Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Pole wycinka i odcinka kołowego

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-11598 ⋅ Poprawnie: 47/117 [40%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Promień koła ma długość 2, a kąt wycinka tego koła ma miarę 88^{\circ}. Oblicz pole powierzchni tego wycinka i zapisz wynik w postaci p\cdot\pi.

Podaj liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11599 ⋅ Poprawnie: 43/82 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Pole powierzchni wycinka koła jest równe 54\pi, a łuk tego wycinka ma długość \frac{1}{7}\pi.

Oblicz długość promienia tego koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-11600 ⋅ Poprawnie: 9/39 [23%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Punkt O jest środkiem koła na rysunku, a promień r tego koła ma długość 12. Kąt środkowy koła \alpha oparty jest na łuku o długości 5\pi:

Oblicz pole powierzchni zaznaczonego na rysunku odcinka koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11601 ⋅ Poprawnie: 9/11 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Stosunek pola powierzchni trójkąta do pola powierzchni koła wpisanego w ten trójkąt jest równy 17:\pi, a średnica tego koła ma długość 4.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11602 ⋅ Poprawnie: 5/11 [45%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 8:17.

Oblicz stosunek pola powierzchni koła wpisanego w ten trójkąt do pola powierzchni koła opisanego na tym trójkącie.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-11699 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 W trójkącie prostokątnym stosunek długości przyprostokątnej do długości przeciwprostokątnej jest równy 20:52.

Oblicz stosunek pola powierzchni koła opisanego na tym trójkącie do pola powierzchni koła wpisanego w ten trójkąt.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11603 ⋅ Poprawnie: 2/13 [15%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Kąt wpisany w koło ma miarę 60^{\circ} i jest oparty na łuku o długości 8\pi. Oblicz pole powierzchni wycinka koła wyznaczonego przez ten łuk i zapisz wynik w postaci p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20766 ⋅ Poprawnie: 19/105 [18%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W wycinek kołowy o kącie środkowym \alpha wpisano okrąg o polu powierzchni P:

Oblicz pole powierzchni tego wycinka.

Dane
\alpha=120^{\circ}
P=36\pi=113.09733552923256
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20761 ⋅ Poprawnie: 65/212 [30%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Łuk \stackrel{\frown}{\ AB\ } ma długość l:

Oblicz pole powierzchni wycinka kołowego wyznaczonego przez ten łuk.

Dane
l=12\pi=37.69911184307752
\alpha=15^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20762 ⋅ Poprawnie: 25/217 [11%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Dany jest okrąg:

Oblicz pole powierzchni zielonego obszaru.

Dane
d=8
\alpha=60^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pp-20763 ⋅ Poprawnie: 11/48 [22%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Punkt O jest środkiem okręgu, a niebieski trójkąt jest równoboczny:

Oblicz pole powierzchni części koła leżącej poza trójkątem.

Dane
r=4\sqrt{2}=5.65685424949238
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  2 pkt ⋅ Numer: pp-20765 ⋅ Poprawnie: 47/195 [24%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Punkt O jest środkiem okręgu. Oblicz pole powierzchni niebieskiego obszaru:
Dane
r=2
\alpha=45^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  2 pkt ⋅ Numer: pp-20764 ⋅ Poprawnie: 18/55 [32%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 » Punkt O jest środkiem okręgu, z którego wycięto wycinek kołowy:

Oblicz pole powierzchni tego wycinka.

Dane
r=7
R=21
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 14.  2 pkt ⋅ Numer: pp-20918 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 14.1 (2 pkt)
 Dwa koła mają promień o długości 1 i są tak położone, że do okręgu każdego z nich należy środek drugiego z kół:

Oblicz pole obszaru wspólnego tych kół.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 15.  2 pkt ⋅ Numer: pp-20919 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 15.1 (2 pkt)
 Dwa koła styczne zewnętrznie wpisano w kąt, którego miara jest równa 60^{\circ}. Pole powierzchni mniejszego z kół jest równe 2.

Oblicz pole powierzchni większego koła.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm