2+24x+32
C. -32x^2+48x-32
D. -32x^2+48x+32
E. -32x^2-24x+32
F. -32x^2+32
Zadanie 59. 1 pkt ⋅ Numer: pp-12388 ⋅ Poprawnie: 273/314 [86%]
Rozwiąż
Podpunkt 59.1 (1 pkt)
Dla każdej liczby rzeczywistej różnej od
-9 oraz różnej od
0 wartość wyrażenia
\frac{x^2-4x}{x^2+18x+81}\cdot\frac{x+9}{x} jest równa wartości wyrażenia:
Odpowiedzi:
A. \frac{9x}{x-4}
B. \frac{x}{x+9}
C. \frac{x-4}{x+9}
D. \frac{x+9}{x-4}
E. \frac{9x}{x+9}
F. \frac{x+9}{9x-4}
Zadanie 60. 1 pkt ⋅ Numer: pp-12405 ⋅ Poprawnie: 214/219 [97%]
Rozwiąż
Podpunkt 60.1 (1 pkt)
Liczba
\left(\sqrt{2}+5\right)^2-\sqrt{72} jest równa:
Odpowiedzi:
A. 27+8\sqrt{2}
B. 28+5\sqrt{2}
C. 30+5\sqrt{2}
D. 26+5\sqrt{2}
E. 25+5\sqrt{2}
F. 27+5\sqrt{2}
G. 27
H. 27+4\sqrt{2}
Zadanie 61. 2 pkt ⋅ Numer: pp-20193 ⋅ Poprawnie: 135/274 [49%]
Rozwiąż
Podpunkt 61.1 (2 pkt)
«« Wiedząc, że
x+y=\sqrt{10} i
x^2+y^2=14 oblicz
xy .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 62. 2 pkt ⋅ Numer: pp-20194 ⋅ Poprawnie: 83/145 [57%]
Rozwiąż
Podpunkt 62.1 (2 pkt)
» Rozłóż na czynniki wyrażenie
81-a^2+2ab-b^2
.
Podaj iloczyn największych liczb występujących w obu czynnikach.
Na przykład, dla wyrażenia (4-a)(6a+13) odpowiedzią
jest 4\cdot 13=52 .
Odpowiedź:
m\cdot n=
(wpisz liczbę całkowitą)
Zadanie 63. 2 pkt ⋅ Numer: pp-20197 ⋅ Poprawnie: 95/211 [45%]
Rozwiąż
Podpunkt 63.1 (2 pkt)
» Liczba
n przy dzieleniu przez
5 daje resztę
4 .
Oblicz resztę z dzielenia podwojonego kwadratu liczby
n przez 10 .
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 64. 2 pkt ⋅ Numer: pp-20196 ⋅ Poprawnie: 45/72 [62%]
Rozwiąż
Podpunkt 64.1 (2 pkt)
Wykaż, że różnica liczby trzycyfrowej i liczby o takich samych cyfrach
zapisanych w odwrotnej kolejności jest podzielna przez
3 .
Podaj największą liczbę całkowitą, która zawsze dzieli taką różnicę.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 65. 2 pkt ⋅ Numer: pp-20195 ⋅ Poprawnie: 20/119 [16%]
Rozwiąż
Podpunkt 65.1 (2 pkt)
« Wykaż, że dodatnia różnica kwadratów dwóch kolejnych liczb nieparzystych jest
podzielna przez potęgę dwójki różną od jedności.
Podaj największą potęgę dwójki, która dzieli taką różnicę.
Odpowiedź:
2^k=
(wpisz liczbę całkowitą)
Zadanie 66. 2 pkt ⋅ Numer: pp-20862 ⋅ Poprawnie: 12/152 [7%]
Rozwiąż
Podpunkt 66.1 (2 pkt)
(2 pkt)
O liczbie
n wiadomo, że jest podzielna przez
9 .
Wykaż, że liczba dodatnia
m=n^3-81n jest podzielna przez
6 .
Podaj największą potęgę liczby 9 , która dzieli liczbę dodatnią
m .
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 67. 2 pkt ⋅ Numer: pp-20835 ⋅ Poprawnie: 63/227 [27%]
Rozwiąż
Podpunkt 67.1 (2 pkt)
Doprowadź wyrażenie
\left(x-2y\right)^2-\left(2x+y\right)\left(y-2x\right)-\left(3x-2y\right)^2-4xy
do najprostszej postaci, a następnie oblicz jego wartość dla
x=6\sqrt{5} i
y=1-2\sqrt{5} .
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 68. 2 pkt ⋅ Numer: pp-20859 ⋅ Poprawnie: 52/396 [13%]
Rozwiąż
Podpunkt 68.1 (1 pkt)
(1 pkt)
Wykaż, że dla każdych liczb całkowitych
x i
y , wyrażenie
72x^2+4y^2+24xy+120x+100
można zapisać w postaci
(a_1x+b_1y+c_1)^2+(a_2x+b_2y+c_2)^2 , gdzie współczynniki
a_1\text{, }b_1\text{, } c_1\text{, } a_2\text{, } b_2\text{ i } c_2 są liczbami całkowitymi
(niektóre z nich mogą być równe zero).
Podaj mniejszą z liczb
a_1 i a_2 .
Odpowiedź:
min(a_1,a_2)=
(wpisz liczbę całkowitą)
Podpunkt 68.2 (1 pkt)
(1 pkt)
Podaj większą z liczb
b_1 i
b_2 .
Odpowiedź:
max(b_1,b_2)=
(wpisz liczbę całkowitą)
Zadanie 69. 2 pkt ⋅ Numer: pp-21218 ⋅ Poprawnie: 23/22 [104%]
Rozwiąż
Podpunkt 69.1 (1 pkt)
Wiadomo, że
a^2+b^2=130 oraz
(a+b)^2=196 .
Oblicz a \cdot b .
Odpowiedź:
a\cdot b=
(wpisz liczbę całkowitą)
Podpunkt 69.2 (1 pkt)
Odpowiedź:
(a-b)^2=
(wpisz liczbę całkowitą)
Zadanie 70. 2 pkt ⋅ Numer: pp-21219 ⋅ Poprawnie: 10/22 [45%]
Rozwiąż
Podpunkt 70.1 (1 pkt)
Wiadomo, że
a^2-b^2=273 oraz
a-b=13 .
Oblicz a + b .
Odpowiedź:
a+b=
(wpisz liczbę całkowitą)
Podpunkt 70.2 (1 pkt)
Odpowiedzi:
Zadanie 71. 4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 116/183 [63%]
Rozwiąż
Podpunkt 71.1 (4 pkt)
Dane są liczby:
a=2+\left(-\frac{2}{3}\right)^{-2} ,
b=4\cdot 2^{-2}+9\cdot 3^{-1} ,
c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1}
oraz dwie nierówności:
(1-x)^2\leqslant (x-1)(x+1)-2 oraz
\frac{1}{4}x+3\geqslant \frac{3}{2}x-2 .
Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych
dwóch liczb.
Odpowiedź:
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat
Masz pytania? Napisz: k42195@poczta.fm