Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Wzory skróconego mnożenia

Zadania dla liceum ogólnokształcącego - poziom rozszerzony

Zadanie 1.  1 pkt ⋅ Numer: pr-10056 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
Dla x\in\mathbb{R}-\{-2,2\} wyrażenie \frac{2x-1}{x-2}-\frac{1}{x+2} można zapisać w postaci \frac{ax^2+bx+c}{x^2-4}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10061 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Wyrażenie \frac{x-y}{\sqrt{x}+\sqrt{y}} jest równe:
Odpowiedzi:
A. \sqrt{x}-\sqrt{y} B. \sqrt{x-y}
C. \sqrt{x+y} D. \sqrt{x}+\sqrt{y}
Zadanie 3.  1 pkt ⋅ Numer: pr-10060 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
Oblicz wartość wyrażenia \frac{2a^2+4ab+2b^2}{(a+b)^3} wiedząc, że a+b=10.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pr-10068 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (1 pkt)
Jeśli x\neq -3, to wyrażenie algebraiczne \frac{1}{x^2+6x+9}\cdot (x^2-9) można zapisać w postaci:
Odpowiedzi:
A. \frac{1}{x+3} B. 1
C. \frac{x+3}{x-3} D. \frac{x-3}{x+3}
Zadanie 5.  1 pkt ⋅ Numer: pr-10058 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Wyrażenie algebraiczne \frac{9x^2-16}{(3x-4)^2} można zapisać w postaci:
Odpowiedzi:
A. 3x+4 B. 3x-4
C. \frac{3x+4}{3x-4} D. \frac{3x-4}{3x+4}
Zadanie 6.  1 pkt ⋅ Numer: pr-10076 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Wyrażenie x(x-1)(x+1) jest równe:
Odpowiedzi:
A. (x-1)^3 B. x^3-x
C. x^3-1 D. x^3
Zadanie 7.  1 pkt ⋅ Numer: pr-10055 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
» Dla x\in\mathbb{R}-\{-3,-2,3\} wyrażenie \frac{1}{(x-3)(x+2)}-\frac{2}{x^2-9} jest równe \frac{ax+b}{(x^2-9)(x+2)}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pr-10300 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wartość wyrażenia 25^8-23^8 jest podzielna przez:
Odpowiedzi:
A. 1154 B. 827
C. 1006 D. 1567
Zadanie 9.  1 pkt ⋅ Numer: pr-10043 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Liczba \sqrt{12-2\sqrt{11}} jest równa:
Odpowiedzi:
A. \sqrt{11}-\sqrt{2\sqrt{11}} B. \sqrt{11}-1
C. \sqrt{12} D. 11-\sqrt{11}
Zadanie 10.  1 pkt ⋅ Numer: pr-10057 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wyrażenie 3x^3-4x^2-6x+8 rozłożone na czynniki jest równe:
Odpowiedzi:
A. (x-2)(x-2)(3x+4) B. (x-1)^2(6x-8)
C. (x-\sqrt{2})(x+\sqrt{2})(3x-4) D. (x-2)(x+2)(3x-4)
Zadanie 11.  1 pkt ⋅ Numer: pr-10066 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wyrażenie algebraiczne x^3-6x^2-36x+216 można zapisać w postaci:
Odpowiedzi:
A. (x-6)^2(x+6) B. x^2(x-216)
C. x^2(x+36) D. (x-6)(x+6)^2
Zadanie 12.  1 pkt ⋅ Numer: pr-11644 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wartość wyrażenia \left((\sqrt{13}-1)^2-(\sqrt{13}+1)^2\right)^3 jest równa:
Odpowiedzi:
A. 8\sqrt{13}-1 B. 832\sqrt{13}
C. -832\sqrt{13} D. 416\sqrt{13}
E. -416\sqrt{13} F. 1664\sqrt{13}
Zadanie 13.  1 pkt ⋅ Numer: pr-11656 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Po przekształceniu wyrażenia algebraicznego (\sqrt{4}x+\sqrt{3}y)^4 do postaci ax^4+bx^3+cx^3+dx+e współczynnik c jest równy:
Odpowiedzi:
A. 48 B. 72
C. 96 D. 60
E. 8\sqrt{3} F. 12\sqrt{3}
Zadanie 14.  1 pkt ⋅ Numer: pr-11660 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Wyrażenie \frac{1}{\sqrt{12}+\sqrt{11}+1} jest równe:
Odpowiedzi:
A. \frac{11-2\sqrt{3}+\sqrt{11}}{22} B. \frac{11-2\sqrt{33}+\sqrt{11}}{22}
C. \frac{10-2\sqrt{33}+2\sqrt{3}}{22} D. \frac{11-4\sqrt{33}+\sqrt{11}}{22}
E. \frac{11-2\sqrt{33}+2\sqrt{3}}{22} F. \frac{13-2\sqrt{33}+\sqrt{11}}{22}
Zadanie 15.  2 pkt ⋅ Numer: pr-20020 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 15.1 (2 pkt)
 Wyrażenie w=\sqrt{180-26\sqrt{11}}+\sqrt{180+26\sqrt{11}} ma wartość wymierną.

Podaj w.

Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 16.  2 pkt ⋅ Numer: pr-20021 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 16.1 (2 pkt)
 «« Oblicz wartość wyrażenia w=\frac{\sqrt{9x^2+6x+1}}{3x+1}+\frac{\sqrt{81x^2+18x^3+x^4}}{x^2+9x} , wiedząc, że x\in\left(-\infty,-9\right).
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 17.  3 pkt ⋅ Numer: pr-21199 ⋅ Poprawnie: 57/56 [101%] Rozwiąż 
Podpunkt 17.1 (3 pkt)
 Liczby dodatnie a i b spełniają równość 4a^2+4a=9b^2+6b.

Wiadomo, a=k\cdot b, gdzie k\in\mathbb{Q}.
Wyznacz liczbę k.

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 18.  4 pkt ⋅ Numer: pr-30001 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 18.1 (2 pkt)
 » Wyznacz te wartości całkowite x, dla których liczba \frac{x^4-4x^2+x+49}{x+2} jest całkowita.

Podaj najmniejsze z rozwiązań.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 18.2 (2 pkt)
 Podaj największe z rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 19.  4 pkt ⋅ Numer: pr-30002 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 19.1 (2 pkt)
 « Wyznacz te wartości całkowite x, dla których liczba \frac{(9x^2-12)(x+1)}{3x^3+12x^2-3x-12} jest całkowita.

Podaj najmniejsze z rozwiązań.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 19.2 (2 pkt)
 Podaj największe z rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm