Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Ciąg liczbowy arytmetyczny

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 892/1149 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=\frac{1}{n} T/N : a_n=\frac{-4n+16}{-2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 718/942 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Ciąg (\sqrt{108}, b,\sqrt{432}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1048/1310 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest arytmetyczny i spełnia warunek 3a_3=a_2+2a_1-3.

Oblicz różnicę tego ciągu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Pomiędzy liczby 109 i 451 można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć ciąg arytmetyczny.

Wyznacz najmniejszą z wstawionych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1707/2081 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio 4 i 18, a pewien wyraz tego ciągu a_k jest równy 102.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 433/500 [86%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{15}+a_{16}+a_{17}=\frac{33}{2}.

Oblicz a_{16}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 657/916 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{8}=20 i a_{15}=34.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 38,50,62 B. 36,48,60
C. 37,49,61 D. 40,52,64
Zadanie 9.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 481/731 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Trzy liczby x+2, x+8 i 3x+14, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{76}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 797/959 [83%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Trzywyrazowy ciąg (3,11,a+2) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 687/766 [89%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=9 oraz a_3=16.

11-ty wyraz tego ciągu a_{11} jest równy:

Odpowiedzi:
A. 93 B. 65
C. 72 D. 79
E. 58 F. 86
Zadanie 12.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 399/411 [97%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=27 oraz a_{10}=52. Różnica tego ciągu jest równa:
Odpowiedzi:
A. \frac{5}{2} B. 15
C. 5 D. -2
E. -4 F. \frac{13}{2}
Zadanie 13.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 330/343 [96%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa 3 oraz a_8=25.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 16 B. 10
C. 19 D. 22
E. 13 F. 25
Zadanie 14.  1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 278/237 [117%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Pięciowyrazowy ciąg \left(4,\frac{15}{2},x,y,18\right) jest arytmetyczny.

Liczby x i y są równe:

Odpowiedzi:
A. x=12 oraz y=15 B. x=12 oraz y=\frac{29}{2}
C. x=11 oraz y=\frac{31}{2} D. x=\frac{23}{2} oraz y=15
E. x=\frac{23}{2} oraz y=\frac{31}{2} F. x=11 oraz y=\frac{29}{2}
Zadanie 15.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 394/456 [86%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=4 oraz a_3=10.

Wyraz a_{15} jest równy:

Odpowiedzi:
A. 49 B. 43
C. 40 D. 61
E. 28 F. 55
G. 58 H. 37
I. 46 J. 34
Zadanie 16.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 194/216 [89%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa 4, a pierwszy wyraz tego ciągu jest równy 3.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{30}{7} B. \frac{15}{14}
C. \frac{10}{7} D. \frac{15}{7}
E. \frac{60}{7} F. \frac{45}{7}
Zadanie 17.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 209/203 [102%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=7n+3, b_n=8n^2+4, c_n=5^n, d_n=\frac{5}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. żaden z ciągów nie jest arytmetyczny B. ciąg b_n jest arytmetyczny
C. ciąg a_n jest arytmetyczny D. ciąg d_n jest arytmetyczny
Zadanie 18.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 152/178 [85%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Piąty i siódmy wyraz tego ciągu spełniają warunek a_5+a_7=128.

Wtedy szósty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 80 B. 52
C. 53 D. 60
E. 67 F. 75
G. 64 H. 78
Zadanie 19.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 114/147 [77%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa 7.

Wtedy:

Odpowiedzi:
A. a_{19}-a_{7}=98 B. a_{19}-a_{7}=112
C. a_{19}-a_{7}=70 D. a_{19}-a_{7}=91
E. a_{19}-a_{7}=105 F. a_{19}-a_{7}=56
G. a_{19}-a_{7}=84 H. a_{19}-a_{7}=77
Zadanie 20.  1 pkt ⋅ Numer: pp-12145 ⋅ Poprawnie: 234/193 [121%] Rozwiąż 
Podpunkt 20.1 (0.5 pkt)
 Trzywyrazowy ciąg (3m+3,6,8) jest arytmetyczny.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : ciąg ten jest rosnący T/N : ciąg ten jest malejący
Podpunkt 20.2 (0.5 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. \frac{1}{6} B. \frac{1}{3}
C. \frac{1}{4} D. \frac{2}{9}
E. -\frac{4}{9} F. -\frac{1}{2}
Zadanie 21.  1 pkt ⋅ Numer: pp-12373 ⋅ Poprawnie: 113/158 [71%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Trzywyrazowy ciąg (4m, 4+m, m) jest arytmetyczny, gdy liczba m jest równa:
Odpowiedzi:
A. \frac{8}{5} B. \frac{16}{3}
C. \frac{8}{3} D. -\frac{10}{3}
E. 2 F. \frac{4}{3}
Zadanie 22.  2 pkt ⋅ Numer: pp-20503 ⋅ Poprawnie: 483/838 [57%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 «« Dany jest ciąg arytmetyczny (7, x-3, y, 22).

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 23.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%] Rozwiąż 
Podpunkt 23.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{10}=102, oblicz a_{21}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 24.  2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 509/845 [60%] Rozwiąż 
Podpunkt 24.1 (2 pkt)
 « Suma trzydziestu początkowych wyrazów ciągu arytmetycznego (a_n) jest równa 165 oraz a_{30}=165.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 25.  2 pkt ⋅ Numer: pp-20816 ⋅ Poprawnie: 926/1936 [47%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
  W ciągu arytmetycznym (a_n) dane są sumy: a_{5}+a_{8}=55 oraz a_{4}+a_{15}=-35.

Wyznacz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 25.2 (1 pkt)
 Oblicz a_1
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 26.  2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 480/1037 [46%] Rozwiąż 
Podpunkt 26.1 (2 pkt)
 » Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych, nie większych od 897.
Odpowiedź:
s_{\leqslant k}= (wpisz liczbę całkowitą)
Zadanie 27.  2 pkt ⋅ Numer: pp-20510 ⋅ Poprawnie: 99/253 [39%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 « Wyznacz wzór ogólny ciągu arytmetycznego wiedząc, że suma jego pięciu pierwszych wyrazów jest równa 75, a drugi wyraz tego ciągu jest równy 11.

Wzór zapisz w postaci a_n=an+b. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 27.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 28.  2 pkt ⋅ Numer: pp-20511 ⋅ Poprawnie: 361/960 [37%] Rozwiąż 
Podpunkt 28.1 (2 pkt)
 » Liczby 2x+1, 12x, 14x+152 są w podanej kolejności pierwszym, drugim i czwartym wyrazem ciągu arytmetycznego.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 29.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%] Rozwiąż 
Podpunkt 29.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
182^2-(182-1)^2+(182-2)^2-(182-3)^2+(182-4)^2-(182-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 30.  2 pkt ⋅ Numer: pp-20513 ⋅ Poprawnie: 99/224 [44%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Wyraz drugi ciągu arytmetycznego jest o 60 większy od wyrazu ósmego tego ciągu. Równocześnie wyraz drugi jest 13 razy większy od wyrazu ósmego tego ciągu.

Podaj równicę r tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
 Podaj drugi wyraz tego ciągu.
Odpowiedź:
a_2= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 238/429 [55%] Rozwiąż 
Podpunkt 31.1 (2 pkt)
 » W ciągu arytmetycznym (a_n), określonym dla n\geqslant 1, dane są: wyraz a_1=7 oraz a_2+a_3=26.

Oblicz różnicę a_{18}-a_{15}.

Odpowiedź:
a_{18}-a_{15}= (wpisz liczbę całkowitą)
Zadanie 32.  2 pkt ⋅ Numer: pp-20505 ⋅ Poprawnie: 45/112 [40%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
Na okręgu o promieniu długości r opisano trójkąt o bokach długości a\leqslant b\leqslant c, które są kolejnymi wyrazami ciągu arytmetycznego.

Oblicz stosunek wysokości opuszczonej na bok długości b, do długości promienia okręgu r.

Odpowiedź:
\frac{h}{r}= (wpisz liczbę całkowitą)
Zadanie 33.  2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/313 [50%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 « Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{1}+a_{2}=41
a_{7}=48
a_{k}+a_{k+1}=241
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 33.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 34.  2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{2}=-15
a_{6}=9
a_{k}=279
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 34.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 35.  2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 138/196 [70%] Rozwiąż 
Podpunkt 35.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz najmniejsze możliwe a_1 tego ciągu.

Dane
a_{3}+a_{5}=36
a_{3}\cdot a_{5}=299
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 35.2 (1 pkt)
 Wyznacz największą możliwą różnicę r tego ciągu.
Odpowiedź:
r_{max}= (wpisz liczbę całkowitą)
Zadanie 36.  3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%] Rozwiąż 
Podpunkt 36.1 (1 pkt)
 (1 pkt) W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej n, suma trzech początkowych wyrazów jest równa 33, a iloczyn tych wyrazów jest równy 627.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 36.2 (2 pkt)
 (2 pkt) Wyznacz wyraz a_{83} tego ciągu.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 37.  2 pkt ⋅ Numer: pp-21058 ⋅ Poprawnie: 434/695 [62%] Rozwiąż 
Podpunkt 37.1 (2 pkt)
 Ciąg \left(3x^2+17x+22,x^2+4x+4,-x^2-4x+16\right) jest arytmetyczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 38.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 131/257 [50%] Rozwiąż 
Podpunkt 38.1 (1 pkt)
 Trójwyrazowy ciąg (x+2,y,y+4) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 38.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 39.  2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 376/608 [61%] Rozwiąż 
Podpunkt 39.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy 10, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa 450.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 40.  2 pkt ⋅ Numer: pp-21128 ⋅ Poprawnie: 58/132 [43%] Rozwiąż 
Podpunkt 40.1 (2 pkt)
 Dany jest ciąg arytmetyczny (a_n), określony dla wszystkich liczb naturalnych n\geqslant 1. Suma dwudziestu początkowych wyrazów tego ciągu jest równa 20\cdot a_{21}-2730.

Oblicz różnicę ciągu (a_n).

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 41.  2 pkt ⋅ Numer: pp-21194 ⋅ Poprawnie: 124/338 [36%] Rozwiąż 
Podpunkt 41.1 (1 pkt)
 Wyznacz wartości m, dla których trzywyrazowy ciąg (2m+17, m^2+6m+12,2-m) jest arytmetyczny.

Podaj najmniejsze i największe takie m.

Odpowiedzi:
m_{min}= (dwie liczby całkowite)

m_{max}= (dwie liczby całkowite)
Podpunkt 41.2 (1 pkt)
 Podaj tę wartość m, dla której ciąg arytmetyczny jest malejący.
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 42.  4 pkt ⋅ Numer: pp-30156 ⋅ Poprawnie: 303/688 [44%] Rozwiąż 
Podpunkt 42.1 (2 pkt)
 Ciąg arytmetyczny (a_n) określony jest wzorem a_n=a-bn, dla n\geqslant 1.

Ile wyrazów dodatnich ma ten ciąg.

Dane
a=2019
b=8
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 42.2 (2 pkt)
 Wyznacz sumę wszystkich wyrazów dodatnich tego ciągu.
Odpowiedź:
s_{> 0}= (wpisz liczbę całkowitą)
Zadanie 43.  4 pkt ⋅ Numer: pp-30157 ⋅ Poprawnie: 38/123 [30%] Rozwiąż 
Podpunkt 43.1 (4 pkt)
 «« W ciągu arytmetycznym (a_n) mamy: a_8=m.

Przy jakiej różnicy ciągu suma kwadratów wyrazów a_2 i a_6 jest najmniejsza możliwa?

Dane
m=29
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 44.  4 pkt ⋅ Numer: pp-30158 ⋅ Poprawnie: 46/120 [38%] Rozwiąż 
Podpunkt 44.1 (2 pkt)
«« W ciągu arytmetycznym (a_n) dane są wyrazy: a_1=x+3y, a_2=4x+y, a_3=3x+6y+1, a_4=9x-2y+1. Oblicz x i y. Wyznacz wzór ogólny ciągu i zapisz go w postaci a_n=an+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 44.2 (2 pkt)
Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm