Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Dzielenie wielomianów przez dwumian. Schemat Hornera

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-11682 ⋅ Poprawnie: 116/250 [46%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wielomian określony wzorem P(x)=4x^3-3x^2-5x+1 przy dzieleniu przez dwumian x-0,5 daje resztę r.

Wyznacz liczbę r.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11680 ⋅ Poprawnie: 45/79 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz resztę z dzielenia wielomianu określonego wzorem W(x)=2\frac{2}{3}x^3-2x^2-4x-0,25 przez dwumian x+0,75.
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11681 ⋅ Poprawnie: 71/158 [44%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wielomian określony wzorem W(x)=x^5-3x^4+mx^3+6 przy dzieleniu przez dwumian x-2 daje resztę 14.

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 4.  2 pkt ⋅ Numer: pp-11683 ⋅ Poprawnie: 54/81 [66%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Przy dzieleniu przez P(x)=x-1 wielomian W(x)=x^4+2x^3-5x^2-6mx+9 daje resztę 16.

Oblicz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11965 ⋅ Poprawnie: 35/41 [85%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest wielomian W(x) określony wzorem W(x)=x^3+3x^2+5x+15 dla każdej liczby rzeczywistej. x.

Wielomian W(x) przy rozkładzie na czynniki ma postać:

Odpowiedzi:
A. W(x)=(x-3)(x^2-5) B. W(x)=(x+3)(x^2+5)
C. W(x)=(x+3)(x^2-5) D. W(x)=(x-3)(x^2+5)
Zadanie 6.  2 pkt ⋅ Numer: pp-20972 ⋅ Poprawnie: 12/15 [80%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wielomian W(x)=x^3+m^2x^2+0x-\frac{5}{4} przy dzieleniu przez wielomian P(x)=x+\left(\frac{1}{3}\right)^{\log_{3}{2}} daje resztę r=\frac{3}{8}.

Podaj najmniejsze możliwe m.

Odpowiedź:
m_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największe możliwe m.
Odpowiedź:
m_{max}= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20966 ⋅ Poprawnie: 14/38 [36%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Liczba p jest resztą z dzielenia wielomianu W(x)=6x^3-4x^2 przez x+3, a liczba q resztą z dzielnia tego wielomianu przez x+4.

Oblicz |2p-q|.

Odpowiedź:
|2p-q|= (wpisz liczbę całkowitą)
Zadanie 8.  4 pkt ⋅ Numer: pp-20967 ⋅ Poprawnie: 16/47 [34%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Dany jest wielomian P(x)=x^3+ax^2+bx+1. Wiadomo, że P(1)=12 oraz, że reszta z dzielenia wielomianu P(x) przez dwumian x+1 jest równa 4.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 8.2 (2 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20968 ⋅ Poprawnie: 14/57 [24%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wielomian W(x)=x^3+ax^2+bx+1 dla argumentu 2 przyjmuje wartość 9 oraz przy dzieleniu przez dwumian x-3 daje resztę 25.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20969 ⋅ Poprawnie: 34/61 [55%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wielomian W(x)=x^3+8x^2+mx+2 przy dzieleniu przez dwumian x+1 daje resztę \frac{13}{2}.

Oblicz wartość parametru m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 11.  2 pkt ⋅ Numer: pp-20970 ⋅ Poprawnie: 8/14 [57%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Reszta z dzielenia wielomianu W(x)=x^3-7x^2-\frac{1}{2}m^2x+8m przez dwumian P(x)=x+2 przyjmuje najmniejszą możliwą wartość.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 11.2 (1 pkt)
 Ile jest równa ta najmniejsza możliwa wartość?
Odpowiedź:
W_{min}(x)= (wpisz liczbę całkowitą)
Zadanie 12.  2 pkt ⋅ Numer: pp-20971 ⋅ Poprawnie: 17/42 [40%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 r=9 » Wielomian W(x)=x^4+a^2x^3+ax^2-x+3 przy dzieleniu przez dwumian x-1 daje resztę 9.

Podaj najmniejsze możliwe a.

Odpowiedź:
a_{min}= (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Podaj największe możliwe a.
Odpowiedź:
a_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  2 pkt ⋅ Numer: pp-20990 ⋅ Poprawnie: 48/76 [63%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
 Wielomian W(x)=10x^3+11x^2+7x+2 jest podzielny przez dwumian P(x)=x+\frac{1}{2}, a wynikiem tego dzielenia jest wielomian Q(x)=ax^2+bx+c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 14.  2 pkt ⋅ Numer: pp-20991 ⋅ Poprawnie: 33/47 [70%] Rozwiąż 
Podpunkt 14.1 (2 pkt)
 Wielomian W(x)= 8x^4+6x^3-10x^2+18x-4 jest podzielny przez dwumian P(x)=x-\frac{1}{4}, a wynikiem tego dzielenia jest wielomian Q(x)=ax^3+bx^2+cx+d.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 15.  2 pkt ⋅ Numer: pp-20992 ⋅ Poprawnie: 21/36 [58%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wielomian W(x)= 4x^4-2x^3-10x^2+14x-12 jest podzielny przez dwumian P(x)=2x-3, a wynikiem tego dzielenia jest wielomian Q(x)=ax^3+bx^2+cx+d.

Wyznacz współczynniki a i b

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 15.2 (1 pkt)
 Wyznacz współczynniki c i d
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 16.  2 pkt ⋅ Numer: pp-20993 ⋅ Poprawnie: 18/31 [58%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 « Wielomian W(x)= -4x^4-2x^3+6x^2-10x+4 jest podzielny przez dwumian P(x)=-2x+1, a wynikiem tego dzielenia jest wielomian Q(x)=ax^3+bx^2+cx+d.

Wyznacz współczynniki a i b

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Podpunkt 16.2 (1 pkt)
 Wyznacz współczynniki c i d
Odpowiedzi:
c= (wpisz liczbę całkowitą)
d= (wpisz liczbę całkowitą)
Zadanie 17.  2 pkt ⋅ Numer: pp-20994 ⋅ Poprawnie: 29/73 [39%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 W wyniku podzielenia wielomianu W(x)= 4x^3+x^2-9x+9 przez dwumian P(x)=x-1, otrzymamy wynik dzielenia Q(x)=ax^2+bx+c i resztę r.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 17.2 (1 pkt)
 Podaj resztę r z tego dzielenia.
Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 18.  2 pkt ⋅ Numer: pp-21036 ⋅ Poprawnie: 3/6 [50%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 W wyniku podzielenia wielomianu W(x)= 5x^4+x^3+x^2+2x-6 przez dwumian P(x)=x+1, otrzymamy wynik dzielenia Q(x)=ax^3+bx^2+cx+d i resztę r.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Podpunkt 18.2 (1 pkt)
 Podaj resztę r z tego dzielenia.
Odpowiedź:
r= (wpisz liczbę całkowitą)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm