Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Funkcja kwadratowa - postać iloczynowa

Zadania dla klasy drugiej liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11013  
Podpunkt 1.1 (1 pkt)
 Trójmian kwadratowy y=-2x^2-2x+24 można zapisać w postaci y=a(x-3)(x-m).

Wyznacz wartości parametrów a i m.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11057  
Podpunkt 2.1 (0.5 pkt)
 » Wierzchołek paraboli o równaniu y=(-2-3x)(x-3) ma współrzędne (x_w,y_w).

Wyznacz współrzędną x_w.

Odpowiedź:
x_w=
(wpisz dwie liczby całkowite)
Podpunkt 2.2 (0.5 pkt)
 Wyznacz współrzędną y_w.
Odpowiedź:
y_w=
(wpisz dwie liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11041  
Podpunkt 3.1 (1 pkt)
 Wyznacz największa wartość funkcji określonej wzorem y=-3(x-2)(x-4).
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10980  
Podpunkt 4.1 (1 pkt)
 Liczby 1 i \frac{7}{2} są miejscami zerowymi funkcji określonej wzorem g(x)=ax^2+\frac{9}{2}x-\frac{7}{2}.

Wyznacz wartość współczynnika a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10981  
Podpunkt 5.1 (1 pkt)
 « Wyznacz największą wartość funkcji określonej wzorem f(x)=-3(x+3)(x-3) w przedziale \left\langle -\frac{1}{2},5\right\rangle.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10982  
Podpunkt 6.1 (1 pkt)
 « Wyznacz sumę miejsc zerowych funkcji określonej wzorem f(x)=\frac{-x^2+6x-8}{\sqrt{4-x}} .
Odpowiedź:
x_1+x_2= (wpisz liczbę całkowitą)
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10986  
Podpunkt 7.1 (1 pkt)
 Wyznacz przedział o maksymalnej długości, w którym funkcja określona wzorem h(x)=\frac{1}{2}(x-1)(x-5) jest rosnąca.

Podaj mniejszy z końców liczbowych tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 8.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10996  
Podpunkt 8.1 (0.2 pkt)
 Zbiór tych wszystkich wartości m, dla których funkcja kwadratowa określona wzorem f(x)=x^2+4x+m nie ma ani jednego miejsca zerowego jest przedziałem liczbowym.

Przedział ten ma postać:

Odpowiedzi:
A. (p, q) B. \langle p, +\infty)
C. (-\infty, p) D. (-\infty, p\rangle
E. \langle p, q\rangle F. (p, +\infty)
Podpunkt 8.2 (0.8 pkt)
 Podaj najmniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10999  
Podpunkt 9.1 (1 pkt)
 Zbiorem wartości funkcji kwadratowej f określonej wzorem f(x)=m(x-2)(x-4) jest przedział liczbowy \langle -3,+\infty), a rozwiązaniem nierówności f(x) \lessdot 0 przedział (2,4).

Wyznacz współczynnik m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 10.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11001  
Podpunkt 10.1 (1 pkt)
 Jeżeli miejscami zerowymi funkcji kwadratowej są liczby 2 oraz 4, a wierzchołek paraboli będącej jej wykresem ma współrzędne (3,-3), to wzór tej funkcji można zapisać w postaci:
Odpowiedzi:
A. f(x)=3(x-2)(x-4) B. f(x)=\frac{9}{4}(x+2)(x-4)
C. f(x)=3(x-2)(x+4) D. f(x)=3(x+2)(x-4)
Zadanie 11.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11010  
Podpunkt 11.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x+1)(x+5). Wyznacz maksymalny przedział, w którym funkcja ta jest rosnąca.

Podaj najmniejszy koniec liczbowy tego przedziału.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 12.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11427  
Podpunkt 12.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=-(x+7)(x-3). Liczby x_1 i x_2 są różnymi miejscami zerowymi funkcji f spełniającymi warunek x_1+x_2=..........

Podaj brakującą liczbę.

Odpowiedzi:
A. x_1+x_2=-4 B. x_1+x_2=4
C. x_1+x_2=-8 D. x_1+x_2=8
Zadanie 13.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11042  
Podpunkt 13.1 (1 pkt)
 Miejscami zerowymi funkcji kwadratowej są liczby -6 oraz -1. Do wykresu tej funkcji należy punkt A=(0,12). Zapisz wzór tej funkcji w postaci iloczynowej y=a(x-x_1)(x-x_2).

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 26.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20895  
Podpunkt 26.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=ax^2+bx+c. Funkcja ta przyjmuje wartości dodatnie tylko w przedziale (0, k), a jej największa wartość wartość wynosi q.

Wyznacz a.

Dane
k=40
q=2400
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 26.2 (1 pkt)
 Wyznacz b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 27.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20896  
Podpunkt 27.1 (1 pkt)
 » Funkcja kwadratowa f określona jest dla wszystkich liczb rzeczywistych x wzorem f(x)=ax^2+bx+c. Przedział (p,q) jest rozwiązaniem nierówności f(x) > 0, natomiast liczba t jest największą wartością funkcji f.

Oblicz wartość współczynnika a.

Dane
p=2
q=4
t=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 27.2 (1 pkt)
 Oblicz wartość współczynnika b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 28.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20897  
Podpunkt 28.1 (1 pkt)
 » Funkcja kwadratowa f(x)=ax^2+bx+c przyjmuje wartości ujemne tylko wtedy, gdy x\in\left(d, e\right). Wiadomo, że wykres funkcji f przechodzi przez punkt A=(p,q).

Zapisz wzór tej funkcji w postaci ogólnej. Podaj sumę współczynników a+b+c.

Dane
d=-5
e=5.5
p=1
q=-54
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 28.2 (1 pkt)
 Zapisz wzór tej funkcji w postaci kanonicznej f(x)=a(x-p)^2+q. Podaj wartość współczynnika p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

Liczba wyświetlonych zadań: 16

Liczba pozostałych zadań dostępnych dla zarejestrowanych nauczycieli: 15

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm