Układy równań pierwszego stopnia z dwiema niewiadomymi- metoda podstawiania
Zadania dla liceum ogólnokształcącego - poziom podstawowy
- równania liniowe
- układy równań stopnia pierwszego z dwiema niewiadomymi
- zastosowania układów równań
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10872 ⋅ Poprawnie: 377/496 [76%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Którą parę prostych pokazano na rysunku:
Odpowiedzi:
|
A. y=x+1\wedge y=2x+4
|
B. y=x+1\wedge y=-2x+4
|
|
C. y=x-1\wedge y=-2x+4
|
D. y=x-1\wedge y=2x+4
|
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10863 ⋅ Poprawnie: 271/452 [59%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
» Układ równań
\begin{cases}
-4x-7y=-6 \\
-y+2x=2
\end{cases}
:
Odpowiedzi:
|
A. ma dwa rozwiązania
|
B. jest oznaczony
|
|
C. jest sprzeczny
|
D. jest nieoznaczony
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10874 ⋅ Poprawnie: 704/848 [83%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Rozwiązaniem układu równań
\begin{cases}
2x-y=2 \\
-6x+2y=-3
\end{cases}
jest para liczb:
Odpowiedzi:
|
A. x=-\frac{1}{2}\wedge y=-2
|
B. x=-\frac{1}{2}\wedge y=-3
|
|
C. x=-\frac{3}{2}\wedge y=-\frac{5}{2}
|
D. x=\frac{1}{2}\wedge y=-3
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10862 ⋅ Poprawnie: 325/418 [77%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Interpretacją geometryczną układu równań
\begin{cases}
-4y-3x=-7 \\
y-1=0
\end{cases}
są dwie proste przecinające się w ćwiartce układu współrzędnych:
Odpowiedzi:
|
A. czwartej
|
B. drugiej
|
|
C. trzeciej
|
D. pierwszej
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10850 ⋅ Poprawnie: 110/209 [52%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Układ równań
\begin{cases}
y=-2(a-3)x-2b+8 \\
y=\frac{4}{b-4}x+a-3
\end{cases}
ma nieskończenie wiele rozwiązań dla:
Odpowiedzi:
|
A. a=1 \wedge b=5
|
B. a=1 \wedge b=6
|
|
C. a=-1 \wedge b=6
|
D. a=2 \wedge b=5
|
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10851 ⋅ Poprawnie: 156/248 [62%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Wskaż parę prostych widocznych na rysunku:
Odpowiedzi:
|
A. y=-2x+2\wedge y=\frac{3}{2}x-2
|
B. y=-2x-2\wedge y=\frac{2}{3}x+2
|
|
C. y=-2x+2\wedge y=\frac{2}{3}x-2
|
D. y=-2x-2\wedge y=\frac{3}{2}x+2
|
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10865 ⋅ Poprawnie: 281/430 [65%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
» Układ równań
\begin{cases}
-4x-7y=-6 \\
-y=2-2x
\end{cases}
:
Odpowiedzi:
|
A. jest nieoznaczony
|
B. jest oznaczony
|
|
C. jest sprzeczny
|
D. ma dwa rozwiązania
|
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11834 ⋅ Poprawnie: 683/695 [98%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Dany jest układ równań
\begin{cases}
x-3y-2=0\\
2x+y+10=0
\end{cases}.
Rozwiązaniem tego układu równań jest para liczb:
Odpowiedzi:
|
A. x=-5 \wedge y=0
|
B. x=-4 \wedge y=-2
|
|
C. x=-3 \wedge y=-1
|
D. x=-2 \wedge y=-3
|
|
E. x=-3 \wedge y=-3
|
F. x=-5 \wedge y=-3
|
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11942 ⋅ Poprawnie: 111/131 [84%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Klient banku wypłacił z bankomatu kwotę
2330 zł. Bankomat wydał kwotę
w banknotach o nominałach 20 zł, 50 zł oraz 100 zł. Banknotów 100-złotowych było
2 razy więcej
niż 50-złotowych, a banknotów 20-złotowych było o
5 mniej niż 50-złotowych.
Niech
x oznacza liczbę banknotów 50-złotowych, a
y – liczbę banknotów
20-złotowych, które otrzymał ten klient.
Poprawny układ równań prowadzący do obliczenia liczb x i y to:
Odpowiedzi:
|
A. \begin{cases}50x+100\cdot 2x+20y=2330\\y=x-5\end{cases}
|
B. \begin{cases}50x+100x\cdot 2x+20y=2330\\y=x-5\end{cases}
|
|
C. \begin{cases}50x+100\cdot 2x+20y=2330\\x=y-5\end{cases}
|
D. \begin{cases}50x+50x\cdot 2+20y=2330\\y=x-5\end{cases}
|
|
E. \begin{cases}50x+50x\cdot 2+20y=2330\\y=x+5\end{cases}
|
F. \begin{cases}50x+50x\cdot 2x+20y=2330\\y=x-5\end{cases}
|
|
Zadanie 10. 1 pkt ⋅ Numer: pp-11964 ⋅ Poprawnie: 99/107 [92%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Dany jest układ równań
\begin{cases}y=x+1\\y=-x-1\end{cases}.
Na którym z rysunków przedstawiona jest interpretacja geometryczna tego
układu równań?
Odpowiedzi:
|
Zadanie 11. 1 pkt ⋅ Numer: pp-12028 ⋅ Poprawnie: 147/108 [136%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Para liczb
x=1,
y=-3 spełnia układ równań
\begin{cases}x-y=(a-4)^2\\(-3+a)x-3y=-4(a-4)\end{cases}.
Wtedy a jest równe:
Odpowiedzi:
|
A. 1
|
B. -2
|
|
C. 4-\sqrt{2}}
|
D. 2
|
|
E. 4+\sqrt{2}}
|
F. \frac{5}{2}
|
|
Zadanie 12. 1 pkt ⋅ Numer: pp-12059 ⋅ Poprawnie: 102/95 [107%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Na rysunku przedstawiono geometryczną interpretację jednego z niżej zapisanych układów
równań.
Wskaż ten układ, którego geometryczną interpretację przedstawiono na rysunku:
Odpowiedzi:
|
A. \begin{cases}y=x-1\\y=-2x-4\end{cases}
|
B. \begin{cases}y=x+1\\y=-2x+4\end{cases}
|
|
C. \begin{cases}y=x+1\\y=2x-4\end{cases}
|
D. \begin{cases}y=x-1\\y=-2x+4\end{cases}
|
|
E. \begin{cases}y=x-1\\y=2x+4\end{cases}
|
F. \begin{cases}y=x+1\\y=2x+4\end{cases}
|
|
Zadanie 13. 1 pkt ⋅ Numer: pp-12369 ⋅ Poprawnie: 20/24 [83%] |
Rozwiąż |
Podpunkt 13.1 (1 pkt)
Para liczb
x=-5 i
y=3 jest rozwiązaniem
układu równań
\begin{cases}ax+3y=19\\x+by=-11\end{cases},
gdzie
a oraz
b są liczbami rzeczywistymi.
Wartość wyrażenia a\cdot b jest równa:
Odpowiedzi:
|
A. 40
|
B. 20
|
|
C. -14
|
D. 4
|
|
E. -3
|
F. 22
|
|
Zadanie 14. 2 pkt ⋅ Numer: pp-20325 ⋅ Poprawnie: 152/365 [41%] |
Rozwiąż |
Podpunkt 14.1 (2 pkt)
» Rozwiąż układ równań
\begin{cases}
3x+2y=3 \\
y+2=\frac{3(1-x)+4}{2}
\end{cases}
.
Punkt A=(-4, m) należy do rozwiązania.
Podaj m.
Odpowiedź:
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat
Masz pytania? Napisz: k42195@poczta.fm