Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Równania i nierówności kwadratowe z wartością bezwzględną i parametrem

Zadania dla liceum ogólnokształcącego - poziom rozszerzony

 

Zadanie 1.  2 pkt ⋅ Numer: pr-20105 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 «« Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie (x-1)|x-2|=m+1+a ma dwa różne rozwiązania.

Podaj najmniejsze możliwe m.

Dane
a=5
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 1.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 2.  3 pkt ⋅ Numer: pr-20106 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie |16-x^2|=(m-a)^2-9 ma dwa różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj wszystkie liczbowe końce tych przedziałów, w kolejności od najmiejszego do największego.

Dane
a=5
Odpowiedzi:
m_1= (wpisz liczbę całkowitą)
m_2= (wpisz liczbę całkowitą)
m_3= (wpisz liczbę całkowitą)
m_4= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 2.3 (1 pkt)
 Podaj największe możliwe m, dla którego równanie to ma dokładnie trzy rozwiązania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  2 pkt ⋅ Numer: pr-20107 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (2 pkt)
 « Wyznacz te wartości parametru m\in\mathbb{R}, dla których równanie x^2-(m+a)|x|+1=0 ma cztery różne rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
a=5
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pr-20463 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 4.1 (2 pkt)
 « Równanie |-x^2+2|x|+5|=2p-a ma cztery rozwiązania. Wyznacz zbiór możliwych wartości parametru p.

Oblicz sumę kwadratów liczb całkowitych należących do tego zbioru.

Dane
a=9
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 5.  2 pkt ⋅ Numer: pr-20078 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Zbadaj liczbę pierwiastków równania x^2+2x+|x^2+2x|+1=4(m-a)^2 w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma nieskończenie wiele rozwiązań.

Dane
a=4
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (1 pkt)
 Dla jakich wartości parametru m równanie ma dwa rozwiązania?

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20089 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Wyznacz tę wartość parametru p, dla której równanie g(x)-6=0, gdzie g(x)=\left|\left(x-2p+4a\right)^2+p-2a\right|, ma dokładnie trzy rozwiązania.

Podaj wartość p.

Dane
a=5
Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 7.  4 pkt ⋅ Numer: pr-30083 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Zbadaj liczbę rozwiązań równania x^2-4|x|=2m-a w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=4
Odpowiedź:
min_2=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min_3=
(wpisz dwie liczby całkowite)
Podpunkt 7.3 (1 pkt)
 Podaj długość przedziału tych wartości m, dla których równanie ma cztery rozwiązania.
Odpowiedź:
d_4= (wpisz liczbę całkowitą)
Zadanie 8.  4 pkt ⋅ Numer: pr-30084 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Zbadaj liczbę rozwiązań równania -2|x-1|\cdot|3-x|=m+1+a w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=4
Odpowiedź:
max_2= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min_3= (wpisz liczbę całkowitą)
Podpunkt 8.3 (1 pkt)
 Podaj długość przedziału tych wartości m, dla których równanie ma cztery rozwiązania.
Odpowiedź:
d_4= (wpisz liczbę całkowitą)
Zadanie 9.  4 pkt ⋅ Numer: pr-30085 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Zbadaj liczbę rozwiązań równania -\frac{1}{3}x^2+2|x|-3=3m-3a w zależności od wartości parametru m\in\mathbb{R}.

Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=4
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.3 (1 pkt)
 Przedział (m_1,m_2) zawiera wszystkie te wartości parametru m, dla których równanie to ma więcej niż trzy rozwiązania.

Podaj m_1^2+m_2^2.

Odpowiedź:
m_1^2+m_2^2= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30086 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Zbadaj liczbę rozwiązań równania (x+2)^2-4|x+1|=2m-a w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma trzy rozwiązania.

Dane
a=4
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma trzy rozwiązania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 10.4 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pr-30087 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Zbadaj liczbę rozwiązań równania \left|x^2+x-2\right|=\left(\frac{m}{2}-a\right)|x+2| w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=4
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których ilość rozwiązań dodatnich jest większa od ilości rozwiązań ujemnych.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Podpunkt 11.4 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.

Podaj sumę wszystkich wyznaczonych wartości m.

Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pr-30088 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Zbadaj liczbę rozwiązań równania \left|x^2+x-30\right|=\left(m-\frac{a}{2}\right)|x-5| w zależności od wartości parametru m\in\mathbb{R}.

Podaj najmniejsze możliwe m, dla którego równanie ma dwa rozwiązania.

Dane
a=4
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Podaj największe możliwe m, dla którego równanie ma dwa rozwiązania.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Podpunkt 12.3 (1 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma trzy rozwiązania.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
suma=
(wpisz dwie liczby całkowite)
Podpunkt 12.4 (1 pkt)
 Podaj największe możliwe m, dla którego ilość rozwiązań dodatnich tego równania jest równa ilości rozwiązań ujemnych.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)
Zadanie 13.  4 pkt ⋅ Numer: pr-30089 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Dla jakich wartości parametru m\in\mathbb{R} równanie 2x^2-(m+2-a)|x|+m-a=0 ma dwa różne rozwiązania?

Podaj największe możliwe m.

Dane
a=4
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 13.2 (2 pkt)
 Dla ilu całkowitych wartości m\in\langle -10,10 \rangle warunki zadania są spełnione?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 14.  4 pkt ⋅ Numer: pr-30018 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 14.1 (2 pkt)
 «« Rozwiązanie układu \begin{cases} x+amy=1 \\ 2x+y=am \end{cases} spełnia warunek |x-y|\leqslant 1. Wyznacz m.

Podaj najmniejsze możliwe m.

Dane
a=3
Odpowiedź:
m_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 14.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}=
(wpisz dwie liczby całkowite)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm