Ciąg liczbowy arytmetyczny
Zadania dla liceum ogólnokształcącego - poziom podstawowy
ciąg arytmetyczny
wyraz ogólny ciągu arytmetycznego
różnica ciągu arytmetycznego
Zadanie 1. 1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 887/1141 [77%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\sqrt{n+3}
T/N : a_n=\frac{1}{n}
Zadanie 2. 1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 709/933 [75%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
«« Ciąg
(\sqrt{27}, b,\sqrt{147})
jest arytmetyczny.
Oblicz b .
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1035/1294 [79%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Ciąg
(a_n) jest arytmetyczny i spełnia warunek
3a_3=a_2+2a_1+14 .
Oblicz różnicę tego ciągu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1340/1522 [88%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Pomiędzy liczby
76 i
364
można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć
ciąg arytmetyczny.
Wyznacz najmniejszą z wstawionych liczb.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1701/2072 [82%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« W ciągu arytmetycznym
\left(a_n\right)
wyrazy pierwszy i trzeci są równe odpowiednio
-10
i
0 , a pewien wyraz tego ciągu
a_k
jest równy
60 .
Wyznacz numer tego wyrazu.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 433/500 [86%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Dla ciągu arytmetycznego
(a_n) określonego dla
n\geqslant 1 spełniony jest warunek
a_{12}+a_{13}+a_{14}=\frac{33}{2} .
Oblicz a_{13} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 641/900 [71%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« W ciągu arytmetycznym
(a_n) dane są:
a_{6}=14 i
a_{13}=28 .
Wówczas a_1+r jest równe:
Odpowiedź:
a_1+r=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 751/951 [78%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.
Boki tego trójkąta mają długość:
Odpowiedzi:
A. 14,18,22
B. 13,17,21
C. 11,15,19
D. 12,16,20
Zadanie 9. 1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 469/713 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Trzy liczby
x-14 ,
x-8
i
3x-34 ,
w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego
\left(c_n\right) .
Oblicz c_{70} .
Odpowiedź:
c_k=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 752/905 [83%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Trzywyrazowy ciąg
(1,7,a+2) jest arytmetyczny.
Liczba a jest równa:
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 681/758 [89%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Ciąg arytmetyczny
\left(a_n\right) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . W tym ciągu
a_2=8
oraz
a_3=15 .
9-ty wyraz tego ciągu a_{9} jest równy:
Odpowiedzi:
A. 43
B. 57
C. 64
D. 78
E. 50
F. 71
Zadanie 12. 1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 395/407 [97%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby naturalnej
n\geqslant 1 ,
a_5=9 oraz
a_{10}=14 . Różnica tego ciągu jest równa:
Odpowiedzi:
A. 3
B. -1
C. 1
D. -4
E. -9
F. \frac{1}{2}
Zadanie 13. 1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 327/337 [97%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n \geqslant 1 , jest arytmetyczny. Różnica tego ciągu jest równa
4 oraz
a_8=34 .
Czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 34
B. 22
C. 26
D. 18
E. 30
F. 14
Zadanie 14. 1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 276/233 [118%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Pięciowyrazowy ciąg
\left(-10,-\frac{19}{2},x,y,-8\right)
jest arytmetyczny.
Liczby x i y są równe:
Odpowiedzi:
A. x=-9 oraz y=-\frac{17}{2}
B. x=-8 oraz y=-\frac{17}{2}
C. x=-\frac{17}{2} oraz y=-8
D. x=-\frac{17}{2} oraz y=-\frac{15}{2}
E. x=-9 oraz y=-\frac{15}{2}
F. x=-8 oraz y=-8
Zadanie 15. 1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 389/450 [86%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
W ciągu arytmetycznym
(a_n) , określonym dla każdej liczby
naturalnej
n\geqslant 1 , dane są wyrazy:
a_1=1 oraz
a_3=5 .
Wyraz a_{18} jest równy:
Odpowiedzi:
A. 29
B. 31
C. 37
D. 23
E. 27
F. 21
G. 35
H. 33
I. 39
J. 45
Zadanie 16. 1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 181/203 [89%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Ciąg
(a_n) , określony dla każdej liczby naturalnej
n > 1 , jest arytmetyczny. Różnica tego ciągu jest
równa
1 , a pierwszy wyraz tego ciągu jest równy
2 .
Wtedy iloraz \frac{a_4}{a_2} jest równy:
Odpowiedzi:
A. \frac{5}{6}
B. \frac{5}{2}
C. \frac{10}{9}
D. \frac{20}{3}
E. \frac{5}{3}
F. 5
Zadanie 17. 1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 206/199 [103%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
Ciągi
(a_n) ,
(b_n) ,
(c_n) oraz
(d_n) są określone dla każdej liczby naturalnej
n > 1 następująco:
a_n=5n^2+2 ,
b_n=5n+4 ,
c_n=5^n ,
d_n=\frac{8}{n} .
Wskaż zdanie prawdziwe:
Odpowiedzi:
A. ciąg d_n jest arytmetyczny
B. żaden z ciągów nie jest arytmetyczny
C. ciąg a_n jest arytmetyczny
D. ciąg b_n jest arytmetyczny
Zadanie 18. 1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 136/163 [83%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Trzeci i piąty wyraz tego ciągu
spełniają warunek
a_3+a_5=140 .
Wtedy czwarty wyraz tego ciągu jest równy:
Odpowiedzi:
A. 68
B. 52
C. 66
D. 84
E. 88
F. 67
G. 70
H. 58
Zadanie 19. 1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 112/144 [77%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Różnica tego ciągu jest równa
5 .
Wtedy:
Odpowiedzi:
A. a_{18}-a_{8}=65
B. a_{18}-a_{8}=40
C. a_{18}-a_{8}=50
D. a_{18}-a_{8}=60
E. a_{18}-a_{8}=35
F. a_{18}-a_{8}=45
G. a_{18}-a_{8}=55
H. a_{18}-a_{8}=70
Zadanie 20. 1 pkt ⋅ Numer: pp-12145 ⋅ Poprawnie: 219/174 [125%]
Rozwiąż
Podpunkt 20.1 (0.5 pkt)
Trzywyrazowy ciąg
(m-4,9,12)
jest arytmetyczny.
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : ciąg ten jest rosnący
T/N : ciąg ten jest malejący
Podpunkt 20.2 (0.5 pkt)
Odpowiedzi:
A. 5
B. 10
C. \frac{20}{3}
D. -\frac{40}{3}
E. \frac{15}{2}
F. -15
Zadanie 21. 1 pkt ⋅ Numer: pp-12373 ⋅ Poprawnie: 107/150 [71%]
Rozwiąż
Podpunkt 21.1 (1 pkt)
Trzywyrazowy ciąg
(3m, 2+4m, m) jest
arytmetyczny, gdy liczba
m jest równa:
Odpowiedzi:
A. \frac{3}{4}
B. -\frac{3}{4}
C. -\frac{4}{3}
D. -1
E. -2
F. \frac{4}{3}
Zadanie 22. 2 pkt ⋅ Numer: pp-20503 ⋅ Poprawnie: 483/838 [57%]
Rozwiąż
Podpunkt 22.1 (2 pkt)
«« Dany jest ciąg arytmetyczny
(-16, x-3, y, -16) .
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 23. 2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%]
Rozwiąż
Podpunkt 23.1 (2 pkt)
W ciągu arytmetycznym
(a_n) występują kolejne
liczby naturalne dające resztę
2 przy dzieleniu
przez
5 .
Wiedząc, że a_{2}=102 , oblicz
a_{10} .
Odpowiedź:
a_k=
(wpisz liczbę całkowitą)
Zadanie 24. 2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 509/845 [60%]
Rozwiąż
Podpunkt 24.1 (2 pkt)
« Suma trzydziestu początkowych wyrazów ciągu arytmetycznego
(a_n) jest równa
45 oraz
a_{30}=45 .
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 25. 2 pkt ⋅ Numer: pp-20816 ⋅ Poprawnie: 926/1936 [47%]
Rozwiąż
Podpunkt 25.1 (1 pkt)
W ciągu arytmetycznym
(a_n) dane są sumy:
a_{8}+a_{11}=-85 oraz
a_{3}+a_{14}=-51 .
Wyznacz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 25.2 (1 pkt)
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Zadanie 26. 2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 479/1036 [46%]
Rozwiąż
Podpunkt 26.1 (2 pkt)
» Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych,
nie większych od
851 .
Odpowiedź:
s_{\leqslant k}=
(wpisz liczbę całkowitą)
Zadanie 27. 2 pkt ⋅ Numer: pp-20510 ⋅ Poprawnie: 99/253 [39%]
Rozwiąż
Podpunkt 27.1 (1 pkt)
« Wyznacz wzór ogólny ciągu arytmetycznego wiedząc, że suma jego
pięciu pierwszych wyrazów jest równa
35 , a drugi
wyraz tego ciągu jest równy
6 .
Wzór zapisz w postaci a_n=an+b . Podaj
a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 27.2 (1 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 28. 2 pkt ⋅ Numer: pp-20511 ⋅ Poprawnie: 356/953 [37%]
Rozwiąż
Podpunkt 28.1 (2 pkt)
» Liczby
2x+1 ,
12x ,
14x+197 są w podanej kolejności pierwszym,
drugim i czwartym wyrazem ciągu arytmetycznego.
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 29. 2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%]
Rozwiąż
Podpunkt 29.1 (2 pkt)
Dla podanej liczby parzystej
k wyznacz wartość
wyrażenia:
154^2-(154-1)^2+(154-2)^2-(154-3)^2+(154-4)^2-(154-5)^2+...+102^2-101^2
.
Odpowiedź:
s=
(wpisz liczbę całkowitą)
Zadanie 30. 2 pkt ⋅ Numer: pp-20513 ⋅ Poprawnie: 99/224 [44%]
Rozwiąż
Podpunkt 30.1 (1 pkt)
Wyraz drugi ciągu arytmetycznego jest o
60 większy
od wyrazu ósmego tego ciągu. Równocześnie wyraz drugi jest
13 razy większy od wyrazu ósmego tego ciągu.
Podaj równicę r tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
Podaj drugi wyraz tego ciągu.
Odpowiedź:
a_2=
(wpisz liczbę całkowitą)
Zadanie 31. 2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 238/429 [55%]
Rozwiąż
Podpunkt 31.1 (2 pkt)
» W ciągu arytmetycznym
(a_n) , określonym
dla
n\geqslant 1 , dane są:
wyraz
a_1=10 oraz
a_2+a_3=38 .
Oblicz różnicę a_{18}-a_{15} .
Odpowiedź:
a_{18}-a_{15}=
(wpisz liczbę całkowitą)
Zadanie 32. 2 pkt ⋅ Numer: pp-20505 ⋅ Poprawnie: 45/112 [40%]
Rozwiąż
Podpunkt 32.1 (2 pkt)
Na okręgu o promieniu długości
r opisano
trójkąt o bokach długości
a\leqslant b\leqslant c , które są kolejnymi
wyrazami ciągu arytmetycznego.
Oblicz stosunek wysokości opuszczonej na bok długości
b , do długości promienia okręgu
r .
Odpowiedź:
\frac{h}{r}=
(wpisz liczbę całkowitą)
Zadanie 33. 2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/313 [50%]
Rozwiąż
Podpunkt 33.1 (1 pkt)
« Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz a_1 .
Dane
a_{1}+a_{2}=20
a_{7}=32
a_{k}+a_{k+1}=180
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 33.2 (1 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 34. 2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%]
Rozwiąż
Podpunkt 34.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz a_1 .
Dane
a_{2}=-1
a_{6}=19
a_{k}=244
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 34.2 (1 pkt)
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 35. 2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 132/187 [70%]
Rozwiąż
Podpunkt 35.1 (1 pkt)
Dany jest ciąg arytmetyczny
(a_n) .
Wyznacz najmniejsze możliwe a_1 tego ciągu.
Dane
a_{3}+a_{5}=0
a_{3}\cdot a_{5}=-16
Odpowiedź:
a_1=
(wpisz liczbę całkowitą)
Podpunkt 35.2 (1 pkt)
Wyznacz największą możliwą różnicę
r tego ciągu.
Odpowiedź:
r_{max}=
(wpisz liczbę całkowitą)
Zadanie 36. 3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%]
Rozwiąż
Podpunkt 36.1 (1 pkt)
(1 pkt)
W rosnącym ciągu arytmetycznym
\left(a_n\right) , określonym dla każdej liczby naturalnej dodatniej
n , suma trzech początkowych wyrazów jest równa
-6 , a iloczyn tych wyrazów jest równy
64 .
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Podpunkt 36.2 (2 pkt)
(2 pkt)
Wyznacz wyraz
a_{81} tego ciągu.
Odpowiedź:
a_{k}=
(wpisz liczbę całkowitą)
Zadanie 37. 2 pkt ⋅ Numer: pp-21058 ⋅ Poprawnie: 431/692 [62%]
Rozwiąż
Podpunkt 37.1 (2 pkt)
Ciąg
\left(3x^2-25x+50,x^2-10x+25,-x^2+10x-5\right) jest arytmetyczny.
Oblicz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Zadanie 38. 2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 129/252 [51%]
Rozwiąż
Podpunkt 38.1 (1 pkt)
Trójwyrazowy ciąg
(x+2,y-3,y+1) jest arytmetyczny.
Suma wszystkich wyrazów tego ciągu jest równa
6 .
Oblicz wszystkie wyrazy tego ciągu.
Wyznacz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 38.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 39. 2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 374/603 [62%]
Rozwiąż
Podpunkt 39.1 (2 pkt)
Ciąg arytmetyczny
(a_n) jest określony dla każdej liczby
naturalnej
n\geqslant 1 . Trzeci wyraz tego ciągu jest równy
4 , a suma piętnastu początkowych kolejnych wyrazów
tego ciągu jest równa
135 .
Oblicz różnicę tego ciągu.
Odpowiedź:
r=
(wpisz liczbę całkowitą)
Zadanie 40. 2 pkt ⋅ Numer: pp-21128 ⋅ Poprawnie: 57/131 [43%]
Rozwiąż
Podpunkt 40.1 (2 pkt)
Dany jest ciąg arytmetyczny
(a_n) , określony dla wszystkich liczb
naturalnych
n\geqslant 1 . Suma dwudziestu początkowych wyrazów
tego ciągu jest równa
20\cdot a_{21}-1785 .
Oblicz różnicę ciągu (a_n) .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 41. 2 pkt ⋅ Numer: pp-21194 ⋅ Poprawnie: 119/307 [38%]
Rozwiąż
Podpunkt 41.1 (1 pkt)
Wyznacz wartości
m , dla których trzywyrazowy ciąg
(2m-3, m^2-14m+52,12-m) jest arytmetyczny.
Podaj najmniejsze i największe takie m .
Odpowiedzi:
Podpunkt 41.2 (1 pkt)
Podaj tę wartość
m , dla której ciąg arytmetyczny jest malejący.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 42. 4 pkt ⋅ Numer: pp-30156 ⋅ Poprawnie: 303/688 [44%]
Rozwiąż
Podpunkt 42.1 (2 pkt)
Ciąg arytmetyczny
(a_n) określony jest wzorem
a_n=a-bn , dla
n\geqslant 1 .
Ile wyrazów dodatnich ma ten ciąg.
Dane
a=2016
b=6
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 42.2 (2 pkt)
Wyznacz sumę wszystkich wyrazów dodatnich tego ciągu.
Odpowiedź:
s_{> 0}=
(wpisz liczbę całkowitą)
Zadanie 43. 4 pkt ⋅ Numer: pp-30157 ⋅ Poprawnie: 38/123 [30%]
Rozwiąż
Podpunkt 43.1 (4 pkt)
«« W ciągu arytmetycznym
(a_n) mamy:
a_8=m .
Przy jakiej różnicy ciągu suma kwadratów wyrazów a_2
i a_6 jest najmniejsza możliwa?
Dane
m=13
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 44. 4 pkt ⋅ Numer: pp-30158 ⋅ Poprawnie: 46/120 [38%]
Rozwiąż
Podpunkt 44.1 (2 pkt)
«« W ciągu arytmetycznym
(a_n) dane są wyrazy:
a_1=x+3y ,
a_2=4x+y ,
a_3=3x+6y+1 ,
a_4=9x-2y+1 .
Oblicz
x i
y .
Wyznacz wzór ogólny ciągu i zapisz go w postaci
a_n=an+b .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 44.2 (2 pkt)
Podaj b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat
Masz pytania? Napisz: k42195@poczta.fm