Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Najmniejsza i największa wartość funkcji kwadratowej w przedziale

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-11466 ⋅ Poprawnie: 202/334 [60%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dana jest funkcja kwadratowa f(x)=-0,5(x+4m)^2+12m, gdzie m > 0.

Wówczas:

Odpowiedzi:
A. największą wartością funkcji jest -12m B. dla pewnego m funkcja ma jedno miejsce zerowe
C. dla m=-\frac{1}{2} funkcja jest rosnąca D. wierzchołek paraboli, która jest wykresem tej funkcji należy do prostej y=-3x
Zadanie 2.  1 pkt ⋅ Numer: pp-11465 ⋅ Poprawnie: 437/885 [49%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Najmniejszą wartość w przedziale \langle -7, -3\rangle funkcja kwadratowa f(x)=-\left(x+6\right)^{2}-5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10978 ⋅ Poprawnie: 466/732 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Najmniejszą wartość w przedziale \langle 3, 7\rangle funkcja kwadratowa określona wzorem f(x)=-\left(x-6\right)^{2}+5 przyjmuje dla argumentu ......... .

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10985 ⋅ Poprawnie: 217/329 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja g(x)=-\frac{1}{3}(x+6)x, gdzie x\in\langle -6,-3\rangle.

Wyznacz f_{min}.

Odpowiedź:
f_{min}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11409 ⋅ Poprawnie: 192/287 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji kwadratowej f:

Podaj największą wartość funkcji f w przedziale \langle 1,4\rangle.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10988 ⋅ Poprawnie: 36/52 [69%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
» Wyznacz najmniejszą wartość funkcji kwadratowej określonej wzorem f(x)=x^2+12x.
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20353 ⋅ Poprawnie: 202/659 [30%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=-1
b=4
c=6
p=0
q=8
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Oblicz największą wartość funkcji f w tym przedziale.
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20361 ⋅ Poprawnie: 166/428 [38%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c, gdzie x\in\langle p,q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
a=1
b=-2
c=11
p=-1
q=4
Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20362 ⋅ Poprawnie: 16/47 [34%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Wyznacz zbiór wartości funkcji g(x)=f(x-p)+q.

Podaj najmniejszą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje wpisz 0.

Dane
a=1
b=-6
c=-4
p=2
q=-5
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą liczbę w zbiorze wartości. Jeśli taka wartość nie istnieje wpisz 0.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20363 ⋅ Poprawnie: 147/330 [44%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dana jest funkcja f(x)=x^2+bx+c, gdzie x\in\langle p, q\rangle.

Oblicz najmniejszą wartość funkcji f.

Dane
b=-8
c=17
p=1
q=3
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Oblicz największą wartość funkcji f.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 11.  2 pkt ⋅ Numer: pp-20364 ⋅ Poprawnie: 88/221 [39%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Wyznacz najmniejszą wartość funkcji h(x)=ax^2+bx+c w przedziale \langle p,q\rangle.
Dane
a=1
b=4
c=6
p=-4
q=1
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Wyznacz największą wartość tej funkcji w podanym przedziale.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 12.  2 pkt ⋅ Numer: pp-20365 ⋅ Poprawnie: 83/185 [44%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p, q\rangle.

Dane
a=1
b=4
c=6
p=-4
q=1
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 13.  2 pkt ⋅ Numer: pp-20366 ⋅ Poprawnie: 36/74 [48%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja kwadratowa jest określona wzorem f(x)=ax^2+bx+c.

Oblicz najmniejszą wartość funkcji f w przedziale \langle p,q\rangle.

Dane
a=3
b=12
c=14
p=-4
q=1
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 13.2 (1 pkt)
 Dla jakiego x funkcja f osiąga minimum?
Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 14.  2 pkt ⋅ Numer: pp-20367 ⋅ Poprawnie: 7/33 [21%] Rozwiąż 
Podpunkt 14.1 (2 pkt)
 Do wykresu paraboli y=2x^2-3x-1 należy punkt Q=(2am, y) taki, że różnica 2am-y jest największa z możliwych.

Podaj m.

Dane
a=4
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 15.  2 pkt ⋅ Numer: pp-20368 ⋅ Poprawnie: 45/102 [44%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 » Wyznacz najmniejszą wartość funkcji g(x)=ax^2+bx+c w przedziale \langle p,q\rangle.
Dane
a=1
b=-4
c=2
p=3
q=7
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 15.2 (1 pkt)
 Wyznacz największą wartość tej funkcji w podanym przedziale.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 16.  2 pkt ⋅ Numer: pp-20354 ⋅ Poprawnie: 75/128 [58%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 «« Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=2
b=-12
c=16
p=4
q=8
Odpowiedź:
f_{min}(x)= (wpisz liczbę całkowitą)
Podpunkt 16.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 17.  2 pkt ⋅ Numer: pp-20355 ⋅ Poprawnie: 21/82 [25%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=1
b=1=1.00000000000000
c=\frac{5}{4}=1.25000000000000
p=-4
q=4
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 18.  2 pkt ⋅ Numer: pp-20356 ⋅ Poprawnie: 25/91 [27%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=-1
b=-2
c=-\frac{1}{2}=-0.50000000000000
p=-2
q=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 18.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 19.  2 pkt ⋅ Numer: pp-20357 ⋅ Poprawnie: 15/53 [28%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=1
b=\frac{2}{3}=0.66666666666667
c=\frac{28}{9}=3.11111111111111
p=-3
q=5
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 19.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 20.  2 pkt ⋅ Numer: pp-20358 ⋅ Poprawnie: 32/66 [48%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 « Dana jest funkcja f(x)=ax^2+bx+c. Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartośc najmniejszą.

Dane
a=2
b=\frac{4}{3}=1.33333333333333
c=\frac{29}{9}=3.22222222222222
p=-3
q=5
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 20.2 (1 pkt)
 Podaj wartośc największą.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 21.  2 pkt ⋅ Numer: pp-20359 ⋅ Poprawnie: 51/109 [46%] Rozwiąż 
Podpunkt 21.1 (2 pkt)
 » Wyznacz największą wartość funkcji f(x)=bx+ax^2.
Dane
a=-1=-1.00000000000000
b=\frac{3}{2}=1.50000000000000
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 22.  2 pkt ⋅ Numer: pp-20360 ⋅ Poprawnie: 20/51 [39%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 » Wyznacz najmniejszą wartość funkcji f(x)=bx+ax^2.
Dane
a=\frac{1}{2}=0.50000000000000
b=-1=-1.00000000000000
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 23.  4 pkt ⋅ Numer: pp-30078 ⋅ Poprawnie: 36/119 [30%] Rozwiąż 
Podpunkt 23.1 (2 pkt)
 Dana jest funkcja f(x)=(ax+b)(cx+d). Oblicz najmniejszą i największą wartość tej funkcji w przedziale \langle p,q\rangle.

Podaj wartość najmniejszą w tym przedziale.

Dane
a=-1
b=6
c=-2
d=-3
p=-3
q=5
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 23.2 (2 pkt)
 Podaj wartość największą w tym przedziale.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 24.  4 pkt ⋅ Numer: pp-30079 ⋅ Poprawnie: 21/90 [23%] Rozwiąż 
Podpunkt 24.1 (2 pkt)
 « Liczba c jest rozwiązaniem równania 8^{p}+2^{q}\cdot x=0, zaś liczba d wynosi \frac{125^{500}}{5^{1500}}. Funkcja kwadratowa g(x)=(x-c)(x-d) określona jest w przedziale \langle x_1,x_2\rangle.

Podaj najmniejszą wartość funkcji g.

Dane
p=24
q=69
x1=-5
x2=2
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 24.2 (2 pkt)
 Podaj największą wartość funkcji g.
Odpowiedź:
g_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 25.  4 pkt ⋅ Numer: pp-30080 ⋅ Poprawnie: 43/113 [38%] Rozwiąż 
Podpunkt 25.1 (4 pkt)
» Największa wartość funkcji kwadratowej f(x)=a(x-5)^2-6 w przedziale \langle -1,1\rangle jest równa 10. Wyznacz najmniejszą wartość funkcji f w przedziale \langle -1,1\rangle.

Podaj tę wartość.

Odpowiedź:
y_{min}=
(wpisz dwie liczby całkowite)
Zadanie 26.  4 pkt ⋅ Numer: pp-30081 ⋅ Poprawnie: 14/45 [31%] Rozwiąż 
Podpunkt 26.1 (4 pkt)
 « Dana jest funkcja kwadratowa h(x)=-\frac{1}{2}x^2-x+7,5 określona w przedziale w przedziale \langle -2, m+a\rangle. Funkcja h spełnia warunek h_{max}-h_{min}=\frac{9}{2}.

Oblicz m.

Dane
a=8
Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 27.  4 pkt ⋅ Numer: pp-30082 ⋅ Poprawnie: 29/61 [47%] Rozwiąż 
Podpunkt 27.1 (4 pkt)
 «« Wyznacz wartość największą funkcji f(x)=\frac{1}{x^2+12x+31} w przedziale \langle a,b\rangle.

Podaj tę wartość.

Dane
a=-1
b=1
Odpowiedź:
y_{max}=
(wpisz dwie liczby całkowite)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm