Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Funkcja liniowa i jej wykres

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-10936 ⋅ Poprawnie: 847/1225 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dana jest funkcja liniowa określona wzorem f(x)=5x-10.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : miejscem zerowym tej funkcji jest liczba 2 T/N : funkcja f rośnie w \mathbb{R}
T/N : do jej wykresu należy punkt (-1,15)  
Zadanie 2.  1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 662/979 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-4x+2.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f jest malejąca w zbiorze \mathbb{R} T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{2},0\right)
T/N : miejscem zerowym tej funkcji jest liczba -\frac{1}{2}  
Zadanie 3.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-7x oblicz h\left(\frac{3\sqrt{3}-9}{7}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest ujemna T/N : liczba ta jest niewymierna
Zadanie 4.  1 pkt ⋅ Numer: pp-10813 ⋅ Poprawnie: 211/389 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Proste pokazane na rysunku
określone są równaniami 2x-4y=a, 3x+y=b i 3x+8y=c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10814 ⋅ Poprawnie: 266/525 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Na rysunku przedstawiono wykres prostej:
Prosta symetryczna do tej prostej względem osi Ox określona jest równaniem ax+by=4.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 533/804 [66%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=mx+n. Funkcja ta spełnia warunek f(2)=6, a jej wykres zawiera punkt (4,-4).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 125/214 [58%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dane są funkcje f(x)=-2x-3 oraz g(x)=f(x-1)+4. Zapisz wzór funkcji g w postaci g(x)=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10818 ⋅ Poprawnie: 189/332 [56%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Do wykresu funkcji liniowej f należą punkty A=(4, 0) i B=(0,7). Wykres funkcji liniowej g określonej wzorem g(x)=mx+n jest symetryczny do wykresu funkcji f względem osi Ox.

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 224/426 [52%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(2,6) i B=(4,-4) określona jest równaniem -10x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 433/606 [71%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkty A=(-9,18) i B=(-6,13) należą do prostej o równaniu 5x+by+c=0.

Wyznacz liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 170/286 [59%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Punkty A=(4,6) i B=(3,7) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 273/458 [59%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=4x-\frac{1}{2} dla każdej liczby z przedziału \langle -4,1\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 13.  1 pkt ⋅ Numer: pp-10809 ⋅ Poprawnie: 97/158 [61%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Punkt o współrzędnych (9-3t, 2t+3), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem 2x+by=c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-10807 ⋅ Poprawnie: 511/690 [74%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Współczynnik kierunkowy prostej, do której należą punkty A=(44,10) i B=(47,49) jest równy m.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 492/694 [70%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(-5,-2) i Q=(2,6).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-10808 ⋅ Poprawnie: 196/379 [51%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Wskaż wzór funkcji, której wykres jest symetryczny do tego wykresu względem osi Ox:
Odpowiedzi:
A. y=\frac{1}{\sqrt{3}}x+1 B. y=\sqrt{3}x+1
C. y=\sqrt{3}x-1 D. y=-\frac{\sqrt{3}}{3}x+1
Zadanie 17.  1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 105/164 [64%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Punkt o współrzędnych (2t-3, 4t+3), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem y=2x+b.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-10940 ⋅ Poprawnie: 39/65 [60%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 « Wykres funkcji liniowej h(x)=(p-9)x+2 przechodzi przez punkt S, którego obie współrzędne są nieparzyste.

Liczba p może być równa:

Odpowiedzi:
A. -3 B. 10
C. -7 D. 1
E. 9 F. 5
Zadanie 19.  1 pkt ⋅ Numer: pp-10806 ⋅ Poprawnie: 278/546 [50%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Funkcja liniowa f(x)=(m+2)x-(m+1)^2+97 jest malejąca i jej wykres przecina oś rzędnych w punkcie P=(0,-72).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10805 ⋅ Poprawnie: 274/540 [50%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Funkcja liniowa spełnia warunki f(-\sqrt{2})=1 i f(10\sqrt{2})=-9.

Wynika z tego, że jej wykres przechodzi przez ćwiartki układu:

Odpowiedzi:
A. I, III i IV B. I, II i III
C. II, III i IV D. I, II i IV
Zadanie 21.  1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 300/461 [65%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Wykres funkcji liniowej y=\frac{1}{4}x+8 przecina osie układu współrzędnych w punktach A i B.

Oblicz pole powierzchni trójkąta AOB.

Odpowiedź:
P_{AOB}=
(wpisz dwie liczby całkowite)
Zadanie 22.  1 pkt ⋅ Numer: pp-11406 ⋅ Poprawnie: 483/672 [71%] Rozwiąż 
Podpunkt 22.1 (0.5 pkt)
 Miejscem zerowym funkcji liniowej f(x)=3(x+5)-6\sqrt{3} jest liczba a+b\sqrt{3}.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 22.2 (0.5 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 23.  1 pkt ⋅ Numer: pp-10793 ⋅ Poprawnie: 482/632 [76%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Liczba ......... jest miejscem zerowym funkcji określonej wzorem f(x)=\frac{3}{10}x+\frac{6}{5}.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 24.  1 pkt ⋅ Numer: pp-10794 ⋅ Poprawnie: 354/492 [71%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji określonej wzorem f(x)=\frac{6}{5}-\frac{3}{10}x.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 25.  1 pkt ⋅ Numer: pp-10795 ⋅ Poprawnie: 453/761 [59%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Funkcja liniowa określona wzorem y=mx+n, wartości ujemne przyjmuje tylko w przedziale (-5,+\infty). Wykres tej funkcji przecina oś Oy w punkcie (0,-8).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 26.  1 pkt ⋅ Numer: pp-11431 ⋅ Poprawnie: 305/495 [61%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Liczba -7 jest miejscem zerowym funkcji liniowej f(x)=.....\cdot x+b, a punkt M=(4,22) należy do wykresu tej funkcji.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 27.  1 pkt ⋅ Numer: pp-10922 ⋅ Poprawnie: 545/705 [77%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=\frac{3}{8}+\frac{1}{8}x.

Wyznacz miejsce zerowe tej funkcji.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 28.  1 pkt ⋅ Numer: pp-10933 ⋅ Poprawnie: 302/534 [56%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 » Wykresy funkcji f(x)=-\frac{4}{5}x-5 oraz g(x)=mx+2 przecinają oś Ox w tym samym punkcie.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 29.  1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Dana jest funkcja liniowa określona wzorem g(x)=(\sqrt{14}+\sqrt{12})x-2 . Miejscem zerowym funkcji g jest liczba \frac{\sqrt{12}-\sqrt{14}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 30.  1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 67/119 [56%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Miejscem zerowym funkcji określonej wzorem f(x)=7\sqrt{2}x-\frac{\sqrt{6}}{2} jest liczba \frac{\sqrt{2\cdot 6}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 31.  1 pkt ⋅ Numer: pp-10923 ⋅ Poprawnie: 157/248 [63%] Rozwiąż 
Podpunkt 31.1 (0.2 pkt)
 Miejsce zerowe funkcji liniowej określonej wzorem f(x)=3x-7m jest większe od 2 dla każdej liczby m należącej do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,+\infty) B. (-\infty,q)
C. (p,q) D. (p,+\infty)
E. (-\infty,q\rangle F. \langle p,q\rangle
Podpunkt 31.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 32.  1 pkt ⋅ Numer: pp-10796 ⋅ Poprawnie: 152/254 [59%] Rozwiąż 
Podpunkt 32.1 (1 pkt)
 « Liczba -\frac{4}{3} jest miejscem zerowym funkcji określonej wzorem f(x)=\left(1+\frac{a}{8}\right)x+2.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 33.  1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 206/278 [74%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 Wykres funkcji g(x)=(m+3)x+15 przecina oś Ox w punkcie o odciętej równej \frac{\log_{2}{8}}{3^0}.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 34.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=-\frac{4}{5}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 35.  1 pkt ⋅ Numer: pp-11764 ⋅ Poprawnie: 690/866 [79%] Rozwiąż 
Podpunkt 35.1 (1 pkt)
 Punkt A=(5,16) należy do obu prostych k i l. Prosta k przecina oś Oy w punkcie o rzędnej 6, zas prosta l przecina oś Oy w punkcie o rzędnej -4.

Wskaż układ równań, którego interpretację opisano powyżej:

Odpowiedzi:
A. \begin{cases}y=2x+6\\y=-4x+4\end{cases} B. \begin{cases}y=2x+6\\y=4x-4\end{cases}
C. \begin{cases}y=-2x+6\\y=4x+4\end{cases} D. \begin{cases}y=-2x-6\\y=4x-4\end{cases}
Zadanie 36.  1 pkt ⋅ Numer: pp-11812 ⋅ Poprawnie: 514/639 [80%] Rozwiąż 
Podpunkt 36.1 (1 pkt)
 Miejscem zerowym funkcji liniowej f jest liczba 4. Wykres tej funkcji zawiera punkt o współrzędnych (2,5).

Wzór funkcji f ma postać

Odpowiedzi:
A. f(x)=\frac{5}{4}x+10 B. f(x)=-\frac{5}{2}x+11
C. f(x)=-5x+10 D. f(x)=-\frac{5}{2}x+10
Zadanie 37.  1 pkt ⋅ Numer: pp-11835 ⋅ Poprawnie: 461/601 [76%] Rozwiąż 
Podpunkt 37.1 (1 pkt)
 Funkcja liniowa f jest określona wzorem f(x)=-\frac{1}{22}x+\frac{7}{11}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : punkt przecięcia wykresu funkcji f z osią Oy ma współrzędne\left(0,\frac{7}{11}\right) T/N : miejscem zerowym funkcji f jest liczba 14
Zadanie 38.  1 pkt ⋅ Numer: pp-11859 ⋅ Poprawnie: 203/297 [68%] Rozwiąż 
Podpunkt 38.1 (1 pkt)
 Miejscem zerowym funkcji liniowej f określonej wzorem f(x)=-\frac{1}{5}(x+5)+4 jest liczba:
Odpowiedzi:
A. 15 B. \frac{15}{2}
C. 10 D. 5
E. 30 F. \frac{45}{2}
Zadanie 39.  1 pkt ⋅ Numer: pp-11887 ⋅ Poprawnie: 144/159 [90%] Rozwiąż 
Podpunkt 39.1 (1 pkt)
 Punkt M=(3, -2) należy do wykresu funkcji liniowej f określonej wzorem f(x)=5x+b+7.

Wynika stąd, że b jest równe:

Odpowiedzi:
A. -19 B. -29
C. -21 D. -20
E. -23 F. -24
Zadanie 40.  1 pkt ⋅ Numer: pp-11949 ⋅ Poprawnie: 93/105 [88%] Rozwiąż 
Podpunkt 40.1 (1 pkt)
 Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x,y), dana jest prosta k o równaniu y=3x+b, przechodząca przez punkt A=(5,17). Współczynnik b w równaniu tej prostej jest równy:
Odpowiedzi:
A. 2 B. 5
C. -3 D. 6
E. 10 F. 7
G. 3  
Zadanie 41.  1 pkt ⋅ Numer: pp-11990 ⋅ Poprawnie: 459/595 [77%] Rozwiąż 
Podpunkt 41.1 (1 pkt)
 Funkcje liniowe f oraz g, określone wzorami f(x)=2x+6 oraz g(x)=ax-4, mają to samo miejsce zerowe.

Współczynnik a we wzorze funkcji g jest równy:

Odpowiedzi:
A. 2 B. -\frac{4}{3}
C. \frac{16}{9} D. -\frac{16}{9}
E. \frac{2}{3} F. -\frac{8}{3}
G. -1 H. -2
Zadanie 42.  1 pkt ⋅ Numer: pp-12012 ⋅ Poprawnie: 356/441 [80%] Rozwiąż 
Podpunkt 42.1 (1 pkt)
 Liczba 2 jest miejscem zerowym funkcji liniowej f(x)=(-1-m)x+4.

Liczba m jest równa:

Odpowiedzi:
A. 7 B. 4
C. 1 D. 11
E. 13 F. 0
G. -7 H. 9
I. 12 J. 2
Zadanie 43.  1 pkt ⋅ Numer: pp-12031 ⋅ Poprawnie: 50/60 [83%] Rozwiąż 
Podpunkt 43.1 (1 pkt)
 Funkcja liniowa f(x)=(a+8)x+6 osiąga wartość największą równą 6.

Wtedy a jest równe:

Odpowiedzi:
A. -6 B. -3
C. -7 D. -9
E. -11 F. -8
Zadanie 44.  1 pkt ⋅ Numer: pp-12114 ⋅ Poprawnie: 31/37 [83%] Rozwiąż 
Podpunkt 44.1 (1 pkt)
 Funkcja f określona jest wxorem f(x)=ax+8 dla każdej liczby rzeczywistej x. Miejscem zerowym funkcji f jest liczba \frac{13}{4}.

Wtedy a jest równe:

Odpowiedzi:
A. -\frac{48}{13} B. -\frac{64}{39}
C. -\frac{16}{13} D. \frac{64}{39}
E. \frac{64}{13} F. -\frac{32}{13}
G. \frac{8}{13} H. -\frac{8}{13}
Zadanie 45.  1 pkt ⋅ Numer: pp-12115 ⋅ Poprawnie: 10/21 [47%] Rozwiąż 
Podpunkt 45.1 (1 pkt)
 Prosta k przechodzi przez punkt A=(6,4) i jest nachylona do osi Ox pod kątem 45^{\circ}.

Prosta k ma równanie:

Odpowiedzi:
A. y=x B. y=-x
C. y=x-1 D. y=x-2
E. y=x+1 F. y=x-4
G. y=x-3 H. y=-x-4
Zadanie 46.  1 pkt ⋅ Numer: pp-12389 ⋅ Poprawnie: 217/287 [75%] Rozwiąż 
Podpunkt 46.1 (1 pkt)
 Funkcja liniowa f jest określona wzorem f(x)=(4+6m)x-4.

Funkcja ta nie ma miejsca zerowego dla m równego:

Odpowiedzi:
A. -1 B. \frac{4}{9}
C. -\frac{1}{3} D. -\frac{8}{9}
E. \frac{4}{3} F. -\frac{2}{9}
G. -\frac{4}{3} H. -\frac{2}{3}
Zadanie 47.  1 pkt ⋅ Numer: pp-12408 ⋅ Poprawnie: 160/206 [77%] Rozwiąż 
Podpunkt 47.1 (1 pkt)
 Funkcja liniowa f jest określona wzorem f(x)=\frac{1}{2}x-k-11, gdzie k jest liczbą rzeczywistą. Miejsce zerowe funkcji f jest liczbą większą od 2.

Liczba k należy do przedziału:

Odpowiedzi:
A. (-13,-11) B. (-10,+\infty)
C. (-18,-14) D. (-\infty,-18)
E. (-11,-10) F. (-14,-13)
Zadanie 48.  2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 201/649 [30%] Rozwiąż 
Podpunkt 48.1 (1 pkt)
 « Dane są punkty A=(-7, 30) i B=(7, -68). Wyznacz równanie prostej AB.

Podaj współczynnik kierunkowy tej prostej.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 48.2 (1 pkt)
 Wyznacz odciętą punktu przecięcia prostej AB z osią Ox.
Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 49.  2 pkt ⋅ Numer: pp-20307 ⋅ Poprawnie: 44/104 [42%] Rozwiąż 
Podpunkt 49.1 (1 pkt)
 » Funkcja liniowa określona wzorem g(x)=ax+b spełnia warunki: \begin{cases} g(-2)=16 \\ g(x)\lessdot 0 \iff x\in(2,+\infty) \end{cases} .

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 49.2 (1 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 50.  2 pkt ⋅ Numer: pp-20308 ⋅ Poprawnie: 227/413 [54%] Rozwiąż 
Podpunkt 50.1 (2 pkt)
 Miejscem zerowym funkcji f(x)=\frac{2-7m}{2}x+2 jest liczba \frac{1}{24}.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 51.  2 pkt ⋅ Numer: pp-20309 ⋅ Poprawnie: 230/297 [77%] Rozwiąż 
Podpunkt 51.1 (2 pkt)
 » Oblicz miejsce zerowe funkcji f(x)= \begin{cases} 3+2x \text{, dla } x\leqslant 2 \\ x \text{, dla } x > 2 \end{cases} .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 52.  2 pkt ⋅ Numer: pp-20840 ⋅ Poprawnie: 156/279 [55%] Rozwiąż 
Podpunkt 52.1 (1 pkt)
 « Funkcja liniowa f określona wzorem f(x)=mx+n wartości nieujemne przyjmuje tylko w przedziale (-\infty, 4\rangle oraz zachodzi warunek f(-1)=15. Wyznacz wartości współczynników m i n.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 52.2 (1 pkt)
 Podaj n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 53.  2 pkt ⋅ Numer: pp-20844 ⋅ Poprawnie: 112/328 [34%] Rozwiąż 
Podpunkt 53.1 (1 pkt)
 « Punkt K=(-2,6) należy do wykresu funkcji liniowej określonej wzorem f(x)=(3-m)x+4.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 53.2 (1 pkt)
 Wykresy funkcji f i funkcji określonej wzorem h(x)=2-2x przecinają oś Ox w tym samym punkcie.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 54.  2 pkt ⋅ Numer: pp-20846 ⋅ Poprawnie: 143/220 [65%] Rozwiąż 
Podpunkt 54.1 (2 pkt)
 « Liczba b spełnia równanie (b+5)(b-1)=(b+2)(b+11)-3(b+3).

Podaj miejsce zerowe funkcji f(x)=3x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 55.  2 pkt ⋅ Numer: pp-20845 ⋅ Poprawnie: 54/94 [57%] Rozwiąż 
Podpunkt 55.1 (2 pkt)
 « Liczba b spełnia równanie (b+2-\sqrt{2})^2-(b+2-2\sqrt{2})^2=-6.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=3x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 56.  2 pkt ⋅ Numer: pp-20847 ⋅ Poprawnie: 156/295 [52%] Rozwiąż 
Podpunkt 56.1 (2 pkt)
 « Liczba b spełnia równanie (b+2)(2-b)+(1+b)^2=0.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=3x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 57.  2 pkt ⋅ Numer: pp-20298 ⋅ Poprawnie: 211/615 [34%] Rozwiąż 
Podpunkt 57.1 (1 pkt)
 « Funkcja liniowa f określona jest wzorem f(x)=mx-n. Wiadomo, że f(6)=-8, oraz, że do wykresu funkcji f należy punkt P=(-3,-5).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 57.2 (1 pkt)
 Wyznacz n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm