Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Ciąg liczbowy arytmetyczny

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-11150 ⋅ Poprawnie: 892/1149 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Oceń, które z podanych ciągów są arytmetyczne:
Odpowiedzi:
T/N : a_n=n^2 T/N : a_n=\frac{1}{n}
Zadanie 2.  1 pkt ⋅ Numer: pp-11143 ⋅ Poprawnie: 718/942 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 «« Ciąg (\sqrt{27}, b,\sqrt{75}) jest arytmetyczny.

Oblicz b.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11144 ⋅ Poprawnie: 1048/1310 [80%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ciąg (a_n) jest arytmetyczny i spełnia warunek 3a_3=a_2+2a_1+13.

Oblicz różnicę tego ciągu.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11456 ⋅ Poprawnie: 1352/1530 [88%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Pomiędzy liczby 72 i 306 można wstawić pięć takich liczb, że wszystkie siedem liczb będą tworzyć ciąg arytmetyczny.

Wyznacz najmniejszą z wstawionych liczb.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11146 ⋅ Poprawnie: 1707/2081 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « W ciągu arytmetycznym \left(a_n\right) wyrazy pierwszy i trzeci są równe odpowiednio -11 i -5, a pewien wyraz tego ciągu a_k jest równy 31.

Wyznacz numer tego wyrazu.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-11433 ⋅ Poprawnie: 433/500 [86%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dla ciągu arytmetycznego (a_n) określonego dla n\geqslant 1 spełniony jest warunek a_{9}+a_{10}+a_{11}=\frac{33}{2}.

Oblicz a_{10}.

Odpowiedź:
a_k=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11148 ⋅ Poprawnie: 657/916 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « W ciągu arytmetycznym (a_n) dane są: a_{5}=11 i a_{12}=25.

Wówczas a_1+r jest równe:

Odpowiedź:
a_1+r= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11149 ⋅ Poprawnie: 752/952 [78%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Długości boków trójkąta prostokątnego tworzą ciąg arytmetyczny.

Boki tego trójkąta mają długość:

Odpowiedzi:
A. 8,11,14 B. 13,16,19
C. 9,12,15 D. 10,13,16
Zadanie 9.  1 pkt ⋅ Numer: pp-11541 ⋅ Poprawnie: 481/731 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Trzy liczby x-15, x-9 i 3x-37, w podanej kolejności są trzema początkowymi wyrazami ciągu arytmetycznego \left(c_n\right).

Oblicz c_{64}.

Odpowiedź:
c_k= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-11789 ⋅ Poprawnie: 796/958 [83%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Trzywyrazowy ciąg (1,4,a+2) jest arytmetyczny.

Liczba a jest równa:

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 687/766 [89%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=6 oraz a_3=11.

8-ty wyraz tego ciągu a_{8} jest równy:

Odpowiedzi:
A. 51 B. 41
C. 31 D. 36
E. 26 F. 46
Zadanie 12.  1 pkt ⋅ Numer: pp-11861 ⋅ Poprawnie: 399/411 [97%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, a_5=-39 oraz a_{10}=-64. Różnica tego ciągu jest równa:
Odpowiedzi:
A. -2 B. -\frac{5}{2}
C. -14 D. -\frac{7}{2}
E. -5 F. 1
Zadanie 13.  1 pkt ⋅ Numer: pp-11891 ⋅ Poprawnie: 330/343 [96%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n \geqslant 1, jest arytmetyczny. Różnica tego ciągu jest równa -2 oraz a_8=-25.

Czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. -25 B. -19
C. -21 D. -15
E. -23 F. -17
Zadanie 14.  1 pkt ⋅ Numer: pp-11969 ⋅ Poprawnie: 278/237 [117%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Pięciowyrazowy ciąg \left(-11,-\frac{25}{2},x,y,-17\right) jest arytmetyczny.

Liczby x i y są równe:

Odpowiedzi:
A. x=-\frac{27}{2} oraz y=-\frac{29}{2} B. x=-13 oraz y=-\frac{31}{2}
C. x=-13 oraz y=-15 D. x=-14 oraz y=-\frac{31}{2}
E. x=-\frac{27}{2} oraz y=-15 F. x=-14 oraz y=-\frac{29}{2}
Zadanie 15.  1 pkt ⋅ Numer: pp-12013 ⋅ Poprawnie: 394/456 [86%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu arytmetycznym (a_n), określonym dla każdej liczby naturalnej n\geqslant 1, dane są wyrazy: a_1=-11 oraz a_3=-15.

Wyraz a_{14} jest równy:

Odpowiedzi:
A. -27 B. -37
C. -41 D. -29
E. -39 F. -35
G. -45 H. -23
I. -25 J. -43
Zadanie 16.  1 pkt ⋅ Numer: pp-12035 ⋅ Poprawnie: 194/216 [89%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Ciąg (a_n), określony dla każdej liczby naturalnej n > 1, jest arytmetyczny. Różnica tego ciągu jest równa -4, a pierwszy wyraz tego ciągu jest równy -8.

Wtedy iloraz \frac{a_4}{a_2} jest równy:

Odpowiedzi:
A. \frac{5}{3} B. \frac{10}{9}
C. \frac{5}{2} D. \frac{5}{6}
E. \frac{20}{3} F. \frac{10}{3}
Zadanie 17.  1 pkt ⋅ Numer: pp-12037 ⋅ Poprawnie: 209/203 [102%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Ciągi (a_n), (b_n), (c_n) oraz (d_n) są określone dla każdej liczby naturalnej n > 1 następująco: a_n=3n^2+2, b_n=4n, c_n=3^n, d_n=\frac{4}{n}.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. ciąg c_n jest arytmetyczny B. żaden z ciągów nie jest arytmetyczny
C. ciąg d_n jest arytmetyczny D. ciąg b_n jest arytmetyczny
Zadanie 18.  1 pkt ⋅ Numer: pp-12066 ⋅ Poprawnie: 151/177 [85%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci i piąty wyraz tego ciągu spełniają warunek a_3+a_5=136.

Wtedy czwarty wyraz tego ciągu jest równy:

Odpowiedzi:
A. 81 B. 86
C. 74 D. 84
E. 78 F. 72
G. 82 H. 68
Zadanie 19.  1 pkt ⋅ Numer: pp-12119 ⋅ Poprawnie: 114/147 [77%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Różnica tego ciągu jest równa -6.

Wtedy:

Odpowiedzi:
A. a_{16}-a_{7}=-54 B. a_{16}-a_{7}=-78
C. a_{16}-a_{7}=-48 D. a_{16}-a_{7}=-60
E. a_{16}-a_{7}=-72 F. a_{16}-a_{7}=-30
G. a_{16}-a_{7}=-42 H. a_{16}-a_{7}=-66
Zadanie 20.  1 pkt ⋅ Numer: pp-12145 ⋅ Poprawnie: 234/193 [121%] Rozwiąż 
Podpunkt 20.1 (0.5 pkt)
 Trzywyrazowy ciąg (2m-1,-4,-5) jest arytmetyczny.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : ciąg ten jest rosnący T/N : ciąg ten jest malejący
Podpunkt 20.2 (0.5 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. -\frac{2}{3} B. -\frac{1}{2}
C. -1 D. -2
E. \frac{4}{3} F. -\frac{3}{4}
Zadanie 21.  1 pkt ⋅ Numer: pp-12373 ⋅ Poprawnie: 113/158 [71%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Trzywyrazowy ciąg (-4m, -2+m, m) jest arytmetyczny, gdy liczba m jest równa:
Odpowiedzi:
A. \frac{3}{5} B. \frac{12}{25}
C. -\frac{3}{5} D. \frac{4}{5}
E. \frac{8}{5} F. -\frac{16}{15}
Zadanie 22.  2 pkt ⋅ Numer: pp-20503 ⋅ Poprawnie: 483/838 [57%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 «« Dany jest ciąg arytmetyczny (-19, x-3, y, -31).

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 23.  2 pkt ⋅ Numer: pp-20506 ⋅ Poprawnie: 280/398 [70%] Rozwiąż 
Podpunkt 23.1 (2 pkt)
 W ciągu arytmetycznym (a_n) występują kolejne liczby naturalne dające resztę 2 przy dzieleniu przez 5.

Wiedząc, że a_{1}=102, oblicz a_{6}.

Odpowiedź:
a_k= (wpisz liczbę całkowitą)
Zadanie 24.  2 pkt ⋅ Numer: pp-20507 ⋅ Poprawnie: 509/845 [60%] Rozwiąż 
Podpunkt 24.1 (2 pkt)
 « Suma trzydziestu początkowych wyrazów ciągu arytmetycznego (a_n) jest równa 30 oraz a_{30}=30.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 25.  2 pkt ⋅ Numer: pp-20816 ⋅ Poprawnie: 926/1936 [47%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
  W ciągu arytmetycznym (a_n) dane są sumy: a_{8}+a_{11}=-38 oraz a_{2}+a_{13}=18.

Wyznacz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 25.2 (1 pkt)
 Oblicz a_1
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Zadanie 26.  2 pkt ⋅ Numer: pp-20509 ⋅ Poprawnie: 480/1037 [46%] Rozwiąż 
Podpunkt 26.1 (2 pkt)
 » Oblicz sumę wszystkich liczb naturalnych trzycyfrowych nieparzystych, nie większych od 795.
Odpowiedź:
s_{\leqslant k}= (wpisz liczbę całkowitą)
Zadanie 27.  2 pkt ⋅ Numer: pp-20510 ⋅ Poprawnie: 99/253 [39%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 « Wyznacz wzór ogólny ciągu arytmetycznego wiedząc, że suma jego pięciu pierwszych wyrazów jest równa -135, a drugi wyraz tego ciągu jest równy -23.

Wzór zapisz w postaci a_n=an+b. Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 27.2 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 28.  2 pkt ⋅ Numer: pp-20511 ⋅ Poprawnie: 361/960 [37%] Rozwiąż 
Podpunkt 28.1 (2 pkt)
 » Liczby 2x+1, 12x, 14x+152 są w podanej kolejności pierwszym, drugim i czwartym wyrazem ciągu arytmetycznego.

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 29.  2 pkt ⋅ Numer: pp-20512 ⋅ Poprawnie: 12/90 [13%] Rozwiąż 
Podpunkt 29.1 (2 pkt)
 Dla podanej liczby parzystej k wyznacz wartość wyrażenia:
152^2-(152-1)^2+(152-2)^2-(152-3)^2+(152-4)^2-(152-5)^2+...+102^2-101^2 .
Odpowiedź:
s= (wpisz liczbę całkowitą)
Zadanie 30.  2 pkt ⋅ Numer: pp-20513 ⋅ Poprawnie: 99/224 [44%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Wyraz drugi ciągu arytmetycznego jest o 48 większy od wyrazu ósmego tego ciągu. Równocześnie wyraz drugi jest 4 razy większy od wyrazu ósmego tego ciągu.

Podaj równicę r tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
 Podaj drugi wyraz tego ciągu.
Odpowiedź:
a_2= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-20504 ⋅ Poprawnie: 238/429 [55%] Rozwiąż 
Podpunkt 31.1 (2 pkt)
 » W ciągu arytmetycznym (a_n), określonym dla n\geqslant 1, dane są: wyraz a_1=-19 oraz a_2+a_3=-50.

Oblicz różnicę a_{18}-a_{15}.

Odpowiedź:
a_{18}-a_{15}= (wpisz liczbę całkowitą)
Zadanie 32.  2 pkt ⋅ Numer: pp-20505 ⋅ Poprawnie: 45/112 [40%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
Na okręgu o promieniu długości r opisano trójkąt o bokach długości a\leqslant b\leqslant c, które są kolejnymi wyrazami ciągu arytmetycznego.

Oblicz stosunek wysokości opuszczonej na bok długości b, do długości promienia okręgu r.

Odpowiedź:
\frac{h}{r}= (wpisz liczbę całkowitą)
Zadanie 33.  2 pkt ⋅ Numer: pp-20817 ⋅ Poprawnie: 157/313 [50%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 « Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{1}+a_{2}=15
a_{7}=24
a_{k}+a_{k+1}=135
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 33.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 34.  2 pkt ⋅ Numer: pp-20818 ⋅ Poprawnie: 296/608 [48%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz a_1.

Dane
a_{2}=0
a_{6}=12
a_{k}=147
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 34.2 (1 pkt)
 Oblicz k.
Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 35.  2 pkt ⋅ Numer: pp-20819 ⋅ Poprawnie: 138/196 [70%] Rozwiąż 
Podpunkt 35.1 (1 pkt)
 Dany jest ciąg arytmetyczny (a_n).

Wyznacz najmniejsze możliwe a_1 tego ciągu.

Dane
a_{3}+a_{5}=-6
a_{3}\cdot a_{5}=0
Odpowiedź:
a_1= (wpisz liczbę całkowitą)
Podpunkt 35.2 (1 pkt)
 Wyznacz największą możliwą różnicę r tego ciągu.
Odpowiedź:
r_{max}= (wpisz liczbę całkowitą)
Zadanie 36.  3 pkt ⋅ Numer: pp-20865 ⋅ Poprawnie: 112/219 [51%] Rozwiąż 
Podpunkt 36.1 (1 pkt)
 (1 pkt) W rosnącym ciągu arytmetycznym \left(a_n\right), określonym dla każdej liczby naturalnej dodatniej n, suma trzech początkowych wyrazów jest równa -15, a iloczyn tych wyrazów jest równy -45.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Podpunkt 36.2 (2 pkt)
 (2 pkt) Wyznacz wyraz a_{80} tego ciągu.
Odpowiedź:
a_{k}= (wpisz liczbę całkowitą)
Zadanie 37.  2 pkt ⋅ Numer: pp-21058 ⋅ Poprawnie: 434/695 [62%] Rozwiąż 
Podpunkt 37.1 (2 pkt)
 Ciąg \left(3x^2-31x+78,x^2-12x+36,-x^2+12x-16\right) jest arytmetyczny.

Oblicz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Zadanie 38.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 130/256 [50%] Rozwiąż 
Podpunkt 38.1 (1 pkt)
 Trójwyrazowy ciąg (x-6,y-8,y-4) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 38.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 39.  2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 376/608 [61%] Rozwiąż 
Podpunkt 39.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy -14, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa -510.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 40.  2 pkt ⋅ Numer: pp-21128 ⋅ Poprawnie: 58/132 [43%] Rozwiąż 
Podpunkt 40.1 (2 pkt)
 Dany jest ciąg arytmetyczny (a_n), określony dla wszystkich liczb naturalnych n\geqslant 1. Suma dwudziestu początkowych wyrazów tego ciągu jest równa 20\cdot a_{21}-840.

Oblicz różnicę ciągu (a_n).

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 41.  2 pkt ⋅ Numer: pp-21194 ⋅ Poprawnie: 124/338 [36%] Rozwiąż 
Podpunkt 41.1 (1 pkt)
 Wyznacz wartości m, dla których trzywyrazowy ciąg (2m-5, m^2-16m+67,13-m) jest arytmetyczny.

Podaj najmniejsze i największe takie m.

Odpowiedzi:
m_{min}= (dwie liczby całkowite)

m_{max}= (dwie liczby całkowite)
Podpunkt 41.2 (1 pkt)
 Podaj tę wartość m, dla której ciąg arytmetyczny jest malejący.
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 42.  4 pkt ⋅ Numer: pp-30156 ⋅ Poprawnie: 303/688 [44%] Rozwiąż 
Podpunkt 42.1 (2 pkt)
 Ciąg arytmetyczny (a_n) określony jest wzorem a_n=a-bn, dla n\geqslant 1.

Ile wyrazów dodatnich ma ten ciąg.

Dane
a=2016
b=4
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 42.2 (2 pkt)
 Wyznacz sumę wszystkich wyrazów dodatnich tego ciągu.
Odpowiedź:
s_{> 0}= (wpisz liczbę całkowitą)
Zadanie 43.  4 pkt ⋅ Numer: pp-30157 ⋅ Poprawnie: 38/123 [30%] Rozwiąż 
Podpunkt 43.1 (4 pkt)
 «« W ciągu arytmetycznym (a_n) mamy: a_8=m.

Przy jakiej różnicy ciągu suma kwadratów wyrazów a_2 i a_6 jest najmniejsza możliwa?

Dane
m=11
Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 44.  4 pkt ⋅ Numer: pp-30158 ⋅ Poprawnie: 46/120 [38%] Rozwiąż 
Podpunkt 44.1 (2 pkt)
«« W ciągu arytmetycznym (a_n) dane są wyrazy: a_1=x+3y, a_2=4x+y, a_3=3x+6y+1, a_4=9x-2y+1. Oblicz x i y. Wyznacz wzór ogólny ciągu i zapisz go w postaci a_n=an+b.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 44.2 (2 pkt)
Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm