Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Znaczenie współczynników we wzorze funkcji liniowej

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-10899 ⋅ Poprawnie: 81/113 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty o współrzędnych (600,200) oraz (800,-300) należą do wykresu funkcji liniowej y=mx+n.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : z treści wynika, że m > 0 T/N : z treści wynika, że n \lessdot 0
T/N : z treści wynika, że n=0  
Zadanie 2.  1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 413/556 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=-\frac{1}{3}x-3 i przecina oś Oy w punkcie P.

Które z poniższych zdań są prawdziwe?

Odpowiedzi:
T/N : funkcja ta jest malejąca i P=\left(0,3\right) T/N : funkcja ta jest malejąca i P=\left(0,1\right)
T/N : funkcja ta jest rosnąca i P=\left(0,-1\right)  
Zadanie 3.  1 pkt ⋅ Numer: pp-10900 ⋅ Poprawnie: 119/192 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
T/N : y=\frac{16}{x} T/N : y=\frac{\sqrt{x}}{x-4}
T/N : y=\frac{7}{4x-1}  
Zadanie 4.  1 pkt ⋅ Numer: pp-10893 ⋅ Poprawnie: 421/566 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Które z poniższych wzorów opisują funkcję malejącą?
Odpowiedzi:
T/N : y=\left(11-3\sqrt{10}\right)x+\sqrt{10} T/N : y=\left(8-2\sqrt{11}\right)x+\sqrt{11}
T/N : y=\left(8-3\sqrt{6}\right)x+\sqrt{6}  
Zadanie 5.  1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa f(x)=\frac{\left(100-m^2\right)}{4}x-9 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p, a ilość liczb całkowitych należących do rozwiązania jest równa q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10920 ⋅ Poprawnie: 78/133 [58%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja określona wzorem f(x)=\left(m^2+4m\right)x+5 spełnia warunek f(-6)=f(6).

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-4(m^2-6)x-3 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-\infty, -6\right)\cup\left(6, +\infty\right) B. m\in\left(-6,6\right)
C. m\in\left(-\infty, -\sqrt{6}\right)\cup\left(\sqrt{6}, +\infty\right) D. m\in\left(-\infty, -\frac{\sqrt{24}}{6}\right)\cup\left(\frac{\sqrt{24}}{6}, +\infty\right)
E. m\in\left(-\infty, -\frac{\sqrt{24}}{4}\right)\cup\left(\frac{\sqrt{24}}{4}, +\infty\right) F. m\in\left(-\sqrt{6},\sqrt{6}\right)
Zadanie 8.  1 pkt ⋅ Numer: pp-10897 ⋅ Poprawnie: 60/101 [59%] Rozwiąż 
Podpunkt 8.1 (0.5 pkt)
 Wyznacz te wartości parametru m, dla których funkcja liniowa f(x)=(11-m^2)x+3 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Liczba p jest najmniejszym z końców liczbowych tych przedziałów, a liczba q jest ilością liczb całkowitych należących do rozwiązania.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (0.5 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10916 ⋅ Poprawnie: 112/195 [57%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa y=ax+b ma dodatnie miejsce zerowe, a jej wykres przecina oś Oy poniżej punktu (0,0).

Wówczas:

Odpowiedzi:
A. a \lessdot 0 \wedge b > 0 B. a \lessdot 0 \wedge b \lessdot 0
C. a > 0 \wedge b \lessdot 0 D. a > 0 \wedge b > 0
Zadanie 10.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{49}\right)x+2401 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-64\right)x+2 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pp-10880 ⋅ Poprawnie: 102/185 [55%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(4-m^2\right)x+2 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11504 ⋅ Poprawnie: 556/897 [61%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 (1 pkt) Funkcja f określona jest wzorem f(x)=(\sqrt{2}m-6)x+1 dla każdej liczby rzeczywistej x.

Funkcja ta jest rosnąca, wtedy i tylko wtedy, gdy:

Odpowiedzi:
A. m\in\left\langle -3\sqrt{2},+\infty\right) B. m\in\left\langle 3\sqrt{2},+\infty\right)
C. m\in\left(-\infty,-3\sqrt{2}\right\rangle D. m\in\left(-\infty,3\sqrt{2}\right\rangle
Zadanie 14.  1 pkt ⋅ Numer: pp-10890 ⋅ Poprawnie: 42/81 [51%] Rozwiąż 
Podpunkt 14.1 (0.5 pkt)
 Wykres funkcji liniowej określonej wzorem h(x)=(\sqrt{7}-a)x+\frac{a}{2} jest prostą, która nie przechodzi tylko przez czwartą ćwiartkę układu współrzędnych.

Funkcja h spełnia ten warunek wtedy i tylko wtedy, gdy liczba a należy do pewnego przedziału o końcach p i q, przy czym p\lessdot q.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 14.2 (0.5 pkt)
 Podaj q.
Odpowiedź:
q= \cdot
(wpisz dwie liczby całkowite)
Zadanie 15.  1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 243/364 [66%] Rozwiąż 
Podpunkt 15.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=8+6x-12mx jest malejąca, wtedy i tylko wtedy, gdy liczba m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 15.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 1
C. -1 D. -\infty
E. 0 F. 4
Zadanie 16.  1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 211/424 [49%] Rozwiąż 
Podpunkt 16.1 (0.8 pkt)
 Funkcja liniowa f(x)=(4-m)x+2m jest malejąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 16.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{1}{4} B. -\frac{1}{2}
C. -\frac{1}{4} D. -\infty
E. \frac{1}{2} F. +\infty
Zadanie 17.  1 pkt ⋅ Numer: pp-10903 ⋅ Poprawnie: 210/344 [61%] Rozwiąż 
Podpunkt 17.1 (0.8 pkt)
 Funkcja liniowa f(x)=(2-4m)x+1-6m jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -1 B. +\infty
C. 7 D. -\infty
E. -11 F. 4
Zadanie 18.  1 pkt ⋅ Numer: pp-10906 ⋅ Poprawnie: 54/153 [35%] Rozwiąż 
Podpunkt 18.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=-5x-7a przecina oś Oy poniżej punktu (0,10) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj ten z końców tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 18.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -1 B. -\infty
C. +\infty D. 5
E. 2 F. -2
Zadanie 19.  1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%] Rozwiąż 
Podpunkt 19.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=2x-7a przecina oś Oy powyżej punktu (0,10) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 19.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. -1
C. 2 D. -2
E. 5 F. +\infty
Zadanie 20.  1 pkt ⋅ Numer: pp-10912 ⋅ Poprawnie: 99/174 [56%] Rozwiąż 
Podpunkt 20.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja f(x)=\left(-2m+\frac{7}{5}\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 20.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 4
C. 7 D. -1
E. -\infty F. -6
Zadanie 21.  1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 76/138 [55%] Rozwiąż 
Podpunkt 21.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja liniowa f(x)=\left(-\frac{14}{3}m-3\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 21.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -1 B. -\infty
C. 7 D. +\infty
E. 4 F. -6
Zadanie 22.  1 pkt ⋅ Numer: pp-10917 ⋅ Poprawnie: 96/188 [51%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 » Funkcja liniowa określona wzorem f(x)=ax+b jest rosnąca i ma miejsce zerowe \frac{\sqrt{65}-8}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a \lessdot 0 \wedge b < 0 B. a > 0 \wedge b \lessdot 0
C. a > 0 \wedge b > 0 D. a \lessdot 0 \wedge b > 0
Zadanie 23.  1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 82/137 [59%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 « Funkcja liniowa określona wzorem f(x)=ax+b jest malejąca i ma miejsce zerowe \frac{\sqrt{84}-9}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a > 0 \wedge b > 0 B. a > 0 \wedge b \lessdot 0
C. a \lessdot 0 \wedge b < 0 D. a \lessdot 0 \wedge b > 0
Zadanie 24.  1 pkt ⋅ Numer: pp-10749 ⋅ Poprawnie: 118/142 [83%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Funkcja f opisana jest wzorem: f(x)=\frac{1}{2}x+3. Jeśli argument funkcji f wzrośnie o 2, to wartość tej funkcji:
Odpowiedzi:
A. wzrośnie o \frac{1}{2} B. wzrośnie o \frac{3}{2}
C. zmaleje o \frac{1}{2} D. wzrośnie o 1
Zadanie 25.  1 pkt ⋅ Numer: pp-10882 ⋅ Poprawnie: 217/415 [52%] Rozwiąż 
Podpunkt 25.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=\left(-\frac{5}{6}+m\right)x+5 jest rosnąca, gdy m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 25.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -7
C. -3 D. -2
E. -5 F. -\infty
Zadanie 26.  1 pkt ⋅ Numer: pp-10919 ⋅ Poprawnie: 219/321 [68%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Funkcja f jest liniowa oraz f(-4)=3 i f(-3)=5.

Oblicz f(0).

Odpowiedź:
f(0)= (wpisz liczbę całkowitą)
Zadanie 27.  1 pkt ⋅ Numer: pp-10924 ⋅ Poprawnie: 50/67 [74%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=ax+b i spełnia warunek f(7)-f(4)=27.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 28.  1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Do wykresu funkcji liniowej y=ax+b należą punkty (2, 0) i (0, 4).

Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")

Odpowiedzi:
T/N : a > 0 \wedge b > 0 T/N : a \lessdot 0 \wedge b < 0
T/N : a > 0 \wedge b \lessdot 0  
Zadanie 29.  1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Wykres funkcji liniowej y=2^{23}x+2^{26} przechodzi przez ćwiartki układu współrzędnych:
Odpowiedzi:
A. I, II i IV B. I, III i IV
C. II, III, IV D. I, II i III
Zadanie 30.  1 pkt ⋅ Numer: pp-10877 ⋅ Poprawnie: 137/250 [54%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 » Dana jest funkcja f(x)=ax+b. Warunek f(x) \lessdot 0 spełnia każde x dodatnie, a warunek f(x) > 0 spełnia każde x ujemne.

Wynika z tego, że:

Odpowiedzi:
A. a=0 \wedge b \lessdot 0 B. a > 0
C. a \lessdot 0 \wedge b=0 D. a=0
Zadanie 31.  1 pkt ⋅ Numer: pp-10901 ⋅ Poprawnie: 79/140 [56%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
A. y=\frac{11}{\sqrt{11}x} B. y=\frac{121}{x}
C. y=\frac{\sqrt{11}x}{11} D. y=22x^2
Zadanie 32.  1 pkt ⋅ Numer: pp-10884 ⋅ Poprawnie: 141/181 [77%] Rozwiąż 
Podpunkt 32.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=2^{23}x+2^{26}.

Prosta będąca wykresem funkcji f nie przechodzi przez ćwiartkę układu:

Odpowiedzi:
A. drugą B. trzecią
C. pierwszą D. czwartą
Zadanie 33.  1 pkt ⋅ Numer: pp-10885 ⋅ Poprawnie: 102/162 [62%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 Wykres funkcji liniowej f określonej wzorem f(x)=ax+b nie przechodzi tylko przez ćwiartkę układu współrzędnych o numerze 3.

Wówczas:

Odpowiedzi:
A. a>0 \wedge b>0 B. a\lessdot 0 \wedge b<0
C. a\lessdot 0 \wedge b>0 D. a>0 \wedge b\lessdot 0
Zadanie 34.  1 pkt ⋅ Numer: pp-10921 ⋅ Poprawnie: 196/343 [57%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 » Wykresy funkcji f(x)=3x-mx-3 i y=5x+7 nie mają punktów wspólnych.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 35.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/405 [53%] Rozwiąż 
Podpunkt 35.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(-\frac{7}{8}-\frac{\sqrt{3}}{8}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 35.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. -\frac{14}{3}
C. \frac{7}{2} D. \frac{7}{9}
E. -\frac{7}{2} F. -\frac{7}{9}
Zadanie 36.  1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%] Rozwiąż 
Podpunkt 36.1 (1 pkt)
« Proste p i q są równoległe, a punkt O(0,0) leży pomiędzy nimi.

Zatem:

Odpowiedzi:
A. a\cdot m > 0 \ \wedge\ b\cdot n > 0 B. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0
C. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0 D. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
Zadanie 37.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/296 [72%] Rozwiąż 
Podpunkt 37.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=4x+\frac{5}{4} i g(x)=8 opisują proste:
Odpowiedzi:
A. przecinające się pod kątem o mierze 90^{\circ} B. równoległe i różne
C. pokrywające się D. przecinające się pod kątem różnym od 90^{\circ}
Zadanie 38.  1 pkt ⋅ Numer: pp-10908 ⋅ Poprawnie: 91/133 [68%] Rozwiąż 
Podpunkt 38.1 (1 pkt)
 Funkcja liniowa f(x)=(2-m)x+(m+1)^2-14 jest rosnąca i jej wykres przecina oś rzędnych w punkcie P=(0,50).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 39.  1 pkt ⋅ Numer: pp-10909 ⋅ Poprawnie: 98/225 [43%] Rozwiąż 
Podpunkt 39.1 (1 pkt)
 Wskaż prostą prostopadłą do osi Ox:
Odpowiedzi:
A. 2x+3=0 B. 3y=x
C. 2y+3=0 D. 3y=0
E. -3x+y=0 F. x-3=y
Zadanie 40.  1 pkt ⋅ Numer: pp-10911 ⋅ Poprawnie: 198/317 [62%] Rozwiąż 
Podpunkt 40.1 (1 pkt)
 Wskaż prostą równoległą do osi Ox:
Odpowiedzi:
A. 2y+3=0 B. 3x=0
C. 3x=2 D. 3x=2y
E. 2x+3=0 F. x-3=y
Zadanie 41.  1 pkt ⋅ Numer: pp-10889 ⋅ Poprawnie: 39/62 [62%] Rozwiąż 
Podpunkt 41.1 (1 pkt)
 Dla której z podanych wartości m funkcja liniowa określona wzorem f(x)=-36x+m^2-9+m^4 x jest malejąca:
Odpowiedzi:
A. m=\sqrt{6}+1 B. m=-2\sqrt{6}
C. m=6 D. m=-\frac{\sqrt{6}}{6}
Zadanie 42.  1 pkt ⋅ Numer: pp-11765 ⋅ Poprawnie: 515/738 [69%] Rozwiąż 
Podpunkt 42.1 (1 pkt)
 Wykres funkcji liniowej określonej wzorem f(x)=ax+b, przechodzi przez pierwszą, drugą i czwartą ćwiartkę układu współrzędnych.

Wówczas liczby a i b spełniają warunki:

Odpowiedzi:
A. a > 0 \wedge b \lessdot 0 B. a > 0 \wedge b > 0
C. a\lessdot 0 \wedge b \lessdot 0 D. a\lessdot 0 \wedge b > 0
Zadanie 43.  1 pkt ⋅ Numer: pp-11785 ⋅ Poprawnie: 522/691 [75%] Rozwiąż 
Podpunkt 43.1 (1 pkt)
 Wykresy funkcji liniowych f(x)=(m+3)x-3 oraz g(x)=-x nie mają punktów wspólnych dla:
Odpowiedzi:
A. m=-5 B. m=0
C. m=-6 D. m=-4
E. m=-2 F. m=-3
Zadanie 44.  1 pkt ⋅ Numer: pp-11914 ⋅ Poprawnie: 182/254 [71%] Rozwiąż 
Podpunkt 44.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=(5m+4)x+22 jest rosnąca dla:
Odpowiedzi:
A. m >-\frac{1}{5} B. m \lessdot \frac{8}{5}
C. m >-\frac{8}{15} D. m >\frac{16}{5}
E. m \lessdot -1 F. m >-\frac{4}{5}
Zadanie 45.  1 pkt ⋅ Numer: pp-11950 ⋅ Poprawnie: 41/61 [67%] Rozwiąż 
Podpunkt 45.1 (1 pkt)
 Na płaszczyźnie, w kartezjańskim układzie współrzędnych (x, y), dane są:
  • prosta k o równaniu y=x+6,
  • prosta l o równaniu y+7=x.

