Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Trójkąty podobne

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 263/396 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 329/432 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójkąt T_1 o bokach długości 2\sqrt{23}, 3\sqrt{23} i 4\sqrt{23} jest podobny do trójkąta T_2. Trójkąt T_2 ma boki o długościach:
Odpowiedzi:
A. \frac{6\sqrt{23}}{5},\frac{9\sqrt{23}}{5},\frac{8\sqrt{23}}{5} B. \frac{6\sqrt{23}}{5},\frac{9\sqrt{23}}{5},\frac{12\sqrt{23}}{5}
C. \frac{4\sqrt{23}}{5},\frac{9\sqrt{23}}{5},\frac{8\sqrt{23}}{5} D. \frac{4\sqrt{23}}{5},\frac{6\sqrt{23}}{5},\frac{12\sqrt{23}}{5}
Zadanie 3.  1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 W trapezie podstawy mają długość 4 i 24, a wysokość ma długość 10. Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.

Podaj krótszą z tych odległości.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
 Podaj dłuższą z tych odległości.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 548/1156 [47%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 (1 pkt) W trójkącie prostokątnym ABC przyprostokątna AC ma długość 2\sqrt{10}, a wysokość AD opuszczona z wierzchołka kąta prostego A ma długość 6:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Prostokąt ABCD o przekątnej długości 10\sqrt{13} jest podobny do prostokąta o bokach długości 2 i 3.

Oblicz obwód prostokąta ABCD.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10589 ⋅ Poprawnie: 100/160 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
«« Pięciokąt ABCDE jest foremny.

Który z trójkątów nie jest podobny do trójkąta ABD:

Odpowiedzi:
A. EDB B. ABI
C. ABG D. BGI
Zadanie 7.  1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 490/626 [78%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Obwody trójkątów podobnych T_1 i T_2 wynoszą odpowiednio 75 i 30. Najdłuższy bok trójkąta T_2 ma długość 27.

Oblicz długość najdłuższego boku trójkąta T_1.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Punkty E i F dzielą przyprostokątne trójkąta ABC w stosunku: |CE|:|CA|=|BF|:|BA|=\frac{1}{5}, przy czym: P_{\triangle MCE}=1 i P_{\triangle NFB}=5:

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Oblicz długość odcinka x:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W trójkącie równoramiennym ABC o wysokościach CD i AE podstawa AB ma długość 20, a odcinek BE ma długość \frac{100}{13}.

Oblicz długość odcinka CD.

Odpowiedź:
|AC|= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
Przedstawione na rysunku trójkąty ABC i PQR są podobne.
Oblicz długość boku AB trójkąta ABC.
Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 73/126 [57%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
Odcinki AM i CN są wysokościami trójkąta ABC.

Zatem:

Odpowiedzi:
A. |\sphericalangle BAM|=|\sphericalangle ASN| B. |\sphericalangle BAM|=|\sphericalangle BCN|
C. |\sphericalangle BSN|=|\sphericalangle CAM| D. |\sphericalangle CAM|=|\sphericalangle ACN|
Zadanie 13.  1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Trójkąt ABC ma obwód o długości 57. Punkty A_1, B_1 i C_1 są środkami boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta A_1B_1C_1 w skali \frac{3}{2}.

Oblicz długość obwodu trójkąta PQR.

Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-11893 ⋅ Poprawnie: 99/156 [63%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Trójkąt ABC jest prostokątny. Odcinek AD jest wysokością tego trójkąta poprowadzoną z wierzchołka A na przeciwprostokątną BC.

Wtedy:

Odpowiedzi:
A. \frac{|AD|}{|AB|}=\frac{|BC|}{|BD|} B. \frac{|AD|}{|AB|}=\frac{|AC|}{|AB|}
C. \frac{|AD|}{|AB|}=\frac{|CD|}{|AC|} D. \frac{|AD|}{|AB|}=\frac{|CD|}{|AD|}
Zadanie 15.  1 pkt ⋅ Numer: pp-11973 ⋅ Poprawnie: 35/75 [46%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Odcinki AC i BD przecinają się w punkcie O. Ponadto |AD|=2, |OD|=|BC|=\frac{15}{2}. Kąty ODA i BCO są proste (zobacz rysunek).

Długość odcinka OC jest równa:

Odpowiedzi:
A. \frac{1125}{32} B. \frac{375}{16}
C. \frac{225}{8} D. \frac{675}{32}
E. \frac{135}{4} F. \frac{45}{2}
Zadanie 16.  1 pkt ⋅ Numer: pp-12040 ⋅ Poprawnie: 6/11 [54%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Przez punkt przecięcia wysokości trójkąta równobocznego ABC poprowadzono prostą DE równoległą do podstawy AB (zobacz rysunek).

Stosunek pola trójkąta ABC do pola trójkąta CDE jest równy:

Odpowiedzi:
A. 4:1 B. 4:9
C. 3:2 D. 9:4
E. 2:3 F. 2:1
Zadanie 17.  1 pkt ⋅ Numer: pp-12126 ⋅ Poprawnie: 5/9 [55%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Przekątna AC prostokąta ABCD ma długość 25. Na boku AB obrano punkt E, na przekątnej AC obrano punkt F, a na boku AD obrano punkt G – tak, że czworokąt AEFG jest prostokątem (zobacz rysunek). Ponadto |EF|=6 i |GF|=8.

Obwód prostokąta ABCD jest równy:

Odpowiedzi:
A. 70 B. \frac{105}{2}
C. \frac{175}{2} D. 40
E. 105 F. \frac{35}{2}
Zadanie 18.  1 pkt ⋅ Numer: pp-12392 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 W trójkącie równoramiennym ABC dane są: |AC|=|BC|=5 i |AB|=3. Na boku BC, między punktami B i C, wybrano taki punkt D, że trójkąty ABC i BDA są podobne (zobacz rysunek).

Odcinek BD ma długość:

Odpowiedzi:
A. \frac{6}{5} B. \frac{9}{5}
C. 3 D. \frac{27}{20}
E. \frac{12}{5} F. \frac{9}{4}
G. \frac{54}{25} H. \frac{27}{25}
Zadanie 19.  2 pkt ⋅ Numer: pp-20722 ⋅ Poprawnie: 69/145 [47%] Rozwiąż 
Podpunkt 19.1 (2 pkt)
 » Trójkąt na rysunku jest równoramienny o podstawie AB, przy czym |CD|=\frac{238}{13} oraz |DB|=\frac{100}{13}:

Oblicz |AB|.

Odpowiedź:
|AB|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 20.  2 pkt ⋅ Numer: pp-20235 ⋅ Poprawnie: 129/233 [55%] Rozwiąż 
Podpunkt 20.1 (2 pkt)
 » Korzystając z danych na rysunku oraz wiedząc, że a=22 i b=5, oblicz długość zielonego odcinka:
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 21.  2 pkt ⋅ Numer: pp-20723 ⋅ Poprawnie: 75/136 [55%] Rozwiąż 
Podpunkt 21.1 (2 pkt)
 « Dane są punkty na okręgu takie, że |AP|=3, |PB|=\frac{10}{3} i |CP|=\frac{10}{9}:

Oblicz |PD|.

Odpowiedź:
|PD|=
(wpisz dwie liczby całkowite)
Zadanie 22.  2 pkt ⋅ Numer: pp-20724 ⋅ Poprawnie: 65/356 [18%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 «« Punkt M dzieli bok AB trójkąta na rysunku w stosunku 1:5. Ponadto |AC|=40 i |BC|=104:

Oblicz |BN|:|CN|.

Odpowiedź:
|BN|:|CN|=
(wpisz dwie liczby całkowite)
Zadanie 23.  2 pkt ⋅ Numer: pp-20725 ⋅ Poprawnie: 32/240 [13%] Rozwiąż 
Podpunkt 23.1 (2 pkt)
 « Trójkąt ABC na rysunku jest równoramienny, a zielony czworokąt jest kwadratem, przy czym |AB|=16 i |BC|=17:

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 24.  2 pkt ⋅ Numer: pp-20726 ⋅ Poprawnie: 65/252 [25%] Rozwiąż 
Podpunkt 24.1 (2 pkt)
 Zielony czworokąt na rysunku jest kwadratem oraz |AC|=32 i |BC|=68:

Jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni tego kwadratu. Wynik zaokrąglij do jednego procenta.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 25.  2 pkt ⋅ Numer: pp-20788 ⋅ Poprawnie: 35/86 [40%] Rozwiąż 
Podpunkt 25.1 (2 pkt)
 » W trójkącie ABC kąt przy wierzchołku A jest prosty i zachodzi warunek |AB|:|AC|=\frac{6}{5}. Wysokość tego trojkąta opuszczona z wierzchołka kąta prostego dzieli przeciwprostokątną na odcinki BD i DC, których stosunek długości jest większy od 1.

Oblicz |BD|:|DC|.

Odpowiedź:
|BD|:|DC|=
(wpisz dwie liczby całkowite)
Zadanie 26.  2 pkt ⋅ Numer: pp-20248 ⋅ Poprawnie: 85/131 [64%] Rozwiąż 
Podpunkt 26.1 (2 pkt)
 » Do jednego z ramion kąta o wierzchołku O należą punkty A i B, a do drugiego ramienia kąta punkty C i D. Wiadomo, że AC\parallel BD oraz |AO|=4, |AC|=3 i |BD|=7.

Wyznacz długość odcinka AB.

Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 27.  2 pkt ⋅ Numer: pp-20249 ⋅ Poprawnie: 40/141 [28%] Rozwiąż 
Podpunkt 27.1 (2 pkt)
 Na ramieniu kąta ostrego o wierzchołku A zaznaczono odcinki AB i BC, na drugim ramieniu odcinki AD i DE. Odcinki mają długości: |AB|=2, |BC|=4, |AD|=3 i |DE|=1. Wyznacz skalę podobieństwa trójkątów ACD i ABE.

Podaj skalę k\in(0,1].

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 28.  2 pkt ⋅ Numer: pp-20246 ⋅ Poprawnie: 80/121 [66%] Rozwiąż 
Podpunkt 28.1 (2 pkt)
Odcinki AD i BE przecinają się w punkcie C. W trójkątach ABC i CDE zachodzą związki: |\sphericalangle CAB|=|\sphericalangle CED|, |AC|=5, |BC|=3, |CE|=10, jak na rysunku.

Oblicz długość boku CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 29.  2 pkt ⋅ Numer: pp-20917 ⋅ Poprawnie: 35/51 [68%] Rozwiąż 
Podpunkt 29.1 (2 pkt)
 » Trójkąt ABC jest prostokątny. Na boku AC tego trójkąta zbudowano kwadrat, natomiast bok AB przedłużono tak, że |\angle EHA|=90^{\circ}.

Wiedząc, że |BC|=35 oraz bok kwadratu ma długość 12 oblicz pole powierzchni trójkąta EHA.

Odpowiedź:
P_{\triangle EHA}=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-20247 ⋅ Poprawnie: 38/58 [65%] Rozwiąż 
Podpunkt 30.1 (2 pkt)
Punkt D jest środkiem boku AB oraz |DC|=|CB|=|BE|.

Wiedząc, że |AC|=2 oblicz |DE|.

Odpowiedź:
|DE|= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-20842 ⋅ Poprawnie: 95/179 [53%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Trójkąt ABC ma obwód równy 33. Trójkąt A_1B_1C_1 jest podobny do trójkąta ABC w skali 4 aj ego dwa boki mają długość: |A_1B_1|=60 i |A_1C_1|=16.

Jaką długość ma najkrótszy bok trójkąta ABC?

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 31.2 (1 pkt)
 Jaką długość ma najdłuższy bok trójkąta ABC?
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 32.  2 pkt ⋅ Numer: pp-20843 ⋅ Poprawnie: 31/79 [39%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 |AC|=17 |BC|=17 |AB|=30 W trójkącie równoramiennym ABC dane są długości boków |AB|=30, |AC|=17 i |BC|=17.

Oblicz odległość środka wysokości CD tego trójkąta od jego ramienia.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 33.  2 pkt ⋅ Numer: pp-20867 ⋅ Poprawnie: 39/60 [65%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 Obwód trójkąta prostokątnego jest równy 5 cm. Spodek najkrótszej wysokości dzieli przeciwprostokątną na dwa odcinki w stosunku 9:16.

Podaj długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 33.2 (1 pkt)
 Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 34.  2 pkt ⋅ Numer: pp-20868 ⋅ Poprawnie: 36/78 [46%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego dzieli przeciwprostokątną na dwa odcinki, z których jeden jest o 12 krótszy od tej wysokości, a drugi o 14 od niej dłuższy.

Oblicz długość przeciwprostokątnej tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 34.2 (1 pkt)
 Oblicz długość najkrótszej wysokości tego trójkąta.
Odpowiedź:
h= (wpisz liczbę całkowitą)
Zadanie 35.  2 pkt ⋅ Numer: pp-20869 ⋅ Poprawnie: 42/89 [47%] Rozwiąż 
Podpunkt 35.1 (1 pkt)
 Boki trójkąta rozwartokątnego ABC mają długości: |AB|=34, |BC|=20 i |AC|=18. Na boku AB zaznaczono punkt D w taki sposób, że |\sphericalangle CDB|=|\sphericalangle ACB|.

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Podpunkt 35.2 (1 pkt)
 Oblicz długość odcinka DB.
Odpowiedź:
|BD|=
(wpisz dwie liczby całkowite)
Zadanie 36.  2 pkt ⋅ Numer: pp-20870 ⋅ Poprawnie: 30/46 [65%] Rozwiąż 
Podpunkt 36.1 (2 pkt)
 « Podstawa AB trójkąta ostrokątnego ma długość 36 cm, a wysokość opuszczona na tę podstawę ma długość 34 cm. W ten trójkąt wpisano kwadrat tak, że dwa jego wierzchołki należą do jego podstawy AB, a dwa - do boków AC i BC.

Oblicz długość boku tego kwadratu.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 37.  2 pkt ⋅ Numer: pp-20872 ⋅ Poprawnie: 15/31 [48%] Rozwiąż 
Podpunkt 37.1 (2 pkt)
 Przekątne trapezu ABCD przecinają się w punkcie S, przez który poprowadzoną prostą prostopadłą do obu podstaw trapezu. Prosta ta przecięła krótszą podstawę CD w punkcie E, a podstawę dłuższą AB w punkcie F tak, że |EF|=21, |SE|=3 i |EC|=9.

Oblicz długość przekątnej AC tego trapezu.

Odpowiedź:
|AC|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 38.  2 pkt ⋅ Numer: pp-21046 ⋅ Poprawnie: 423/651 [64%] Rozwiąż 
Podpunkt 38.1 (2 pkt)
 Trójkaty T_1 i T_2 są podobne. Przyprostokatne trójkąta T_1 mają długość 3 i 4. Przeciwprostokątna trójkąta T_2 ma długość 15.

Oblicz pole powierzchni trójkąta T_2.

Odpowiedź:
P_{T_2}=
(wpisz dwie liczby całkowite)
Zadanie 39.  2 pkt ⋅ Numer: pp-21081 ⋅ Poprawnie: 59/185 [31%] Rozwiąż 
Podpunkt 39.1 (2 pkt)
 Dany jest trójkąt równoboczny ABC o boku długości 34. Punkt E leży na boku AB, a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).

Oblicz długość odcinka EF.

Odpowiedź:
|EF|=
(wpisz dwie liczby całkowite)
Zadanie 40.  2 pkt ⋅ Numer: pp-21112 ⋅ Poprawnie: 89/231 [38%] Rozwiąż 
Podpunkt 40.1 (2 pkt)
 Bok kwadratu ABCD ma długość równą 32. Punkt S jest środkiem boku BC tego kwadratu. Na odcinku AS leży punkt P taki, że odcinek BP jest prostopadły do odcinka AS.

Oblicz długość odcinka BP.

Odpowiedź:
|BP|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 41.  2 pkt ⋅ Numer: pp-21118 ⋅ Poprawnie: 9/44 [20%] Rozwiąż 
Podpunkt 41.1 (2 pkt)
 Dany jest trójkąt prostokątny, którego przyprostokątne mają długość 9 i 3. Punkt O leży na przeciwprostokątnej tego trójkąta i jest środkiem okręgu stycznego do przyprostokątnych tego trójkąta (zobacz rysunek).

Oblicz długość promienia tego okręgu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 42.  2 pkt ⋅ Numer: pp-21124 ⋅ Poprawnie: 17/54 [31%] Rozwiąż 
Podpunkt 42.1 (2 pkt)
 Trójkąt równoboczny ABC ma pole równe 64\sqrt{3}. Prosta równoległa do boku BC przecina boki AB i AC – odpowiednio – w punktach K i L. Trójkąty ABC i AKL są podobne, a stosunek długości boków tych trójkątów jest równy \frac{5}{2}.

Oblicz długość boku trójkąta AKL.

Odpowiedź:
a_{\trangle AKL}=
(wpisz dwie liczby całkowite)
Zadanie 43.  2 pkt ⋅ Numer: pp-21134 ⋅ Poprawnie: 17/43 [39%] Rozwiąż 
Podpunkt 43.1 (2 pkt)
 W trójkącie ABC kąt przy wierzchołku A jest prosty, a kąt przy wierzchołku B ma miarę 30^{\circ}. Na boku AB tego trójkąta obrano punkt D tak, że miara kąta CDA jest równa 60^{\circ} oraz |AD|=24 (zobacz rysunek).

Oblicz |BD|.

Odpowiedź:
|BD|=
(wpisz dwie liczby całkowite)
Zadanie 44.  2 pkt ⋅ Numer: pp-21140 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 44.1 (1 pkt)
 Podstawy trapezu prostokątnego ABCD mają długości: |AB|=12 oraz |CD|=6. Wysokość AD tego trapezu ma długość 63. Na odcinku AD leży punkt E taki, że |\sphericalangle BEA|=|\sphericalangle CED| (zobacz rysunek).

Oblicz |DE|.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Podpunkt 44.2 (1 pkt)
 Oblicz |BE|.
Odpowiedź:
|BE|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 45.  4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%] Rozwiąż 
Podpunkt 45.1 (2 pkt)
 « Trójkąt na rysunku jest równoboczny i obwód trójkąta SEF spełnia warunek L_{SEF}=64:

Wyznacz skalę podobieństwa \triangle EFS do \triangle AEF.

Odpowiedź:
k= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 45.2 (2 pkt)
 Obwód trójkąta SEF jest równy 64. Wyznacz |AB| i wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b,c\in \mathbb{Z} i c jest najmniejsze możliwe.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 46.  4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%] Rozwiąż 
Podpunkt 46.1 (4 pkt)
 « W trójkąt prostokątny wpisano okrąg, który jest styczny do przeciwprostokątnej w punkcie M.

Oblicz |AM|.

Odpowiedź:
|AM|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 47.  4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%] Rozwiąż 
Podpunkt 47.1 (2 pkt)
 «« Trójkąt na rysunku jest równoramienny o podstawie AB o długości |AB|=56 i ramieniu |BC|=53:

Oblicz |MN|.

Odpowiedź:
|MN|=
(wpisz dwie liczby całkowite)
Podpunkt 47.2 (2 pkt)
 Oblicz |MP|.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm