Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Rozwiązywanie równań wielomianowych

Zadania dla liceum ogólnokształcącego - poziom rozszerzony

 

Zadanie 1.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20227  
Podpunkt 1.1 (2 pkt)
Liczba \sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2} jest całkowita.

Podaj jej wartość.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pr-20228  
Podpunkt 2.1 (1 pkt)
 Wyznacz wszystkie wartości parametru m, dla których część wspólna przedziałów (-\infty, m^3-3m^2+3m-4 \rangle oraz \left\langle -5m^2+13m-8 ,+\infty\right) jest zbiorem jednoelementowym.

Podaj najmniejsze możliwe m, które jest liczbą całkowitą.

Odpowiedź:
min_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
 Podaj największe możliwe m, które jest liczbą całkowitą.
Odpowiedź:
max_{\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 2.3 (1 pkt)
 Podaj mnajwiększą wartość parametru m, która nie jest liczbą całkowitą.
Odpowiedź:
m_{max\not\in\mathbb{Z}}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30150  
Podpunkt 4.1 (1 pkt)
 » Dla jakich wartości parametru m równanie x^2+(m-1)x+m+3=0 ma mniej niż dwa rozwiązania rzeczywiste?

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
m_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 4.2 (1 pkt)
 Podaj największe możliwe m spełniające warunki zadania.
Odpowiedź:
m_{max}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 4.3 (2 pkt)
 Wyznacz te wartości parametru m, dla których suma trzecich potęg dwóch różnych pierwiastków tego równania jest równa 64.

Podaj najmniejsze m spełniające warunki zadania.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 5.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30152  
Podpunkt 5.1 (2 pkt)
 « Dana jest funkcja f(x)=|x^3-5\sqrt{5}x^2-x+5\sqrt{5}|, której wykres przesunięto o wektor \vec{u}=[-5\sqrt{5}, -\sqrt{6}], w wyniku czego otrzymano wykres funkcji g. Dla jakich argumentów funkcja g osiąga wartość najmniejszą i ile ona jest równa?

Podaj najmniejszą wartość funkcji g.

Odpowiedź:
g_{min}(x)= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (1 pkt)
 Podaj najmniejszy z argumentów, dla którego funkcja g przyjmuje wartość najmniejszą.
Odpowiedź:
x_{min}= + \cdot
(wpisz trzy liczby całkowite)
Podpunkt 5.3 (1 pkt)
 Podaj największy z argumentów, dla którego funkcja g przyjmuje wartość najmniejszą.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30153  
Podpunkt 6.1 (1 pkt)
 « Dany jest wielomian W(x)=(m-1)x^3+x^2+(m^2-2m-8)x+m-1. Jednym z pierwiastków tego wielomianu jest liczba 1.

Podaj najmniejszą możliwą wartość parametru m.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą możliwą wartość parametru m.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 6.3 (2 pkt)
 Jednym z pierwiastków tego wielomianu jest liczba 1, a jeden z pozostałych pierwiastków należy do zbioru \mathbb{W}-\mathbb{C}.

Wyznacz ten pierwiastek.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pr-30154  
Podpunkt 7.1 (2 pkt)
 Dany jest wielomian W(x)=x^3-3(m-1)x^2+(3m^2-6m+2)x-9m^2+38m-25. Wykres tego wielomianu, po przesunięciu o wektor [-3,0], przechodzi przez początek układu współrzędnych.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz wszystkie pierwiastki tego wielomianu.

Podaj największy pierwiastek tego wielomianu.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Podpunkt 7.3 (1 pkt)
 Podaj ten pierwiastek tego wielomianu, który nie jest ani największy, ani tez najmniejszy.
Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 8.  (5 pkt) [ Dodaj do testu ]  Numer zadania: pr-30155  
Podpunkt 8.1 (1 pkt)
 «« Dane jest równanie (x^3+2x^2+2x+1)(x^2-(2m-5)x+m^2-5m)=0 . Dla jakich wartości parametru m równanie to ma trzy parami różne pierwiastki?

Podaj najmniejsze możliwe m, które nie spełnia warunków zadania.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj największe możliwe m, które nie spełnia warunków zadania.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 8.3 (1 pkt)
 Dla jakich wartości parametru m trzy różne pierwiastki tego równania spełniają warunek: suma dwóch pierwiastków równania jest dwa razy większa od pierwiastka trzeciego?

Podaj najmniejsze możliwe m, które spełnia warunki zadania.

Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Podpunkt 8.4 (1 pkt)
 Podaj największe możliwe m, które spełnia warunki zadania.
Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.5 (1 pkt)
 Podaj m spełniające warunki zadania, które nie jest liczbą całkowitą.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)

Liczba wyświetlonych zadań: 7

Liczba pozostałych zadań dostępnych dla zarejestrowanych nauczycieli: 6

Masz pytania? Napisz: k42195@poczta.fm