Proste k i l:

Odpowiedzi:
A. nie mają punktów wspólnych B. są prostopadłe
C. się pokrywają D. przecinają się pod kątem 30^{\circ}
Zadanie 46.  1 pkt ⋅ Numer: pp-11988 ⋅ Poprawnie: 357/554 [64%] Rozwiąż 
Podpunkt 46.1 (1 pkt)
 Na rysunku, w kartezjańskim układzie współrzędnych (x, y), przedstawiono dwie proste równoległe, które są interpretacją geometryczną jednego z poniższych układów równań A–D.

Układem równań, którego interpretację geometryczną przedstawiono na rysunku, jest:

Odpowiedzi:
A. \begin{cases}y=\frac{2}{3}x+3\\y=\frac{2}{3}x-6\end{cases} B. \begin{cases}y=-\frac{2}{3}x+3\\y=-\frac{2}{3}x-6\end{cases}
C. \begin{cases}y=-\frac{2}{3}x+3\\y=-\frac{2}{3}x+6\end{cases} D. \begin{cases}y=-\frac{2}{3}x+3\\y=\frac{3}{2}x+6\end{cases}
Zadanie 47.  1 pkt ⋅ Numer: pp-11989 ⋅ Poprawnie: 334/502 [66%] Rozwiąż 
Podpunkt 47.1 (1 pkt)
 Funkcja liniowa f jest określona wzorem f(x)=(3k+5)x+k-3, gdzie k\in\mathbb{R}.

Funkcja f jest malejąca dla każdej liczby k należącej do przedziału:

Odpowiedzi:
A. \left(-\infty,\frac{10}{3}\right) B. \left(-\infty,\frac{5}{3}\right)
C. \left(-\infty,\frac{5}{6}\right) D. \left(-\frac{10}{3},+\infty\right)
E. \left(-\infty,-\frac{5}{3}\right) F. \left(\frac{10}{3},+\infty\right)
Zadanie 48.  1 pkt ⋅ Numer: pp-12060 ⋅ Poprawnie: 77/84 [91%] Rozwiąż 
Podpunkt 48.1 (1 pkt)
 Proste o równaniach y=3x-7 oraz y=\frac{m+3}{2}x+1 są równoległe, gdy m jest równe:
Odpowiedzi:
A. 7 B. -2
C. 3 D. 8
E. 1 F. 2
G. -4 H. 4
Zadanie 49.  1 pkt ⋅ Numer: pp-12370 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 49.1 (1 pkt)
 Miejscem zerowym funkcji liniowej f określonej wzorem f(x)=ax+b jest liczba 2, a punkt przecięcia wykresu funkcji f z osią Ox kartezjańskiego układu współrzędnych (x, y) ma współrzędne (0,4) (zobacz rysunek).

Oceń poprawność poniższych zdań:

Odpowiedzi:
T/N : a\cdot b > 0 T/N : funkcja f jest rosnąca
Zadanie 50.  2 pkt ⋅ Numer: pp-20333 ⋅ Poprawnie: 108/288 [37%] Rozwiąż 
Podpunkt 50.1 (1 pkt)
 « Wykres funkcji rosnącej g(x)=(7m+5)x+2m-4 nie przechodzi przez drugą ćwiartkę układu współrzędnych. Wyznacz zbiór wszystkich możliwych wartości parametru m\in\mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich z konców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 50.2 (1 pkt)
 Podaj największy z wszystkich konców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 51.  2 pkt ⋅ Numer: pp-20334 ⋅ Poprawnie: 31/131 [23%] Rozwiąż 
Podpunkt 51.1 (2 pkt)
 «« Zbadaj monotoniczność funkcji f(x)=(4-\sqrt{2}m)x+2 dla m=\frac{1}{2}\sqrt{2}-1.

O ile rośnie lub maleje wartość tej funkcji jeśli argument rośnie o 1?

Odpowiedź:
\frac{a+b\sqrt{c}}{d}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 52.  2 pkt ⋅ Numer: pp-21122 ⋅ Poprawnie: 24/35 [68%] Rozwiąż 
Podpunkt 52.1 (2 pkt)
 Funkcja liniowa f przyjmuje wartość -5 dla argumentu 0, a ponadto f(7)-f(5)=32. Wyznacz wzór funkcji f(a)=ax+b.

Podaj wartości współczynników a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm