Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Definicja ciągu liczbowego

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-11158 ⋅ Poprawnie: 469/919 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Ciąg liczbowy (a_n) określony jest wzorem a_n=\frac{2n^2-16n+24}{n^2+4}, a liczby p i q są odpowiednio najmniejszym i największym numerem wyrazów ciągu, które są równe 0.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11156 ⋅ Poprawnie: 146/232 [62%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dany jest ciąg (b_n), w którym b_n=(n+4)(n-65). Ciąg ten zawiera k wyrazów ujemnych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11157 ⋅ Poprawnie: 241/419 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Ciąg \left(a_n\right) określony jest wzorem a_n=-210+52n-2n^2.

Wyznacz numer największego wyrazu ciągu \left(a_n\right).

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11155 ⋅ Poprawnie: 626/1060 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Ile wyrazów ciągu a_n=n^2-81 jest mniejszych od 1600?
Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11159 ⋅ Poprawnie: 232/392 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dany jest ciąg a_n=\frac{n+12}{n+2}.

Ile wyrazów całkowitych występuje w tym ciągu?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11160 ⋅ Poprawnie: 307/554 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wyznacz najmniejszy dodatni wyraz ciągu określonego wzorem a_n=7n-146.
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11161 ⋅ Poprawnie: 949/1086 [87%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pewien wyraz ciągu jest równy 353. Ciąg ten określony jest wzorem a_n=\frac{3n+7}{2}.

Wyznacz numer tego wyrazu.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11162 ⋅ Poprawnie: 53/111 [47%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Ogólny wyraz ciągu określony jest wzorem a_n=7\left(\sqrt[3]{3}\right)^{n+3}, przy czym n jest liczbą co najwyżej dwucyfrową.

Wyznacz ilość wyrazów wymiernych tego ciągu.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-11163 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Liczba 10^{18} jest jednym z wyrazów ciągu kwadratów kolejnych liczb naturalnych 1,2,4,9,16,....

Poprzednim wyrazem tego ciągu jest liczba:

Odpowiedzi:
A. 10^{18}\right)-1 B. \left(10^{9}\right)^2
C. \left(10^{9}-1\right)^2 D. \left(10^{9}+1\right)^2
Zadanie 10.  1 pkt ⋅ Numer: pp-11385 ⋅ Poprawnie: 274/413 [66%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dany jest ciąg (a_n) określony wzorem a_n=\frac{1-4n}{-3n+2}.

Wyraz a_{2k+3} tego ciągu jest równy:

Odpowiedzi:
A. \frac{8k+11}{6k+11} B. \frac{8k+13}{6k+11}
C. \frac{8k+13}{6k+7} D. \frac{8k+11}{6k+7}
Zadanie 11.  1 pkt ⋅ Numer: pp-11767 ⋅ Poprawnie: 772/834 [92%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=2^n\cdot(n+2), dla każdej dodatniej liczby naturalnej n.

Wyraz a_5 jest równy:

Odpowiedzi:
A. 448 B. 224
C. 112 D. 512
Zadanie 12.  1 pkt ⋅ Numer: pp-11788 ⋅ Poprawnie: 679/830 [81%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{n-5}{3}, dla każdej liczby naturalnej n\geqslant 1.

Liczba wyrazów tego ciągu mniejszych od 16 jest równa:

Odpowiedzi:
A. 50 B. 56
C. 51 D. 52
E. 54 F. 55
Zadanie 13.  1 pkt ⋅ Numer: pp-11815 ⋅ Poprawnie: 589/657 [89%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=(-1)^n\cdot\frac{n+5}{3}, dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -\frac{8}{3} B. -\frac{7}{3}
C. -4 D. -2
E. \frac{8}{3} F. -\frac{10}{3}
Zadanie 14.  1 pkt ⋅ Numer: pp-11860 ⋅ Poprawnie: 179/195 [91%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony wzorem a_n=\frac{3n^2-6n}{n} dla każdej liczby naturalnej n\geqslant 1.

Wtedy wyraz a_7 jest równy:

Odpowiedzi:
A. 18 B. 9
C. 15 D. 27
E. 21 F. 12
Zadanie 15.  1 pkt ⋅ Numer: pp-11904 ⋅ Poprawnie: 158/171 [92%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=\frac{n-2}{2n^2} dla każdej liczby naturalnej n \geqslant 1.

Piąty wyraz tego ciągu jest równy:

Odpowiedzi:
A. \frac{1}{18} B. \frac{3}{50}
C. \frac{1}{25} D. \frac{1}{18}
E. \frac{5}{98} F. \frac{1}{16}
Zadanie 16.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 164/218 [75%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 27:

Odpowiedzi:
A. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 17.  1 pkt ⋅ Numer: pp-12038 ⋅ Poprawnie: 67/82 [81%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-2)^n\cdot n-2 dla każdej liczby naturalnej n > 1.

Wtedy trzeci wyraz tego ciągu jest równy:

Odpowiedzi:
A. -10 B. -31
C. -19 D. -26
E. -20 F. -25
G. -33 H. -12
Zadanie 18.  1 pkt ⋅ Numer: pp-12065 ⋅ Poprawnie: 66/93 [70%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Ciąg (b_n) jest określony wzorem b_n=4n^2-65n dla każdej liczby naturalnej n\geqslant 1.

Liczba niedodatnich wyrazów ciągu b_n jest równa:

Odpowiedzi:
A. 13 B. 17
C. 20 D. 24
E. 14 F. 19
G. 16 H. 15
Zadanie 19.  1 pkt ⋅ Numer: pp-12090 ⋅ Poprawnie: 34/40 [85%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 197 jest 10-tym wyrazem ciągu:

Odpowiedzi:
A. (d_n) B. (b_n)
C. (a_n) D. (c_n)
Zadanie 20.  1 pkt ⋅ Numer: pp-12143 ⋅ Poprawnie: 52/115 [45%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Ciąg (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu wyraża się wzorem S_n=n^2-3n dla każdej liczby naturalnej n\geqslant 1.

Trzeci wyraz ciągu (a_n) jest równy:

Odpowiedzi:
A. -8 B. 4
C. -6 D. -7
E. 0 F. 7
Zadanie 21.  2 pkt ⋅ Numer: pp-20516 ⋅ Poprawnie: 470/1096 [42%] Rozwiąż 
Podpunkt 21.1 (2 pkt)
 « Dany jest ciąg a_n=an^2+bn+c, dla n\in\mathbb{N_{+}}.

Oblicz ilość wyrazów ujemnych tego ciągu.

Dane
a=2
b=2
c=-112
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 22.  2 pkt ⋅ Numer: pp-20815 ⋅ Poprawnie: 14/44 [31%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
Dany jest ciąg a_n=|n-3|+|n-11|. Wyznacz te wyrazy ciągu, które sa większe od 8.

Ile spośród pierwszych stu wyrazów ciągu spełnia ten warunek.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 23.  2 pkt ⋅ Numer: pr-20270 ⋅ Poprawnie: 18/39 [46%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
« Dany jest ciąg a_n=\frac{6n^2-5n+1}{3n-1}.

Ile wyrazów tego ciągu nie należy do zbioru liczb naturalnych?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 23.2 (1 pkt)
Które wyrazy tego ciągu są mniejsze od 17?

Podaj ilość takich wyrazów.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 24.  2 pkt ⋅ Numer: pr-20815 ⋅ Poprawnie: 18/44 [40%] Rozwiąż 
Podpunkt 24.1 (2 pkt)
 Ciąg liczbowy (a_n) określony jest wzorem a_n=n^2+bn+c.

Oblicz sumę wszystkich wyrazów ujemnych tego ciągu.

Dane
b=-\frac{25}{2}=-12.50000000000000
c=\frac{75}{2}=37.50000000000000
Odpowiedź:
s=
(wpisz dwie liczby całkowite)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm