Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Pola powierzchni trójkątów podobnych

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-10587 ⋅ Poprawnie: 429/614 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Trójkąty ABC i A'B'C' są podobne, a ich pola powierzchni są odpowiednio, równe 4 cm2 i 50 cm2.

Wyznacz skalę tego podobieństwa \frac{|A'B'|}{|AB|}.

Odpowiedź:
\frac{|A'B'|}{|AB|}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10586 ⋅ Poprawnie: 104/233 [44%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Najkrótsze wysokości dwóch trójkątów podobnych pozostają w stosunku 4:14. Pola tych trójkątów mogą być równe:
Odpowiedzi:
A. 1 i \frac{35}{2} B. 20 i 245
C. 5 i \frac{35}{2} D. 5 i 49
Zadanie 3.  1 pkt ⋅ Numer: pp-10591 ⋅ Poprawnie: 305/384 [79%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Trójkąt ABC jest podobny do trójkąta A_1B_1C_1 w skali k=\frac{14}{5}. Stosunek pola trójkąta ABC do pola trójkąta A_1B_1C_1 jest równy:
Odpowiedź:
\frac{P_{\triangle ABC}}{P_{\triangle A_1B_1C_1}}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10515 ⋅ Poprawnie: 92/169 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Obwody dwóch trójkątów podobnych, których pola pozostają w stosunku 25:81, mogą być równe:
Odpowiedzi:
A. 9:\frac{25}{9} B. 5:\frac{25}{9}
C. 27:10 D. 10:\frac{25}{3}
Zadanie 5.  1 pkt ⋅ Numer: pp-11795 ⋅ Poprawnie: 266/728 [36%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Pole trójkąta równobocznego T_1 jest równe \frac{(3.5)^2\sqrt{3}}{4}. Pole trójkąta równobocznego T_2 jest równe \frac{(14.0)^2\sqrt{3}}{4}.

Trójkąt T_2 jest podobny do trójkąta T_1 w skali:

Odpowiedzi:
A. \frac{1}{4} B. \frac{1}{16}
C. 16 D. 4
Podpunkt 5.2 (0.5 pkt)
 Oceń, które z podanych zdań poprawnie uzasadniają powyższą odpowiedź:
Odpowiedzi:
T/N : ponieważ bok trójkąta T_2 jest o 10.5 dłuższy od boku trójkąta T_1 T/N : ponieważ pole trójkąta T_2 jest 16 razy większe od pola trójkąta T_1
Zadanie 6.  1 pkt ⋅ Numer: pp-11818 ⋅ Poprawnie: 392/601 [65%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Trapez T_1, o polu równym 240 i obwodzie 76, jest podobny do trapezu T_2. Pole powierzchni trapezu T_2 jest równe 15.

Obwód trapezu T_2jest równy:

Odpowiedzi:
A. 76 B. 19
C. \frac{19}{4} D. 38
E. \frac{38}{3} F. \frac{19}{2}
Zadanie 7.  2 pkt ⋅ Numer: pp-20756 ⋅ Poprawnie: 57/207 [27%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dane są punkty na okręgu:

Oblicz P_{\triangle ASD}.

Dane
|AS|=10
|SB|=14
|SC|=21
Odpowiedź:
P_{\triangle ASD}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20757 ⋅ Poprawnie: 16/88 [18%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dany jest trójkąt równoramienny o podstawie AB:

Oblicz \sin\sphericalangle DAB.

Dane
k=5
Odpowiedź:
\sin\sphericalangle DAB= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz \frac{P_{\triangle AES}}{P_{\triangle SDC}} .
Odpowiedź:
\frac{P_{\triangle AES}}{P_{\triangle SDC}}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20758 ⋅ Poprawnie: 20/152 [13%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dany jest trójkąt:

Oblicz |DE|.

Dane
|AC|=48
P_{\triangle DBE}:P_{ADEC}=373:1163=0.32072226999140
Odpowiedź:
|DE|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20759 ⋅ Poprawnie: 16/126 [12%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Trójkąt ABC jest równoramienny o podstawie AB, a odcinek DE jest równoległy do podstawy AB:

Oblicz P_{DEC}.

Dane
|AC|=|BC|=65
|AB|=66
Odpowiedź:
P_{\triangle DEC}=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20760 ⋅ Poprawnie: 15/85 [17%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 » Trójkąt ABC jest ostrokątny i równoramienny o podstawie AB:

Oblicz P_{ABC}.

Dane
|AB|+|BC|+|AC|=320
\frac{P_{\triangle ABE}}{P_{\triangle ADC}}=\frac{36}{25}=1.44000000000000
Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 12.  2 pkt ⋅ Numer: pp-20774 ⋅ Poprawnie: 18/104 [17%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Odcinki DE, FG i AB są równoległe, a pola wielokątów DEC, FGED i ABGF pozostają w stosunku a:b:c.

Oblicz \frac{|DE|}{|FG|}.

Dane
a=4
b=12
c=33
Odpowiedź:
\frac{|DE|}{|FG|}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (1 pkt)
 Oblicz \frac{|FG|}{|AB|}.
Odpowiedź:
\frac{|FG|}{|AB|}=
(wpisz dwie liczby całkowite)
Zadanie 13.  2 pkt ⋅ Numer: pp-20903 ⋅ Poprawnie: 19/36 [52%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 W trapezie ABCD, AB\parallel CD, poprowadzono przekątne, które przecięły się w punkcie E. Pola powierzchni trójkątów ABE i BCE są równe odpowiednio 35 i 25.

Oblicz pole powierzchni trójkąta CDE.

Odpowiedź:
P_{\triangle CDE}=
(wpisz dwie liczby całkowite)
Zadanie 14.  2 pkt ⋅ Numer: pp-20912 ⋅ Poprawnie: 20/33 [60%] Rozwiąż 
Podpunkt 14.1 (2 pkt)
 W trójkącie ostrokątnym równoramiennym ABC, |AC|=|BC|, poprowadzono wysokości CD i BE. Stosunek pól powierzchni trójkątów ABE i ADC jest równy P_{ABE}:P_{ADC}=\frac{1600}{841}, a obwód tego trójkąta ma długość 98.

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 15.  2 pkt ⋅ Numer: pp-20913 ⋅ Poprawnie: 6/31 [19%] Rozwiąż 
Podpunkt 15.1 (2 pkt)
 «« W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AC|:|AB|=33:56, Punkt D należy do przeciwprostokątnej BC oraz |CD|:|DB|=6:1. Punkt E należy do przyprostokątnej AB i ED\perp BC.

Oblicz stosunek pola powierzchni czworokąta AEDC do pola powierzchni trójkąta EBD.

Odpowiedź:
P_{\square AEDC}:P_{\triangle EBD}= (liczba zapisana dziesiętnie)
Zadanie 16.  2 pkt ⋅ Numer: pp-20914 ⋅ Poprawnie: 4/9 [44%] Rozwiąż 
Podpunkt 16.1 (2 pkt)
 W trójkącie prostrokątnym ABC stosunek przyprostokątnych jest równy |AB|:|AC|=55:48, Punkt D dzieli przyprostokątną AB na dwa odcinki takie, że |AD|:|DB|=1:8. Punkt E należy do przeciwprostokątnej BC i DE\perp BC.

Oblicz jakim procentem pola powierzchni trójkąta ABC jest pole powierzchni trójkąta DBE. Wynik zapisz bez znaku procenta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 17.  2 pkt ⋅ Numer: pp-21130 ⋅ Poprawnie: 8/38 [21%] Rozwiąż 
Podpunkt 17.1 (2 pkt)
 W trójkącie ABC boki BC i AC są równej długości. Prosta k jest prostopadła do podstawy AB tego trójkąta i przecina boki AB oraz BC w punktach – odpowiednio – D i E. Pole czworokąta ADEC jest 127 razy większe od pola trójkąta BED.

Oblicz \frac{|CE|}{|EB|}.

Odpowiedź:
\frac{|CE|}{|EB|}=
(wpisz dwie liczby całkowite)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm