Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Zadania różne z geometrii analitycznej

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  2 pkt ⋅ Numer: pp-20602 ⋅ Poprawnie: 28/152 [18%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Prosta y=ax+b jest symetralną odcinka AB, przy czym A=(x_a,y_a) i B=(x_b, y_b).

Podaj x_b.

Dane
a=2
b=-20
x_a=\frac{9}{2}=4.500000000000000
y_a=-\frac{3}{2}=-1.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 1.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  2 pkt ⋅ Numer: pp-20605 ⋅ Poprawnie: 19/31 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Znajdź punkt A=(x_a,y_a) leżący na prostej y=2x+c taki, żeby jego odległość od punktu K=(x_k,y_k) była najmniejsza możliwa.

Podaj x_a.

Dane
x_k=15
y_k=-8
c=-28
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 2.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  2 pkt ⋅ Numer: pp-20626 ⋅ Poprawnie: 6/14 [42%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 « Prosta prostopadła do wektora [p,q] przechodzi przez punkt A=(x_A,y_A).

Wyznacz pole trójkąta ograniczonego przez tę prostą i osie układu współrzednych.

Dane
x_A=4
y_A=4
u_1=4
u_2=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  2 pkt ⋅ Numer: pp-20627 ⋅ Poprawnie: 35/297 [11%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są wierzchołkami trójkąta. Uzasadnij, że trójkąta ABC jest prostokątny.

Wyznacz pole koła opisanego na tym trójkącie.

Dane
x_a=-3
y_a=-3
x_b=3
y_b=-5
x_c=-1
y_c=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
 Prosta ax+y+c=0 zawiera środkową CD tego trójkąta.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pp-20628 ⋅ Poprawnie: 5/19 [26%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta równobocznego.

Oblicz pole powierzchni trójkąta ABC.

Dane
x_a=5
y_a=0
x_b=9
y_b=0
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (1 pkt)
 Trzeci wierzchołek tego trójkąta ma współrzędne C=(x_c,y_c).

Podaj najmniejsze możliwe y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20632 ⋅ Poprawnie: 17/27 [62%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dany jest trójkąt równoramienny o wierzchołkach A=(1,-5), B=(8,-1) i C=(2,3).

Oblicz długość ramienia tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20620 ⋅ Poprawnie: 2/15 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Na trójkącie prostokątnym o wierzchołkach A=(-2,-2), B=(14,10) i C=(2,26) opisano okrąg, a na tym okręgu opisano trójkąt równoboczny.

Oblicz jego pole powierzchni.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20621 ⋅ Poprawnie: 20/44 [45%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Wierzchołkiem trójkąta równobocznego ABC jest punkt A=(-2,-2), a środkiem okręgu wpisanego w ten trójkąt punkt S=(14,10).

Oblicz P_{ABC}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20622 ⋅ Poprawnie: 9/16 [56%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Prosta y=ax+b jest osią symetrii trójkąta o wierzchołkach A=(3,-6), B=(7,-10) i C=(9,-4).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20624 ⋅ Poprawnie: 14/67 [20%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prosta k przechodząca przez punkt C=(12,16) przecina osie układu współrzędnych w punktach A i B=(x_b,y_b) i jest prostopadła o odcinka OC:

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Oblicz |AB|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  3 pkt ⋅ Numer: pp-20813 ⋅ Poprawnie: 77/334 [23%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 (1 pkt) Punkty A=(x_A, y_A), B=(x_B, y_B) i C=(x_C, y_C) są wierzchołkami trójkąta równoramiennego.

Jaką długość ma najdłuższy bok tego trójkąta?

Dane
x_A=-3
y_A=1
x_B=5
y_B=-7
x_C=6
y_C=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 (1 pkt) Punkt D=(x_D, y_D) jest środkiem boku AB tego trójkąta.

Podaj sumę jego współrzędnych, czyli x_D+y_D.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (1 pkt)
 (1 pkt) Prosta określona równaniem y=x+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  2 pkt ⋅ Numer: pp-20609 ⋅ Poprawnie: 10/54 [18%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Na prostej o równaniu y=2x leży wierzchołek D rombu ABCD, w którym A=(5,-4) i C=(7,1). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  2 pkt ⋅ Numer: pp-20610 ⋅ Poprawnie: 6/23 [26%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Prosta o równaniu 4x+by+c=0 zawiera przekątną BD rombu o wierzchołkach A=(7,-7) i C=(3,0).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 14.  2 pkt ⋅ Numer: pp-20611 ⋅ Poprawnie: 0/13 [0%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Prosta y-4=0 zawiera jeden z wierzchołków rombu o wierzchołkach A=(6,-6) i C=(12,0). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara)

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 14.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 15.  2 pkt ⋅ Numer: pp-20612 ⋅ Poprawnie: 24/81 [29%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Przekątne rombu o wierzchołkach A=(15,8) i B=(-1,-5) przecinają się w punkcie S=(3,-8).

Oblicz pole powierzchni tego rombu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 15.2 (1 pkt)
 Oblicz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 16.  2 pkt ⋅ Numer: pp-20613 ⋅ Poprawnie: 1/20 [5%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 » Dwa sąsiednie boki równoległoboku ABCD zawarte są w prostych 5x-2y-62=0 i x+2y+2=0 i mają wspólny punkt B. Przekątne tego równoległoboku przecinają się w punkcie O=\left(\frac{28}{3},-\frac{21}{8}\right). Wyznacz równanie boku AD:y=ax+b (odwrotnie do ruchu wskazówek zegara).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 16.2 (1 pkt)
 Bok CD zawiera się w prostej o równaniu CD:y=cx+d.

Podaj d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 17.  2 pkt ⋅ Numer: pp-20614 ⋅ Poprawnie: 11/60 [18%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 » Trzy kolejne wierzchołki równoległoboku mają współrzędne: A=(3,-5), B=(7,-1) i C=(6,4). Bok CD tego równoległoboku zawarty jest w prostej o równaniu CD:x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 17.2 (1 pkt)
 Oblicz pole powierzchni tego równoległoboku.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 18.  2 pkt ⋅ Numer: pp-20615 ⋅ Poprawnie: 3/11 [27%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Trzy wierzchołki równoległoboku ABCD mają współrzędne A=\left(\frac{17}{2},-8\right), B=(x_b,y_b) i D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara). Bok BC tego równoległoboku zawarty jest w prostej o równaniu y=-x+\frac{15}{2}, zaś bok CD w prostej o równaniu y=3x-12.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 18.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 19.  3 pkt ⋅ Numer: pp-20618 ⋅ Poprawnie: 7/76 [9%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Podstawę trapezu równoramiennego ABCD wyznaczają punkty A=(3,-6) i B=(11,-2), zaś C=(5,1) jest jednym z jego pozostałych wierzchołków. Wyznacz równanie osi symetrii y=ax+b tego trapezu.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 19.2 (1 pkt)
 Wierzchołek D tego trapezu ma współrzędne D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 19.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 20.  2 pkt ⋅ Numer: pp-20634 ⋅ Poprawnie: 3/9 [33%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Przekątne wielokąta o wierzchołkach A=(3,-7), B=(6,-5), C=(8,3), D=(5,2) przecinają się w punkcie o współrzędnych S=(x,y).

Podaj x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 20.2 (1 pkt)
 Podaj y.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 21.  4 pkt ⋅ Numer: pp-30216 ⋅ Poprawnie: 0/14 [0%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Punkt C=(x_c,y_c) neleży do symetralnej odcinka AB, gdzie A=(x_a,y_a) i B=(x_b,y_b). Wyznacz współrzedne tego punktu wiedząc, że P_{\triangle ABC}=30.

Podaj najmniejsze możliwe x_c.

Dane
x_a=3
y_a=-1
x_b=9
y_b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 21.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 21.3 (2 pkt)
 Wyznacz obwód trójkąta ABC.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 22.  4 pkt ⋅ Numer: pp-30227 ⋅ Poprawnie: 2/17 [11%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 » Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,0) są wierzchołkami trójkąta ABC, przy czym P_{\triangle ABC}=49.

Podaj najmniejsze możliwe x_c.

Dane
x_a=7
y_a=-8
x_b=16
y_b=-18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 22.2 (2 pkt)
 Podaj największe możliwe x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 23.  4 pkt ⋅ Numer: pp-30307 ⋅ Poprawnie: 2/12 [16%] Rozwiąż 
Podpunkt 23.1 (2 pkt)
 W układzie współrzędnych punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta ABC. Wierzchołek C tego trójkąta leży na prostej o równaniu y=ax+b. Oblicz współrzędne punktu C=(x_c,y_c), dla którego kąt ABC jest prosty.

Podaj najmniejsze możliwe x_c.

Dane
x_a=8
y_a=1
x_b=14
y_b=3
a=2
b=-7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 23.2 (2 pkt)
 Podaj najmniejsze możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 24.  4 pkt ⋅ Numer: pp-30235 ⋅ Poprawnie: 2/7 [28%] Rozwiąż 
Podpunkt 24.1 (2 pkt)
 Przez punkt (36,9) poprowadzono prostą, która wraz z osiami układu tworzy trójkąt o polu powierzchni 648 i kąt rozwarty z dodatnią półosią osi Ox. Prosta ta przecięła oś Ox w punkcie A=(x_a, 0).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 24.2 (2 pkt)
 Prosta ta przecięła oś Oy w punkcie B=(0, y_b).
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 25.  4 pkt ⋅ Numer: pp-30237 ⋅ Poprawnie: 0/11 [0%] Rozwiąż 
Podpunkt 25.1 (2 pkt)
 « Punkt A należy do prostej o równaniu x=5 oraz B=(5,-9) i C=(9,-7). Trójkąt ABC jest prostokątny, a prosty jest kąt przy wierzchołku C. Wyznacz punkt A=(x_a,y_a).

Podaj y_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 25.2 (2 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 26.  4 pkt ⋅ Numer: pp-30240 ⋅ Poprawnie: 0/19 [0%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 » Punkty A=(-3,-1), B=(9,3) i C=(3,7) sa wierzchołkami trójkąta. Wysokość tego trójkąta opuszczona z wierzchołka C przecięła bok AB w punkcie D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 26.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 26.3 (1 pkt)
 Prosta o równaniu 10x+by+c=0 jest równoległa do boku BC trójkąta i przechodzi przez punkt D.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 26.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 27.  4 pkt ⋅ Numer: pp-30217 ⋅ Poprawnie: 1/4 [25%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 » Punkty A=(4,0), B=(0,3) i C=(2,-1) są wierzchołkami trójkąta.

Oblicz sinus najmniejszego kąta tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 27.2 (1 pkt)
 Prosta y=ax+b zawiera wysokość tego trójkąta opuszczoną z wierzchołka kąta prostego i przecina przeciwprostokątną tego trójkąta w punkcie D=(x_d,y_d).

Wyznacz b

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 27.3 (1 pkt)
 Podaj x_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 27.4 (1 pkt)
 Podaj y_d
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 28.  4 pkt ⋅ Numer: pp-30218 ⋅ Poprawnie: 1/11 [9%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Punkty B=(7,4) i C=(7,-4) są dwoma wierzchołkami trójkąta prostokątnego ABC o kącie prostym przy wierzchołku A. Przyprostokątna AC zawiera się w prostej x-2y-15=0. Oblicz współrzędne punktu A=(x_a,y_a).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 28.2 (1 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 28.3 (1 pkt)
 Podaj |AC|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 28.4 (1 pkt)
 Prosta y=ax+b zawiera środkową AD tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 29.  4 pkt ⋅ Numer: pp-30219 ⋅ Poprawnie: 0/29 [0%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 » W trójkącie ABC punkty A=(0,-2) i B=(10,-2) są końcami przeciwprostokątnej, natomiast punkt C leży na prostej o równaniu x-y=0. Wyznacz współrzędne punktu C=(x_c,y_c).

Podaj najmniejsze możliwe y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 29.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 29.3 (2 pkt)
 Symetralna przeciwprostokątnej wyznaczonego trójkąta o mniejszym polu powierzchni przecięła bok BC w punkcie D=(x_d,y_d).

Podaj y_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 30.  4 pkt ⋅ Numer: pp-30221 ⋅ Poprawnie: 1/12 [8%] Rozwiąż 
Podpunkt 30.1 (2 pkt)
 » Prosta x-2y-13=0 zawiera podstawę AB trójkąta równoramiennego ABC o wierzchołkach A=(7,-3) oraz C=(6,5). Prosta CD:y=ax+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 30.2 (1 pkt)
 Wyznacz współrzędne wierzchołka B=(x_b,y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 30.3 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 31.  4 pkt ⋅ Numer: pp-30222 ⋅ Poprawnie: 2/4 [50%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Punkty A=(3,-8) i B=(0,-2) wyznaczają podstawę trójkąta równoramiennego ABC. Prosta o równaniu y=x-11 zawiera bok AC tego trójkąta. Wyznacz C=(x_c, y_c).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 31.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 31.3 (2 pkt)
 Oś symetrii tego trójkąta ma równanie y=ax+b.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 32.  3 pkt ⋅ Numer: pp-30225 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 32.1 (1 pkt)
 » Wysokość opuszczona z wierzchołka C trójkąta równoramiennego ABC o podstawie AB zawiera się w prostej x+2y-23=0. Wiadomo, że A=(0,-16) i C=(3,10). Podstawa AB tego trójkata zawiera się w prostej o równaniu ax+y+c=0.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 32.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 32.3 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 33.  4 pkt ⋅ Numer: pp-30226 ⋅ Poprawnie: 3/8 [37%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 » Punkty B=(6,-5) i C=(16,-16) są wierzchołkami trójkąta ABC. W prostej 7x-y-47=0 zawiera się bok AB, zaś w prostej 2x+y-16=0 bok AC tego trójkąta. Z wierzchołka B opuszczono wysokość, która przecięła bok AC w punkcie E=(x_e, y_e).

Wyznacz x_e.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 33.2 (1 pkt)
 Wyznacz y_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 33.3 (2 pkt)
 Wyznacz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 34.  4 pkt ⋅ Numer: pp-30228 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Prosta k przechodzi przez punkty B=(1,-2) i P=(11,10). Prosta l:2x+y-18=0 przecina prostą k w punkcie A=(x_a,y_a) i prostą o równaniu y=-2 w punkcie C=(x_c,-2).

Oblicz x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 34.2 (1 pkt)
 Oblicz y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 34.3 (1 pkt)
 Oblicz x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 34.4 (1 pkt)
 Wyznacz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 35.  4 pkt ⋅ Numer: pp-30230 ⋅ Poprawnie: 0/7 [0%] Rozwiąż 
Podpunkt 35.1 (1 pkt)
 Punkty A=(3,-2), B=(8,4) i C=(6,7) są wierzchołkami trójkąta. Z punktu B poprowadzono wysokość trójkąta, która przecięła bok AC w punkcie D=(x_d,y_d). Wysokość ta opisana jest wzorem BD:y=ax+b

Wyznacz b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 35.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 35.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 35.4 (1 pkt)
 Prosta k:y=a_1x+b_1 przechodzi przez punkt D i jest równoległa do boku AB trójkąta.

Podaj b_1.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 36.  4 pkt ⋅ Numer: pp-30231 ⋅ Poprawnie: 0/10 [0%] Rozwiąż 
Podpunkt 36.1 (1 pkt)
 « Prosta k przechodzi przez punkty A=(9,-1) i B=(15,-3). Punkt D=(7,2) jest środkiem odcinka AC, a prosta l:ax+y+c=0 wysokością trójkąta ABC opuszczoną z punktu C, która przecina prostą k w punkcie E=(x_e,y_e).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.3 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.4 (1 pkt)
 Podaj y_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 37.  4 pkt ⋅ Numer: pp-30232 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 37.1 (1 pkt)
 » Punkty A=(3,-2), B=(14,0) i C=(4,5) są wierzchołkami trójkąta ABC. Prosta CD jest wysokością tego trójkąta, D=(x_d,y_d)\in AB. Prosta k:x+by+c=0 przechodzi przez punkt D i k\parallel BC.

Wyznacz x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 37.2 (1 pkt)
 Wyznacz y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 37.3 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 37.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 38.  4 pkt ⋅ Numer: pp-30201 ⋅ Poprawnie: 3/165 [1%] Rozwiąż 
Podpunkt 38.1 (2 pkt)
 » Dane są punkty M=(1,0) oraz N=(9,3). Symetralna odcinka MN opisana jest wzorem x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 38.2 (1 pkt)
 Symetralna odcinka MN przecina prostą 3x-2y-24=0 w punkcie P=(x_p,y_p).

Podaj x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 38.3 (1 pkt)
 Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 39.  4 pkt ⋅ Numer: pp-30199 ⋅ Poprawnie: 1/8 [12%] Rozwiąż 
Podpunkt 39.1 (1 pkt)
 Punkty A=\left(2,-\frac{5}{2}\right) i B=\left(6,-\frac{1}{2}\right) są kolejnymi wierzchołkami kwadratu ABCD, którego wierzchołki oznaczono przeciwnie do ruchu wskazówek zegara. Przekątna AC tego kwadratu opisana jest równaniem AC:6x+by+c=0. Wyznacz D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 39.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 39.3 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 39.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 40.  4 pkt ⋅ Numer: pp-30200 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 40.1 (1 pkt)
 Punkt A=\left(1,\frac{1}{2}\right) jest wierzchołkiem kwadratu ABCD o środku symetrii O=\left(\frac{21}{4},-\frac{5}{8}\right) (odwrotnie do ruchu wskazówek zegara). Wyznacz C=(x_c,y_c) oraz D=(x_d,y_d).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 40.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 40.3 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 40.4 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 41.  4 pkt ⋅ Numer: pp-30205 ⋅ Poprawnie: 0/16 [0%] Rozwiąż 
Podpunkt 41.1 (1 pkt)
 Punkty A=(6,-2) i D=(4,2) są wierzchołkami rombu (odwrotnie do ruchu wskazówek zegara), którego przekątna AC zawiera się w prostej o równaniu y=2x-14.

Przekątna BC tego rombu opisana jest równaniem BC:y=ax+b. Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 41.2 (1 pkt)
 Punkt S=(x_s,y_s) jest punktem przecięcia przekątnych tego rombu.

Podaj y_s.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 41.3 (1 pkt)
 Wyznacz współrzędne wierzchołeka B=(x_b,y_b) tego rombu.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 41.4 (1 pkt)
 Wyznacz pole powierzchni tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 42.  4 pkt ⋅ Numer: pp-30206 ⋅ Poprawnie: 0/44 [0%] Rozwiąż 
Podpunkt 42.1 (1 pkt)
 » W prostej o równaniu 2x-y+3=0 zawiera się przekątna AC rombu ABCD (odwrotnie do ruchu wskazówek zegara), przy czym A=(3,-6) i D=(-2,4).

Przekątna BD tego rombu opisana jest równaniem BD:x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 42.2 (1 pkt)
 Wierzchołek C tego rombu ma współrzędne C=(x_c,y_c).

Podaj y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 42.3 (1 pkt)
 Wyznacz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 42.4 (1 pkt)
 Wyznacz pole powierzchni tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 43.  4 pkt ⋅ Numer: pp-30209 ⋅ Poprawnie: 1/30 [3%] Rozwiąż 
Podpunkt 43.1 (1 pkt)
 » Prosta y=-\frac{1}{5}x+\frac{7}{2} zawiera bok AB równoległoboku ABCD, a prosta y=-7x+\frac{143}{2} zawiera bok AD tego równoległoboku. Przekątne tego równoległoboku przecinają się w punkcie S=\left(\frac{11}{2},-1\right). Wierzchołek C ma współrzędne C=(x_c,y_c) (odwrotnie do ruchu wskazówek zegara).

Podaj y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 43.2 (1 pkt)
 Wierzchołek B ma współrzędne B=(x_b,y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 43.3 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 43.4 (1 pkt)
 Przekątna BD tego równoległoboku opisana jest równaniem BD:9x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 44.  4 pkt ⋅ Numer: pp-30211 ⋅ Poprawnie: 0/4 [0%] Rozwiąż 
Podpunkt 44.1 (1 pkt)
 » Prosta x+2y+1=0 zawiera podstawę trapezu równoramiennego AB, a prosta 2x-y-13=0 jest osią symetrii tego trapezu. Wierzchołki trapezu mają współrzędne: A=(9,-5), B=(x_b,y_b), D=(0,-5), zaś prosta zawierająca bok CD równanie CD:y=ax+b.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 44.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 44.3 (1 pkt)
 Podaj a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 44.4 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 45.  4 pkt ⋅ Numer: pp-30212 ⋅ Poprawnie: 0/4 [0%] Rozwiąż 
Podpunkt 45.1 (1 pkt)
 Dane są kolejne wierzchołki trapezu A=(3,-6), B=(11,0), C=(5,3) i D=(1,0). Bok CD tego trapezu zawiera sie w prostej 3x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.2 (1 pkt)
 Wysokość tego trapezu opuszczona z wierzchołka D zawiera się w prostej o równaniu y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.3 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.4 (1 pkt)
 Wyznacz pole powierzchni tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 46.  4 pkt ⋅ Numer: pp-30213 ⋅ Poprawnie: 0/9 [0%] Rozwiąż 
Podpunkt 46.1 (1 pkt)
 » Wierzchołki trapezu ABCD mają współrzędne: A=(7,-5), B=(8,-1), C=(4,0) i D=(-1,-3). Wysokość tego trapezu opuszczona z wierzchołka C zawiera się w prostej o równaniu ax+y+c=0 i przecina podstawę AD w punkcie E.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 46.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 46.3 (1 pkt)
 Oblicz pole powierzchni trójkąta DEC.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 46.4 (1 pkt)
 Oblicz pole powierzchni trapezu ABCD.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 47.  4 pkt ⋅ Numer: pp-30214 ⋅ Poprawnie: 0/8 [0%] Rozwiąż 
Podpunkt 47.1 (1 pkt)
 Punkty A=(5,-4), B=(11,-2), C=(1,4) i D=(-2,3) są kolejnymi wierzchołkami trapezu o podstawach AB i CD. Ramiona tego trapezu przedłużono do punktu ich przecięcia w punkcie O=(x_o,y_o), a następnie narysowano okrąg o środku w punkcie O, do którego podstawa AB tego trapezu jest styczną w punkcie E=(x_e,y_e).

Podaj x_o.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 47.2 (1 pkt)
 Podaj y_o.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 47.3 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 47.4 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 48.  4 pkt ⋅ Numer: pp-30196 ⋅ Poprawnie: 0/9 [0%] Rozwiąż 
Podpunkt 48.1 (2 pkt)
 Dane są punkty A=(4,2), B=(1,6) i C=(0,2). Odcinki AB i CD są podstawami trapezu ABCD. Wiedząc, że przekątne tego trapezu są prostopadłe, wyznacz współrzędne wierzchołka D=(x, y).

Podaj x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 48.2 (2 pkt)
 Podaj y.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 49.  5 pkt ⋅ Numer: pp-30416 ⋅ Poprawnie: 35/62 [56%] Rozwiąż 
Podpunkt 49.1 (3 pkt)
 Punkty A=(-22,10) i B=(5,1) są wierzchołkami trójkąta równoramiennego ABC, w którym |AC|=|BC|. Wierzchołek C należy do prostej określonej równaniem x=-2.

Oblicz współrzędne wierzchołka C=(-2, y_C).
Podaj współrzędną y_C.

Odpowiedź:
y_C=
(wpisz dwie liczby całkowite)
Podpunkt 49.2 (2 pkt)
 Oblicz obwód trójkąta ABC.
Odpowiedź:
L_{\triangle ABC}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 50.  5 pkt ⋅ Numer: pp-30417 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 50.1 (2 pkt)
 Podstawa AB trójkąta równoramiennego ABC jest zawarta w prostej o równaniu y=-2x+10. Wierzchołki B i C mają współrzędne B=(1,8) i C=(-4,1).

Oblicz współrzędne środka D=(x_D,y_D) odcinka AB.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Podpunkt 50.2 (2 pkt)
 Oblicz współrzędne wierzchołka A=(x_A, y_A).
Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Podpunkt 50.3 (1 pkt)
 Oblicz pole trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm