Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Równania, nierówności i ich układy z wartością bezwzględną lub parametrem

Zadania dla liceum ogólnokształcącego - poziom rozszerzony

 

Zadanie 1.  2 pkt ⋅ Numer: pr-20937 ⋅ Poprawnie: 5/13 [38%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-\frac{1}{2}x-\frac{m+4}{4}-1 oraz g(x)=\frac{3}{2}x+\frac{2m+3}{2}+7 przecinają się w punkcie należącym do wykresu funkcji określonej wzorem h(x)=\frac{1}{2}x+7?

Podaj najmiejszą możliwą wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 1.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  2 pkt ⋅ Numer: pr-20939 ⋅ Poprawnie: 4/7 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których rozwiązaniem układu równań \begin{cases} -2x+3y=4k+7 \\ 3x-5y=-6k-9 \end{cases} jest para liczb (x,y) spełniająca warunek |x\cdot y|\geqslant 10. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmiejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 3.  2 pkt ⋅ Numer: pr-20940 ⋅ Poprawnie: 5/7 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyznacz wszystkie wartości parametru k\in\mathbb{R}, dla których rozwiązaniem układu równań \begin{cases} 3x+7y=2k-61 \\ 2x+5y=k-37 \end{cases} jest para liczb (x,y) spełniająca warunek -13\leqslant x+y \lessdot -1. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 3.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  2 pkt ⋅ Numer: pr-20049 ⋅ Poprawnie: 9/22 [40%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Zaznacz w układzie współrzednych zbiór, którego współrzędne spełniają równanie |x+3-a|+|y-1|=1.

Prosta x=m przecina ten zbiór w jednym punkcie. Podaj sumę wszystkich możliwych wartości m.

Dane
a=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
 Dla jakich wartości parametru m prosta y=m przecina ten zbiór w dwóch punktach?

Rozwiązanie zapisz w postaci przedziału. Podaj sumę kwadratów końców tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  4 pkt ⋅ Numer: pr-30016 ⋅ Poprawnie: 9/28 [32%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 » Trzy nierówności \begin{cases} y\leqslant -x+8+2a \\ y\leqslant \frac{9}{5}x+\frac{12}{5}-\frac{4}{5}a \\ y\geqslant \frac{5}{9}x-\frac{4}{3}+\frac{4}{9}a \end{cases} opisują trójkąt o wierzchołkach, których współrzędne są całkowite.

Podaj sumę wszystkich sześciu współrzędnych wierzchołków tego trójkąta.

Dane
a=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (1 pkt)
 Trójkąt ten jest równoramienny o podstawie AB.

Oblicz długość wysokości opuszczonej na bok AB.

Odpowiedź:
m\sqrt{n}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 5.3 (1 pkt)
 Oblicz długość promienia okręgu wpisanego w ten trójkąt.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  4 pkt ⋅ Numer: pr-30834 ⋅ Poprawnie: 6/8 [75%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-5x+2m-12 i g(x)=3x-6m-20 przecinają się w punkcie o współrzednych (x,y) takim, że |x|-|7-y|\leqslant 1. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmiejszy z końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 7.  4 pkt ⋅ Numer: pr-30835 ⋅ Poprawnie: 2/29 [6%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=2x-m-2 i g(x)=-4x+5m+22 przecinają się w punkcie o współrzednych (x,y) takim, że |y-2|+|x+2|\geqslant 5. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmiejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  4 pkt ⋅ Numer: pr-30836 ⋅ Poprawnie: 1/27 [3%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} rozwiązaniem układu równań \begin{cases} (m-5)x+y=-2 \\ -x+(m-3)y=-6m+20 \end{cases} jest para liczb (x,y) taka, że |x|=|y+6|. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmiejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (2 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-30837 ⋅ Poprawnie: 15/30 [50%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-\frac{1}{2}x-\frac{m+4}{4}-1 oraz g(x)=\frac{3}{2}x+\frac{2m+3}{2}+7 przecinają się w punkcie należącym do wykresu funkcji określonej wzorem h(x)=\frac{1}{2}x+7?

Podaj najmiejszą możliwą wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30838 ⋅ Poprawnie: 10/25 [40%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} wykresy funkcji liniowych określonych wzorami f(x)=-\frac{2}{5}x+m-\frac{38}{5} oraz g(x)=2x-m+2 przecinają się w punkcie należącym do wykresu funkcji określonej wzorem h(x)=2-2|x+1|?

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (2 pkt)
 Dla większej z wartości parametru m wyznaczonych w poprzednich punktach wyznacz punkt P=(x_P, y_P), w którym przecinają się wykresy tych funkcji.

Podaj współrzedne tego punktu.

Odpowiedzi:
x_P= (wpisz liczbę zapisaną dziesiętnie)
y_P= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30019 ⋅ Poprawnie: 21/69 [30%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Rozwiązanie układu \begin{cases} x+y=\frac{m}{a} \\ 3x-2y=\frac{2m}{a}-1 \end{cases} spełnia warunki: |x|\leqslant \frac{1}{2} i |y|\leqslant \frac{1}{2}. Wyznacz m.

Podaj najmniejsze możliwe m.

Dane
a=8
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pr-30833 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Wyznacz te wartości parametru k\in\mathbb{R}, dla których rozwiązaniem układu równań \begin{cases} 2x-3y=3-|1-k| \\ -3x+5y=|3k-3|-5 \end{cases} jest para liczb rzeczywistych o przeciwnych znakach. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (2 pkt)
 Zbiór tych wszystkich wartości parametru k, które spełniają warunki zadania ma postać (p,q)-\{r\}.

Podaj liczbę r.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm