Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Zadania różne z geometrii analitycznej

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20602  
Podpunkt 1.1 (1 pkt)
 » Prosta y=ax+b jest symetralną odcinka AB, przy czym A=(x_a,y_a) i B=(x_b, y_b).

Podaj x_b.

Dane
a=2
b=-13
x_a=-\frac{1}{2}=-0.500000000000000
y_a=-\frac{9}{2}=-4.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 1.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-20625  
Podpunkt 2.1 (4 pkt)
 Oblicz pole powierzchni figury ograniczonej przez wykres funkcji f(x)=ax+b oraz osie układu współrzędnych.
Dane
a=\frac{1}{3}=0.333333333333333
b=-5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20626  
Podpunkt 3.1 (2 pkt)
 « Prosta prostopadła do wektora [p,q] przechodzi przez punkt A=(x_A,y_A).

Wyznacz pole trójkąta ograniczonego przez tę prostą i osie układu współrzednych.

Dane
x_A=4
y_A=5
u_1=-3
u_2=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20628  
Podpunkt 4.1 (1 pkt)
 Punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta równobocznego.

Oblicz pole powierzchni trójkąta ABC.

Dane
x_a=0
y_a=-3
x_b=4
y_b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
 Trzeci wierzchołek tego trójkąta ma współrzędne C=(x_c,y_c).

Podaj najmniejsze możliwe y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20620  
Podpunkt 5.1 (2 pkt)
 » Na trójkącie prostokątnym o wierzchołkach A=(-5,-5), B=(-1,-2) i C=(-4,2) opisano okrąg, a na tym okręgu opisano trójkąt równoboczny.

Oblicz jego pole powierzchni.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20621  
Podpunkt 6.1 (2 pkt)
 » Wierzchołkiem trójkąta równobocznego ABC jest punkt A=(-5,-5), a środkiem okręgu wpisanego w ten trójkąt punkt S=(-1,-2).

Oblicz P_{ABC}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-20623  
Podpunkt 7.1 (1 pkt)
 Dane są punkty A=(-5,1) i B=\left(\frac{15}{2},-\frac{11}{2}\right), które są wierzchołkami trójkąta prostokątnego o przeciwprostokątnej AB. Wyznacz środek S=(x_s,y_s) okręgu opisanego na tym trójkącie.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.3 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20624  
Podpunkt 8.1 (1 pkt)
 Prosta k przechodząca przez punkt C=(3,4) przecina osie układu współrzędnych w punktach A i B=(x_b,y_b) i jest prostopadła o odcinka OC:

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Oblicz |AB|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-20813  
Podpunkt 9.1 (1 pkt)
 (1 pkt) Punkty A=(x_A, y_A), B=(x_B, y_B) i C=(x_C, y_C) są wierzchołkami trójkąta równoramiennego.

Jaką długość ma najdłuższy bok tego trójkąta?

Dane
x_A=-6
y_A=-1
x_B=2
y_B=-9
x_C=3
y_C=0
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 (1 pkt) Punkt D=(x_D, y_D) jest środkiem boku AB tego trójkąta.

Podaj sumę jego współrzędnych, czyli x_D+y_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.3 (1 pkt)
 (1 pkt) Prosta określona równaniem y=x+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20630  
Podpunkt 10.1 (1 pkt)
 « Trójkąt równoramienny o podstawie AB ma wierzchołki A=(1,-3) i B=(9,-3). Wierzchołek C tego trójkąta należy do prostej o równaniu y=x+\frac{17}{2}. Wyznacz współrzędne wierzchołka C=(x_C,y_C).

Podaj y_C.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20608  
Podpunkt 11.1 (1 pkt)
 « Punkty A=(-9,-5) i C=(-3,-1) są przeciwległymi wierzchołkami kwadratu ABCD. Prosta 3x+by+c=0 zawiera przekątną BD tego kwadratu.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Prosta x+b_1y+c_1=0 zawiera bok CD tego kwadratu (odwrotnie do ruchu wskazówek zegara).

Podaj c_1.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 22.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30227  
Podpunkt 22.1 (2 pkt)
 » Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,0) są wierzchołkami trójkąta ABC, przy czym P_{\triangle ABC}=49.

Podaj najmniejsze możliwe x_c.

Dane
x_a=2
y_a=-8
x_b=11
y_b=-18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 22.2 (2 pkt)
 Podaj największe możliwe x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 23.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30307  
Podpunkt 23.1 (2 pkt)
 W układzie współrzędnych punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta ABC. Wierzchołek C tego trójkąta leży na prostej o równaniu y=ax+b. Oblicz współrzędne punktu C=(x_c,y_c), dla którego kąt ABC jest prosty.

Podaj najmniejsze możliwe x_c.

Dane
x_a=3
y_a=-3
x_b=9
y_b=-1
a=2
b=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 23.2 (2 pkt)
 Podaj najmniejsze możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 24.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30235  
Podpunkt 24.1 (2 pkt)
 Przez punkt (20,5) poprowadzono prostą, która wraz z osiami układu tworzy trójkąt o polu powierzchni 200 i kąt rozwarty z dodatnią półosią osi Ox. Prosta ta przecięła oś Ox w punkcie A=(x_a, 0).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 24.2 (2 pkt)
 Prosta ta przecięła oś Oy w punkcie B=(0, y_b).
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 25.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30239  
Podpunkt 25.1 (2 pkt)
 Dane sa punkty A=(-5,-5), B=(1,-5) i C=(-5,m). Okrąg wpisany w trójkąt ABC ma promień o długości r=2.

Podaj najmniejsze możliwe m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 25.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 26.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30240  
Podpunkt 26.1 (1 pkt)
 » Punkty A=(-8,-4), B=(4,0) i C=(-2,4) sa wierzchołkami trójkąta. Wysokość tego trójkąta opuszczona z wierzchołka C przecięła bok AB w punkcie D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 26.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 26.3 (1 pkt)
 Prosta o równaniu 10x+by+c=0 jest równoległa do boku BC trójkąta i przechodzi przez punkt D.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 26.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 27.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30217  
Podpunkt 27.1 (1 pkt)
 » Punkty A=(-1,-3), B=(-5,0) i C=(-3,-4) są wierzchołkami trójkąta.

Oblicz sinus najmniejszego kąta tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 27.2 (1 pkt)
 Prosta y=ax+b zawiera wysokość tego trójkąta opuszczoną z wierzchołka kąta prostego i przecina przeciwprostokątną tego trójkąta w punkcie D=(x_d,y_d).

Wyznacz b

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 27.3 (1 pkt)
 Podaj x_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 27.4 (1 pkt)
 Podaj y_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 28.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30218  
Podpunkt 28.1 (1 pkt)
 Punkty B=(2,1) i C=(2,-7) są dwoma wierzchołkami trójkąta prostokątnego ABC o kącie prostym przy wierzchołku A. Przyprostokątna AC zawiera się w prostej x-2y-16=0. Oblicz współrzędne punktu A=(x_a,y_a).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 28.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 28.3 (1 pkt)
 Podaj |AC|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 28.4 (1 pkt)
 Prosta y=ax+b zawiera środkową AD tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 29.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30219  
Podpunkt 29.1 (1 pkt)
 » W trójkącie ABC punkty A=(-5,-5) i B=(5,-5) są końcami przeciwprostokątnej, natomiast punkt C leży na prostej o równaniu x-y+2=0. Wyznacz współrzędne punktu C=(x_c,y_c).

Podaj najmniejsze możliwe y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 29.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 29.3 (2 pkt)
 Symetralna przeciwprostokątnej wyznaczonego trójkąta o mniejszym polu powierzchni przecięła bok BC w punkcie D=(x_d,y_d).

Podaj y_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 30.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30220  
Podpunkt 30.1 (1 pkt)
 Punkty A=(-2,-11) i B=(3,-4) tworzą ramię trójkąta równoramiennego, a oś symetrii tego trójkąta ma równanie x-2y-11=0. Wyznacz współrzędne wierzchołka C=(x_c, y_c) tego trójkąta.

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 30.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 30.3 (1 pkt)
 Wyznacz równanie boku AC:ax+y+c=0.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 30.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 31.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30222  
Podpunkt 31.1 (1 pkt)
 Punkty A=(-2,-11) i B=(-5,-5) wyznaczają podstawę trójkąta równoramiennego ABC. Prosta o równaniu y=x-9 zawiera bok AC tego trójkąta. Wyznacz C=(x_c, y_c).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 31.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 31.3 (2 pkt)
 Oś symetrii tego trójkąta ma równanie y=ax+b.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 32.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30223  
Podpunkt 32.1 (1 pkt)
 Proste \sqrt{3}x+3y=-12+\sqrt{3} i x=1 zawierają odpowiednio boki AC i BC trójkąta równobocznego ABC, w którym punkt P=\left(\frac{5}{2},\frac{-8-3\sqrt{3}}{2}\right) jest środkiem boku AB(odwrotnie do ruchu wskazówek zegara). Wyznacz punkt B=(x_b, y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 32.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 32.3 (2 pkt)
 Oblicz długość wysokości tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 33.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30224  
Podpunkt 33.1 (1 pkt)
 » W prostej o równaniu 3x-4y-34=0 zawiera się przeciwprostokątna AB trójkąta ABC, przy czym A=(-2,-10), C=(1,-6) oraz B=(x_b,y_b). Prosta o równaniu 3x+by+c=0 zawiera bok BC tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 33.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 33.3 (1 pkt)
 Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 33.4 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 34.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-30225  
Podpunkt 34.1 (1 pkt)
 » Wysokość opuszczona z wierzchołka C trójkąta równoramiennego ABC o podstawie AB zawiera się w prostej x+2y-12=0. Wiadomo, że A=(-5,-19) i C=(-2,7). Podstawa AB tego trójkata zawiera się w prostej o równaniu ax+y+c=0.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 34.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 34.3 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 35.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30226  
Podpunkt 35.1 (1 pkt)
 » Punkty B=(1,-8) i C=(11,-19) są wierzchołkami trójkąta ABC. W prostej 7x-y-15=0 zawiera się bok AB, zaś w prostej 2x+y-3=0 bok AC tego trójkąta. Z wierzchołka B opuszczono wysokość, która przecięła bok AC w punkcie E=(x_e, y_e).

Wyznacz x_e.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 35.2 (1 pkt)
 Wyznacz y_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 35.3 (2 pkt)
 Wyznacz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 36.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30229  
Podpunkt 36.1 (1 pkt)
 Proste o równaniach AB:3x+y+6=0, BC:7x+3y-4=0 i AC:x+3y+2=0 wyznaczają trójkąt ABC. Symetralna boku AB ma równanie x+by+c=0.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.3 (1 pkt)
 Punkt S=(x_s,y_s) jest środkiem okręgu opisanego na trójkącie ABC.

Podaj x_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.4 (1 pkt)
 Podaj y_s.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

Liczba wyświetlonych zadań: 26

Liczba pozostałych zadań dostępnych dla zarejestrowanych nauczycieli: 24

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm