Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Ekstremum lokalne funkcji

Zadania dla liceum ogólnokształcącego - poziom rozszerzony

 

Zadanie 1.  1 pkt ⋅ Numer: pr-10372 ⋅ Poprawnie: 123/280 [43%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 (1 pkt) Funkcja f określona wzorem f(x)=\frac{x^3}{x^2-8x}, dla x\in\mathbb{R}.

Funkcja ta:

Odpowiedzi:
A. ma maksimum lokalne większe od minimum lokalnego B. ma jedno ekstremum lokalne
C. ma minimum lokalne większe od maksimum lokalnego D. jest rosnąca w przedziale (-\infty, 0\rangle
Zadanie 2.  1 pkt ⋅ Numer: pr-10360 ⋅ Poprawnie: 56/74 [75%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Która z poniższych funkcji nie ma ekstremum lokalnego:
Odpowiedzi:
A. f(x)=\frac{1}{3}x^3+2x B. f(x)=4x^2+5x
C. f(x)=3x^3+2x^2 D. f(x)=(4x+1)^2
Zadanie 3.  2 pkt ⋅ Numer: pr-20867 ⋅ Poprawnie: 87/237 [36%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz ekstrema lokalne funkcji f(x)=\frac{1}{5}x^5+\frac{1}{4}(a-1)x^4-\frac{1}{3}ax^3 .

Podaj wartość x_{min}+f(x_{min}), gdzie x_{min} jest punktem, w którym funkcja osiąga minimum lokalne.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 3.2 (1 pkt)
 Podaj wartość x_{max}+f(x_{max}), gdzie x_{max} jest punktem, w którym funkcja osiąga maksimum lokalne.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  2 pkt ⋅ Numer: pr-20868 ⋅ Poprawnie: 14/33 [42%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
» Ile liczb całkowitych dwucyfrowych dodatnich spełnia nierówność x^4-x^2-2x+3 > 0?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pr-20869 ⋅ Poprawnie: 87/116 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
» Wyznacz najmniejszą wartość wyrażenia x^4-2x^3-2x^2+9.

Podaj najmniejszą wartość tego wyrażenia.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (1 pkt)
Podaj wartość x, dla której wyrażenie ma najmniejszą wartość.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20870 ⋅ Poprawnie: 24/89 [26%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Wyznacz ekstrema lokalne funkcji f(x)=(x+2)^2(x-4).

Podaj wartość x_{min}+f(x_{min}), gdzie x_{min} jest punktem, w którym funkcja osiąga minimum lokalne.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
Ile rozwiązań ma równanie f(x)=-30?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20502 ⋅ Poprawnie: 31/39 [79%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Dana jest funkcja f(x)=4x^3+ax^2+x. Wyznacz maksymalne możliwe a, dla którego funkcja ta nie ma ekstremum lokalnego.

Zakoduj kolejno cyfrę jedności i dwie pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 8.  4 pkt ⋅ Numer: pr-30809 ⋅ Poprawnie: 1/9 [11%] Rozwiąż 
Podpunkt 8.1 (4 pkt)
Dana jest funkcja f(x)=-x^3+(p+1)x^2+12x+q, która osiąga minimum i maksimum w dwóch punktach symetrycznych względem punktu O=(0,0).

Podaj iloczyn współrzędnych jednego z tych punktów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  4 pkt ⋅ Numer: pr-30810 ⋅ Poprawnie: 5/10 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
« Dana jest funkcja f(x)=-x^2+|x|. Wyznacz ekstrema tej funkcji.

Podaj wartość maksimum lokalnego.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (2 pkt)
W jakim punkcie f ma minimum lokalne.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  4 pkt ⋅ Numer: pr-30811 ⋅ Poprawnie: 1/13 [7%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
Dana jest funkcja g(m)=x_1\cdot x_2, gdzie x_1 i x_2 są różnymi pierwiastkami równania (m-1)x^2+(m-2)x+m^2-4m+4=0. Wyznacz te wartości parametru m, dla których funkcja g osiąga maksimum lokalne.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
Ile wynosi to maksimum?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30240 ⋅ Poprawnie: 0/3 [0%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
Dana jest funkcja f(x)=-x^3+(p+1)x^2+12x+q, która osiąga minimum i maksimum w dwóch punktach symetrycznych względem punktu O=(0,0).

Podaj iloczyn współrzędnych jednego z tych punktów.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pr-30241 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
Dana jest funkcja f(x)=-x^2+|x|. Wyznacz ekstrema tej funkcji.

Podaj wartość maksimum lokalnego.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (2 pkt)
W jakim punkcie f ma minimum lokalne.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  4 pkt ⋅ Numer: pr-30242 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 13.1 (2 pkt)
Dana jest funkcja g(m)=x_1\cdot x_2, gdzie x_1 i x_2 są różnymi pierwiastkami równania (m-1)x^2+(m-2)x+m^2-4m+4=0. Wyznacz te wartości parametru m, dla których funkcja g osiąga maksimum lokalne.

Podaj najmniejsze możliwe m spełniające warunki zadania.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Ile wynosi to maksimum?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm