Wyznacz wszystkie wartości parametru m, dla których
część wspólna przedziałów (-\infty,
m^3+3m^2+3m-2
\rangle oraz
\left\langle
-5m^2-7m-2
,+\infty\right) jest zbiorem
jednoelementowym.
Podaj najmniejsze możliwe m, które jest liczbą całkowitą.
Odpowiedź:
min_{\mathbb{Z}}=(wpisz liczbę całkowitą)
Podpunkt 2.2 (1 pkt)
Podaj największe możliwe m, które jest liczbą całkowitą.
Odpowiedź:
max_{\mathbb{Z}}=(wpisz liczbę całkowitą)
Podpunkt 2.3 (1 pkt)
Podaj mnajwiększą wartość parametru m, która nie jest liczbą całkowitą.
Odpowiedź:
m_{max\not\in\mathbb{Z}}=+\cdot√
(wpisz trzy liczby całkowite)
Zadanie 3.2 pkt ⋅ Numer: pr-20229 ⋅ Poprawnie: 100/196 [51%]
« Dana jest funkcja
f(x)=|x^3-6\sqrt{5}x^2-x+6\sqrt{5}|, której wykres
przesunięto o wektor
\vec{u}=[-6\sqrt{5}, -\sqrt{3}],
w wyniku czego otrzymano wykres funkcji g. Dla jakich
argumentów funkcja g osiąga wartość najmniejszą i
ile ona jest równa?
Podaj najmniejszą wartość funkcji g.
Odpowiedź:
g_{min}(x)=\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (1 pkt)
Podaj najmniejszy z argumentów, dla którego funkcja g
przyjmuje wartość najmniejszą.
Odpowiedź:
x_{min}=+\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 5.3 (1 pkt)
Podaj największy z argumentów, dla którego funkcja g
przyjmuje wartość najmniejszą.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Zadanie 6.4 pkt ⋅ Numer: pr-30153 ⋅ Poprawnie: 14/94 [14%]
Dany jest wielomian
W(x)=x^3-3(m+1)x^2+(3m^2+6m+2)x-9m^2+2m+15.
Wykres tego wielomianu, po przesunięciu o wektor
[-3,0], przechodzi przez początek układu
współrzędnych.
Podaj m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wyznacz wszystkie pierwiastki tego wielomianu.
Podaj największy pierwiastek tego wielomianu.
Odpowiedź:
x_{max}=(wpisz liczbę całkowitą)
Podpunkt 7.3 (1 pkt)
Podaj ten pierwiastek tego wielomianu, który nie jest ani największy, ani tez najmniejszy.
Odpowiedź:
x=(wpisz liczbę całkowitą)
Zadanie 8.5 pkt ⋅ Numer: pr-30155 ⋅ Poprawnie: 6/42 [14%]
«« Dane jest równanie
(x^3+2x^2+2x+1)(x^2-(2m-9)x+m^2-9m+14)=0
.
Dla jakich wartości parametru m równanie to ma trzy
parami różne pierwiastki?
Podaj najmniejsze możliwe m, które nie spełnia
warunków zadania.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj największe możliwe m, które nie spełnia
warunków zadania.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.3 (1 pkt)
Dla jakich wartości parametru m trzy różne
pierwiastki tego równania spełniają warunek: suma dwóch pierwiastków równania
jest dwa razy większa od pierwiastka trzeciego?
Podaj najmniejsze możliwe m, które spełnia
warunki zadania.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Podpunkt 8.4 (1 pkt)
Podaj największe możliwe m, które spełnia
warunki zadania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Podpunkt 8.5 (1 pkt)
Podaj m spełniające warunki zadania, które nie jest liczbą
całkowitą.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 9.4 pkt ⋅ Numer: pr-30156 ⋅ Poprawnie: 2/28 [7%]