Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Zadania różne z geometrii analitycznej

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  2 pkt ⋅ Numer: pp-20602 ⋅ Poprawnie: 28/152 [18%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Prosta y=ax+b jest symetralną odcinka AB, przy czym A=(x_a,y_a) i B=(x_b, y_b).

Podaj x_b.

Dane
a=2
b=-16
x_a=\frac{3}{2}=1.500000000000000
y_a=-\frac{7}{2}=-3.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 1.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  2 pkt ⋅ Numer: pp-20627 ⋅ Poprawnie: 35/297 [11%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są wierzchołkami trójkąta. Uzasadnij, że trójkąta ABC jest prostokątny.

Wyznacz pole koła opisanego na tym trójkącie.

Dane
x_a=-6
y_a=-5
x_b=0
y_b=-7
x_c=-4
y_c=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 2.2 (1 pkt)
 Prosta ax+y+c=0 zawiera środkową CD tego trójkąta.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  2 pkt ⋅ Numer: pp-20628 ⋅ Poprawnie: 5/19 [26%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta równobocznego.

Oblicz pole powierzchni trójkąta ABC.

Dane
x_a=2
y_a=-2
x_b=6
y_b=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 3.2 (1 pkt)
 Trzeci wierzchołek tego trójkąta ma współrzędne C=(x_c,y_c).

Podaj najmniejsze możliwe y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  3 pkt ⋅ Numer: pp-20623 ⋅ Poprawnie: 5/45 [11%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dane są punkty A=(3,-4) i B=\left(-\frac{3}{2},\frac{3}{2}\right), które są wierzchołkami trójkąta prostokątnego o przeciwprostokątnej AB. Wyznacz środek S=(x_s,y_s) okręgu opisanego na tym trójkącie.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pp-20624 ⋅ Poprawnie: 14/67 [20%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Prosta k przechodząca przez punkt C=(8,6) przecina osie układu współrzędnych w punktach A i B=(x_b,y_b) i jest prostopadła o odcinka OC:

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (1 pkt)
 Oblicz |AB|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  3 pkt ⋅ Numer: pp-20813 ⋅ Poprawnie: 77/334 [23%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 (1 pkt) Punkty A=(x_A, y_A), B=(x_B, y_B) i C=(x_C, y_C) są wierzchołkami trójkąta równoramiennego.

Jaką długość ma najdłuższy bok tego trójkąta?

Dane
x_A=-4
y_A=0
x_B=4
y_B=-8
x_C=5
y_C=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 (1 pkt) Punkt D=(x_D, y_D) jest środkiem boku AB tego trójkąta.

Podaj sumę jego współrzędnych, czyli x_D+y_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.3 (1 pkt)
 (1 pkt) Prosta określona równaniem y=x+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20630 ⋅ Poprawnie: 1/96 [1%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Trójkąt równoramienny o podstawie AB ma wierzchołki A=(2,-3) i B=(10,-3). Wierzchołek C tego trójkąta należy do prostej o równaniu y=x+\frac{19}{2}. Wyznacz współrzędne wierzchołka C=(x_C,y_C).

Podaj y_C.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20631 ⋅ Poprawnie: 33/187 [17%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Wierzchołkami trójkąta są punkty A=(1,-11), B=(9,-9) i C=(-4,0), a punkt D jest środkiem boku AB. Wyznacz równanie prostej CD: y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20608 ⋅ Poprawnie: 0/44 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Punkty A=(-7,-4) i C=(-1,0) są przeciwległymi wierzchołkami kwadratu ABCD. Prosta 3x+by+c=0 zawiera przekątną BD tego kwadratu.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Prosta x+b_1y+c_1=0 zawiera bok CD tego kwadratu (odwrotnie do ruchu wskazówek zegara).

Podaj c_1.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20609 ⋅ Poprawnie: 10/54 [18%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Na prostej o równaniu y=2x+3 leży wierzchołek D rombu ABCD, w którym A=(2,-7) i C=(4,-2). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pp-20610 ⋅ Poprawnie: 6/23 [26%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Prosta o równaniu 4x+by+c=0 zawiera przekątną BD rombu o wierzchołkach A=(4,-9) i C=(0,-2).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  2 pkt ⋅ Numer: pp-20613 ⋅ Poprawnie: 1/20 [5%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Dwa sąsiednie boki równoległoboku ABCD zawarte są w prostych 5x-2y-43=0 i x+2y+13=0 i mają wspólny punkt B. Przekątne tego równoległoboku przecinają się w punkcie O=\left(\frac{13}{3},-\frac{45}{8}\right). Wyznacz równanie boku AD:y=ax+b (odwrotnie do ruchu wskazówek zegara).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
 Bok CD zawiera się w prostej o równaniu CD:y=cx+d.

Podaj d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  2 pkt ⋅ Numer: pp-20614 ⋅ Poprawnie: 11/60 [18%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Trzy kolejne wierzchołki równoległoboku mają współrzędne: A=(-2,-8), B=(2,-4) i C=(1,1). Bok CD tego równoległoboku zawarty jest w prostej o równaniu CD:x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (1 pkt)
 Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 14.  2 pkt ⋅ Numer: pp-20615 ⋅ Poprawnie: 3/11 [27%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Trzy wierzchołki równoległoboku ABCD mają współrzędne A=\left(\frac{7}{2},-11\right), B=(x_b,y_b) i D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara). Bok BC tego równoległoboku zawarty jest w prostej o równaniu y=-x-\frac{1}{2}, zaś bok CD w prostej o równaniu y=3x.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 14.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 15.  3 pkt ⋅ Numer: pp-20616 ⋅ Poprawnie: 12/57 [21%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W trapezie ABCD dane są wierzchołki: A=(-4,-6), B=(0,-4) i C=(-3,0). Kąty przy wierzchołkach A i D=(x_d,y_d) są proste. Prosta zawierająca podstawę CD tego trapezu ma równanie BD:y=ax+b.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 15.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 15.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 16.  4 pkt ⋅ Numer: pp-20617 ⋅ Poprawnie: 0/12 [0%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Punkty A=(6,-5) i B=(8,-3) wyznaczają jedną z podstaw trapezu ABCD. Punkt O=\left(0,-\frac{13}{2}\right) jest środkiem drugiej podstawy CD tego trapezu, przy czym |CD|=2\cdot|AB|.
Wyznacz C=(x_c,y_c) i D=(x_d,y_d).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 16.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 16.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 16.4 (1 pkt)
 Oblicz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 17.  3 pkt ⋅ Numer: pp-20618 ⋅ Poprawnie: 7/76 [9%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Podstawę trapezu równoramiennego ABCD wyznaczają punkty A=(-2,-9) i B=(6,-5), zaś C=(0,-2) jest jednym z jego pozostałych wierzchołków. Wyznacz równanie osi symetrii y=ax+b tego trapezu.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 17.2 (1 pkt)
 Wierzchołek D tego trapezu ma współrzędne D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 17.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 18.  3 pkt ⋅ Numer: pp-20856 ⋅ Poprawnie: 49/730 [6%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 (1 pkt) Punkty o współrzędnych A=(-3,-2) i C=(2,4) są przeciwległymi wierzchołkami trapezu równoramiennego ABCD (odwrotnie do ruchu wskazówek zegara). Podstawa AB tego trapezu zawiera się w prostej o równaniu y=\frac{1}{2}x-\frac{1}{2}, a osią symetrii tego trapezu jest prosta o równaniu y=-2x+2.

Wyznacz punkt B=(x_b,y_b).
Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 18.2 (1 pkt)
 (1 pkt) Wyznacz punkt D=(x_d,y_d).
Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 18.3 (1 pkt)
 (1 pkt) Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 19.  2 pkt ⋅ Numer: pp-20633 ⋅ Poprawnie: 11/126 [8%] Rozwiąż 
Podpunkt 19.1 (2 pkt)
 Punkty A=(-4,-6), B=(5,-8), C=(9,-2), D=(2,3) i E=(-3,1) są wierzchołkami wielokąta.

Oblicz pole powierzchni tego wielokąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 20.  2 pkt ⋅ Numer: pp-20634 ⋅ Poprawnie: 3/9 [33%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Przekątne wielokąta o wierzchołkach A=(0,-9), B=(3,-7), C=(5,1), D=(2,0) przecinają się w punkcie o współrzędnych S=(x,y).

Podaj x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 20.2 (1 pkt)
 Podaj y.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 21.  4 pkt ⋅ Numer: pp-30216 ⋅ Poprawnie: 0/14 [0%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Punkt C=(x_c,y_c) neleży do symetralnej odcinka AB, gdzie A=(x_a,y_a) i B=(x_b,y_b). Wyznacz współrzedne tego punktu wiedząc, że P_{\triangle ABC}=30.

Podaj najmniejsze możliwe x_c.

Dane
x_a=0
y_a=-3
x_b=6
y_b=-5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 21.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 21.3 (2 pkt)
 Wyznacz obwód trójkąta ABC.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 22.  4 pkt ⋅ Numer: pp-30307 ⋅ Poprawnie: 2/12 [16%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 W układzie współrzędnych punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta ABC. Wierzchołek C tego trójkąta leży na prostej o równaniu y=ax+b. Oblicz współrzędne punktu C=(x_c,y_c), dla którego kąt ABC jest prosty.

Podaj najmniejsze możliwe x_c.

Dane
x_a=5
y_a=-2
x_b=11
y_b=0
a=2
b=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 22.2 (2 pkt)
 Podaj najmniejsze możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 23.  4 pkt ⋅ Numer: pp-30236 ⋅ Poprawnie: 5/14 [35%] Rozwiąż 
Podpunkt 23.1 (2 pkt)
 » Proste o równaniach x-y-5=0, x+y+17=0 oraz x-7y+1=0 tworzą trójkąt.

Oblicz długość najkrótszego boku tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 23.2 (2 pkt)
 Oblicz długość najdłuższego boku tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 24.  4 pkt ⋅ Numer: pp-30237 ⋅ Poprawnie: 0/11 [0%] Rozwiąż 
Podpunkt 24.1 (2 pkt)
 « Punkt A należy do prostej o równaniu x=2 oraz B=(2,-12) i C=(6,-10). Trójkąt ABC jest prostokątny, a prosty jest kąt przy wierzchołku C. Wyznacz punkt A=(x_a,y_a).

Podaj y_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 24.2 (2 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 25.  4 pkt ⋅ Numer: pp-30238 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 25.1 (2 pkt)
 Dane są punkty A=(6,-7), B=(0,-1) i C=(-3,-10), które są wierzchołkami trójkąta, a prosta o równaniu x+by+c=0 jest osią symetrii tego trójkąta.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 25.2 (2 pkt)
 Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 26.  4 pkt ⋅ Numer: pp-30239 ⋅ Poprawnie: 2/8 [25%] Rozwiąż 
Podpunkt 26.1 (2 pkt)
 Dane sa punkty A=(1,5), B=(13,5) i C=(1,m). Okrąg wpisany w trójkąt ABC ma promień o długości r=5.

Podaj najmniejsze możliwe m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 26.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 27.  4 pkt ⋅ Numer: pp-30240 ⋅ Poprawnie: 0/19 [0%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 » Punkty A=(-6,-3), B=(6,1) i C=(0,5) sa wierzchołkami trójkąta. Wysokość tego trójkąta opuszczona z wierzchołka C przecięła bok AB w punkcie D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 27.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 27.3 (1 pkt)
 Prosta o równaniu 10x+by+c=0 jest równoległa do boku BC trójkąta i przechodzi przez punkt D.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 27.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 28.  4 pkt ⋅ Numer: pp-30218 ⋅ Poprawnie: 1/11 [9%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Punkty B=(4,2) i C=(4,-6) są dwoma wierzchołkami trójkąta prostokątnego ABC o kącie prostym przy wierzchołku A. Przyprostokątna AC zawiera się w prostej x-2y-16=0. Oblicz współrzędne punktu A=(x_a,y_a).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 28.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 28.3 (1 pkt)
 Podaj |AC|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 28.4 (1 pkt)
 Prosta y=ax+b zawiera środkową AD tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 29.  4 pkt ⋅ Numer: pp-30220 ⋅ Poprawnie: 2/8 [25%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Punkty A=(0,-10) i B=(5,-3) tworzą ramię trójkąta równoramiennego, a oś symetrii tego trójkąta ma równanie x-2y-11=0. Wyznacz współrzędne wierzchołka C=(x_c, y_c) tego trójkąta.

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 29.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 29.3 (1 pkt)
 Wyznacz równanie boku AC:ax+y+c=0.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 29.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 30.  4 pkt ⋅ Numer: pp-30221 ⋅ Poprawnie: 1/12 [8%] Rozwiąż 
Podpunkt 30.1 (2 pkt)
 » Prosta x-2y-14=0 zawiera podstawę AB trójkąta równoramiennego ABC o wierzchołkach A=(4,-5) oraz C=(3,3). Prosta CD:y=ax+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 30.2 (1 pkt)
 Wyznacz współrzędne wierzchołka B=(x_b,y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 30.3 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 31.  4 pkt ⋅ Numer: pp-30222 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Punkty A=(0,-10) i B=(-3,-4) wyznaczają podstawę trójkąta równoramiennego ABC. Prosta o równaniu y=x-10 zawiera bok AC tego trójkąta. Wyznacz C=(x_c, y_c).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 31.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 31.3 (2 pkt)
 Oś symetrii tego trójkąta ma równanie y=ax+b.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 32.  4 pkt ⋅ Numer: pp-30223 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 32.1 (1 pkt)
 Proste \sqrt{3}x+3y=-9+3\sqrt{3} i x=3 zawierają odpowiednio boki AC i BC trójkąta równobocznego ABC, w którym punkt P=\left(\frac{9}{2},\frac{-6-3\sqrt{3}}{2}\right) jest środkiem boku AB(odwrotnie do ruchu wskazówek zegara). Wyznacz punkt B=(x_b, y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 32.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 32.3 (2 pkt)
 Oblicz długość wysokości tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 33.  4 pkt ⋅ Numer: pp-30224 ⋅ Poprawnie: 0/13 [0%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 » W prostej o równaniu 3x-4y-36=0 zawiera się przeciwprostokątna AB trójkąta ABC, przy czym A=(0,-9), C=(3,-5) oraz B=(x_b,y_b). Prosta o równaniu 3x+by+c=0 zawiera bok BC tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 33.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 33.3 (1 pkt)
 Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 33.4 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 34.  3 pkt ⋅ Numer: pp-30225 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 » Wysokość opuszczona z wierzchołka C trójkąta równoramiennego ABC o podstawie AB zawiera się w prostej x+2y-16=0. Wiadomo, że A=(-3,-18) i C=(0,8). Podstawa AB tego trójkata zawiera się w prostej o równaniu ax+y+c=0.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 34.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 34.3 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 35.  4 pkt ⋅ Numer: pp-30229 ⋅ Poprawnie: 0/8 [0%] Rozwiąż 
Podpunkt 35.1 (1 pkt)
 Proste o równaniach AB:3x+y-1=0, BC:7x+3y-21=0 i AC:x+3y-3=0 wyznaczają trójkąt ABC. Symetralna boku AB ma równanie x+by+c=0.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 35.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 35.3 (1 pkt)
 Punkt S=(x_s,y_s) jest środkiem okręgu opisanego na trójkącie ABC.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 35.4 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 36.  4 pkt ⋅ Numer: pp-30230 ⋅ Poprawnie: 0/7 [0%] Rozwiąż 
Podpunkt 36.1 (1 pkt)
 Punkty A=(0,-4), B=(5,2) i C=(3,5) są wierzchołkami trójkąta. Z punktu B poprowadzono wysokość trójkąta, która przecięła bok AC w punkcie D=(x_d,y_d). Wysokość ta opisana jest wzorem BD:y=ax+b

Wyznacz b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.4 (1 pkt)
 Prosta k:y=a_1x+b_1 przechodzi przez punkt D i jest równoległa do boku AB trójkąta.

Podaj b_1.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 37.  4 pkt ⋅ Numer: pp-30231 ⋅ Poprawnie: 0/10 [0%] Rozwiąż 
Podpunkt 37.1 (1 pkt)
 « Prosta k przechodzi przez punkty A=(6,-3) i B=(12,-5). Punkt D=(4,0) jest środkiem odcinka AC, a prosta l:ax+y+c=0 wysokością trójkąta ABC opuszczoną z punktu C, która przecina prostą k w punkcie E=(x_e,y_e).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 37.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 37.3 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 37.4 (1 pkt)
 Podaj y_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 38.  4 pkt ⋅ Numer: pp-30232 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 38.1 (1 pkt)
 » Punkty A=(0,-4), B=(11,-2) i C=(1,3) są wierzchołkami trójkąta ABC. Prosta CD jest wysokością tego trójkąta, D=(x_d,y_d)\in AB. Prosta k:x+by+c=0 przechodzi przez punkt D i k\parallel BC.

Wyznacz x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 38.2 (1 pkt)
 Wyznacz y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 38.3 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 38.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 39.  4 pkt ⋅ Numer: pp-30201 ⋅ Poprawnie: 3/165 [1%] Rozwiąż 
Podpunkt 39.1 (2 pkt)
 » Dane są punkty M=(-4,-3) oraz N=(4,0). Symetralna odcinka MN opisana jest wzorem x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 39.2 (1 pkt)
 Symetralna odcinka MN przecina prostą 3x-2y-15=0 w punkcie P=(x_p,y_p).

Podaj x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 39.3 (1 pkt)
 Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 40.  4 pkt ⋅ Numer: pp-30197 ⋅ Poprawnie: 5/26 [19%] Rozwiąż 
Podpunkt 40.1 (1 pkt)
 Prosta y=2x-6 zawiera przekątną BD kwadratu ABCD o wierzchołku A=\left(4,-\frac{5}{2}\right).
Wyznacz wierzchołek C=(x_c,y_c) (odwrotnie do ruchu wskazówek zegara).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 40.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 40.3 (2 pkt)
 Wyznacz pole powierzchni tego kwadratu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 41.  4 pkt ⋅ Numer: pp-30200 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 41.1 (1 pkt)
 Punkt A=\left(-2,-\frac{3}{2}\right) jest wierzchołkiem kwadratu ABCD o środku symetrii O=\left(\frac{9}{4},-\frac{21}{8}\right) (odwrotnie do ruchu wskazówek zegara). Wyznacz C=(x_c,y_c) oraz D=(x_d,y_d).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 41.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 41.3 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 41.4 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 42.  4 pkt ⋅ Numer: pp-30206 ⋅ Poprawnie: 0/44 [0%] Rozwiąż 
Podpunkt 42.1 (1 pkt)
 » W prostej o równaniu 2x-y+3=0 zawiera się przekątna AC rombu ABCD (odwrotnie do ruchu wskazówek zegara), przy czym A=(-2,-9) i D=(-7,1).

Przekątna BD tego rombu opisana jest równaniem BD:x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 42.2 (1 pkt)
 Wierzchołek C tego rombu ma współrzędne C=(x_c,y_c).

Podaj y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 42.3 (1 pkt)
 Wyznacz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 42.4 (1 pkt)
 Wyznacz pole powierzchni tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 43.  4 pkt ⋅ Numer: pp-30207 ⋅ Poprawnie: 0/21 [0%] Rozwiąż 
Podpunkt 43.1 (1 pkt)
 Na prostej o równaniu x-3y-17=0 leży wierzchołek D rombu ABCD, w którym A=(-8,6) i przekątne przecinają się w punkcie S=(0,-7). Prosta o równaniu 4x+by+c=0 zawiera przekątną BD tego rombu. Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara) tego rombu.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 43.2 (1 pkt)
 Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 43.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 43.4 (1 pkt)
 Wyznacz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 44.  4 pkt ⋅ Numer: pp-30208 ⋅ Poprawnie: 8/41 [19%] Rozwiąż 
Podpunkt 44.1 (1 pkt)
 » Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są trzema kolejnymi wierzchołkami równoległoboku ABCD. Wyznacz D=(x_d,y_d).

Podaj x_d.

Dane
x_a=-4
y_a=0
x_b=4
y_b=-6
x_c=10
y_c=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 44.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 44.3 (2 pkt)
 Wyznacz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 45.  4 pkt ⋅ Numer: pp-30210 ⋅ Poprawnie: 1/30 [3%] Rozwiąż 
Podpunkt 45.1 (1 pkt)
 » Dane są trzy kolejne wierzchołki trapezu A=(2,-9), B=(6,3) i C=(-1,1), w którym kąt przy wierzchołku A jest prosty. Punkt D ma współrzędne D=(x_d, y_d), a prosta zawierająca bok AD opisana jest równaniem x+by+c=0

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.4 (1 pkt)
 Oblicz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 46.  4 pkt ⋅ Numer: pp-30211 ⋅ Poprawnie: 0/4 [0%] Rozwiąż 
Podpunkt 46.1 (1 pkt)
 » Prosta x+2y+12=0 zawiera podstawę trapezu równoramiennego AB, a prosta 2x-y-6=0 jest osią symetrii tego trapezu. Wierzchołki trapezu mają współrzędne: A=(4,-8), B=(x_b,y_b), D=(0,-5), zaś prosta zawierająca bok CD równanie CD:y=ax+b.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 46.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 46.3 (1 pkt)
 Podaj a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 46.4 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 47.  4 pkt ⋅ Numer: pp-30212 ⋅ Poprawnie: 0/4 [0%] Rozwiąż 
Podpunkt 47.1 (1 pkt)
 Dane są kolejne wierzchołki trapezu A=(-2,-9), B=(6,-3), C=(0,0) i D=(-4,-3). Bok CD tego trapezu zawiera sie w prostej 3x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 47.2 (1 pkt)
 Wysokość tego trapezu opuszczona z wierzchołka D zawiera się w prostej o równaniu y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 47.3 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 47.4 (1 pkt)
 Wyznacz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 48.  4 pkt ⋅ Numer: pp-30214 ⋅ Poprawnie: 0/8 [0%] Rozwiąż 
Podpunkt 48.1 (1 pkt)
 Punkty A=(0,-7), B=(6,-5), C=(-4,1) i D=(-7,0) są kolejnymi wierzchołkami trapezu o podstawach AB i CD. Ramiona tego trapezu przedłużono do punktu ich przecięcia w punkcie O=(x_o,y_o), a następnie narysowano okrąg o środku w punkcie O, do którego podstawa AB tego trapezu jest styczną w punkcie E=(x_e,y_e).

Podaj x_o.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 48.2 (1 pkt)
 Podaj y_o.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 48.3 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 48.4 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 49.  4 pkt ⋅ Numer: pp-30215 ⋅ Poprawnie: 3/12 [25%] Rozwiąż 
Podpunkt 49.1 (1 pkt)
 « Prosta k:x+2y+18=0 jest prostopadła do podstaw AB i CD trapezu równoramiennego ABCD, w którym B=(8,-4) i C=(3,-4) oraz D\in k (odwrotnie do ruchu wskazówek zegara). Prosta o równaniu y=ax+b jest osią symetrii tego trapezu. Wyznacz wierzchołek A=(x_a,y_a) trapezu.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 49.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 49.3 (1 pkt)
 Podaj x_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 49.4 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 50.  4 pkt ⋅ Numer: pp-30196 ⋅ Poprawnie: 0/9 [0%] Rozwiąż 
Podpunkt 50.1 (2 pkt)
 Dane są punkty A=(2,-1), B=(-1,3) i C=(-2,-1). Odcinki AB i CD są podstawami trapezu ABCD. Wiedząc, że przekątne tego trapezu są prostopadłe, wyznacz współrzędne wierzchołka D=(x, y).

Podaj x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 50.2 (2 pkt)
 Podaj y.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm