Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Twierdzenie Talesa

Zadania dla liceum ogólnokształcącego - poziom podstawowy

Zadanie 1.  1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 532/770 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Odcinek AB o długości 9 jest równoległy do odcinka CD, przy czym: |PA|=6 i |AC|=24:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 639/861 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Odcinki BC i EF na rysunku są równoległe, przy czym |AC|=\frac{11}{2} i |BC|=14:

Oblicz długość odcinka EF.

Odpowiedź:
|EF|= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 388/636 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równolegle, przy czym |AP|=\frac{2}{3}, |BP|=\frac{1}{2}, |CP|=\frac{3}{2}, |DP|=2, |AB|=1:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{2}{3}, |DC|=\frac{7}{12} i |AB|=\frac{11}{12}:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{2}{3}, |DC|=\frac{7}{12} i |DE|=\frac{11}{12}:

Oblicz długość odcinka AB.

Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{2}{3}, |DE|=\frac{7}{12} i |AB|=\frac{11}{12}:

Oblicz długość odcinka DC.

Odpowiedź:
|DC|=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 W trójkącie ABC poprowadzono odcinek DE równoległy do boku AB, przy czym |AB|=\frac{9}{2} i |BE|:|EC|=5:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 325/461 [70%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Odcinki DE i AB są równoległe, przy czym |CD|=\frac{5}{6} i |CE|=1:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Odcinki DE i AB są równoległe, przy czym |DE|=\frac{1}{6} i |AB|=\frac{5}{6}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AP|=1, |BP|=\frac{5}{6} i |CP|=4:

Oblicz długość odcinka DP.

Odpowiedź:
|DP|=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 105/209 [50%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » W trapezie ABCD, AB\parallel CD oraz dane są długości trzech odcinków: |AB|=18, CD=\frac{39}{4} i |AD|=22:

O ile należy wydłużyć ramię AD, aby przecięło się z przedłużeniem ramienia BC:

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 12.  2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « W trapezie dane są długości podstaw i ramion: |CD|=\frac{25}{4}, |AB|=10, |AD|=5 i |BC|=\frac{15}{4}. Ramiona trapezu przedłużono do przecięcia w punkcie O.

Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt O, a dwa pozostałe są końcami dłuższej podstawy trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 13.  3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 117/348 [33%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 W trójkącie ABC odcinek EF jest symetralną boku AB oraz |AD|=2, |DB|=112 i |BC|=113:

Wyznacz długości odcinków CF i FB. Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (2 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 14.  2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 39/168 [23%] Rozwiąż 
Podpunkt 14.1 (2 pkt)
 (2 pkt) W trójkącie równoramiennym ABC dane są długości boków: |AC|=|BC|=70 i |AB|=84. Na przedłużeniu boku AB zaznaczono taki punkt D, że |DB|=147. Przez punkt A poprowadzono prostą równoległą do boku BC, która przecięła odcinek DC w punkcie E (zobacz rysunek):

Oblicz |DE|.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 15.  2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 31/48 [64%] Rozwiąż 
Podpunkt 15.1 (2 pkt)
 W trójkącie ABC poprowadzono trzy proste równoległe do podstawy AB, które podzieliły bok BC na cztery odcinki równej długości. Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o 26 większa od długości jego podstawy AB.

Oblicz |AB|.

Odpowiedź:
|AB|= (wpisz liczbę całkowitą)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm