Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Zadania różne z geometrii analitycznej

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  2 pkt ⋅ Numer: pp-20602 ⋅ Poprawnie: 28/152 [18%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Prosta y=ax+b jest symetralną odcinka AB, przy czym A=(x_a,y_a) i B=(x_b, y_b).

Podaj x_b.

Dane
a=2
b=-5
x_a=-\frac{7}{2}=-3.500000000000000
y_a=-\frac{5}{2}=-2.500000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 1.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  2 pkt ⋅ Numer: pp-20607 ⋅ Poprawnie: 24/63 [38%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Prosta y=-2x-22 jest styczną do okręgu o środku w punkcie S=(-9,0). Wyznacz współrzędne punktu styczności P=(x_p,y_p).

Podaj x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 2.2 (1 pkt)
 Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  4 pkt ⋅ Numer: pp-20625 ⋅ Poprawnie: 29/80 [36%] Rozwiąż 
Podpunkt 3.1 (4 pkt)
 Oblicz pole powierzchni figury ograniczonej przez wykres funkcji f(x)=ax+b oraz osie układu współrzędnych.
Dane
a=\frac{1}{2}=0.500000000000000
b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  2 pkt ⋅ Numer: pp-20627 ⋅ Poprawnie: 32/269 [11%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są wierzchołkami trójkąta. Uzasadnij, że trójkąta ABC jest prostokątny.

Wyznacz pole koła opisanego na tym trójkącie.

Dane
x_a=-11
y_a=-4
x_b=-5
y_b=-6
x_c=-9
y_c=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (1 pkt)
 Prosta ax+y+c=0 zawiera środkową CD tego trójkąta.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  2 pkt ⋅ Numer: pp-20628 ⋅ Poprawnie: 5/19 [26%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkty A=(x_a,y_a) i B=(x_b,y_b) są wierzchołkami trójkąta równobocznego.

Oblicz pole powierzchni trójkąta ABC.

Dane
x_a=-3
y_a=-1
x_b=1
y_b=-1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (1 pkt)
 Trzeci wierzchołek tego trójkąta ma współrzędne C=(x_c,y_c).

Podaj najmniejsze możliwe y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20632 ⋅ Poprawnie: 17/27 [62%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Dany jest trójkąt równoramienny o wierzchołkach A=(-8,-6), B=(-1,-2) i C=(-7,2).

Oblicz długość ramienia tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pp-20621 ⋅ Poprawnie: 10/18 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Wierzchołkiem trójkąta równobocznego ABC jest punkt A=(-2,-4), a środkiem okręgu wpisanego w ten trójkąt punkt S=(6,11).

Oblicz P_{ABC}.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20622 ⋅ Poprawnie: 9/16 [56%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Prosta y=ax+b jest osią symetrii trójkąta o wierzchołkach A=(-9,-7), B=(-5,-11) i C=(-3,-5).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20624 ⋅ Poprawnie: 14/67 [20%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Prosta k przechodząca przez punkt C=(15,8) przecina osie układu współrzędnych w punktach A i B=(x_b,y_b) i jest prostopadła o odcinka OC:

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Oblicz |AB|.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  2 pkt ⋅ Numer: pp-20630 ⋅ Poprawnie: 1/96 [1%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Trójkąt równoramienny o podstawie AB ma wierzchołki A=(4,-3) i B=(12,-3). Wierzchołek C tego trójkąta należy do prostej o równaniu y=x+\frac{17}{2}. Wyznacz współrzędne wierzchołka C=(x_C,y_C).

Podaj y_C.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  2 pkt ⋅ Numer: pp-20631 ⋅ Poprawnie: 33/187 [17%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 «« Wierzchołkami trójkąta są punkty A=(-7,-8), B=(1,-6) i C=(-12,3), a punkt D jest środkiem boku AB. Wyznacz równanie prostej CD: y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  2 pkt ⋅ Numer: pp-20609 ⋅ Poprawnie: 10/54 [18%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Na prostej o równaniu y=2x+17 leży wierzchołek D rombu ABCD, w którym A=(-4,-5) i C=(-2,0). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  2 pkt ⋅ Numer: pp-20610 ⋅ Poprawnie: 6/23 [26%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Prosta o równaniu 4x+by+c=0 zawiera przekątną BD rombu o wierzchołkach A=(-1,-8) i C=(-5,-1).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 14.  2 pkt ⋅ Numer: pp-20611 ⋅ Poprawnie: 0/13 [0%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Prosta y-3=0 zawiera jeden z wierzchołków rombu o wierzchołkach A=(-3,-7) i C=(12,0). Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) tego rombu (odwrotnie do ruchu wskazówek zegara)

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 14.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 15.  2 pkt ⋅ Numer: pp-20612 ⋅ Poprawnie: 24/81 [29%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Przekątne rombu o wierzchołkach A=(3,7) i B=(-13,-6) przecinają się w punkcie S=(-9,-9).

Oblicz pole powierzchni tego rombu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 15.2 (1 pkt)
 Oblicz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 16.  2 pkt ⋅ Numer: pp-20613 ⋅ Poprawnie: 1/20 [5%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 » Dwa sąsiednie boki równoległoboku ABCD zawarte są w prostych 5x-2y-4=0 i x+2y+16=0 i mają wspólny punkt B. Przekątne tego równoległoboku przecinają się w punkcie O=\left(-\frac{8}{3},-\frac{29}{8}\right). Wyznacz równanie boku AD:y=ax+b (odwrotnie do ruchu wskazówek zegara).

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 16.2 (1 pkt)
 Bok CD zawiera się w prostej o równaniu CD:y=cx+d.

Podaj d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 17.  2 pkt ⋅ Numer: pp-20615 ⋅ Poprawnie: 3/11 [27%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Trzy wierzchołki równoległoboku ABCD mają współrzędne A=\left(-\frac{7}{2},-9\right), B=(x_b,y_b) i D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara). Bok BC tego równoległoboku zawarty jest w prostej o równaniu y=-x-\frac{11}{2}, zaś bok CD w prostej o równaniu y=3x+23.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 17.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 18.  3 pkt ⋅ Numer: pp-20616 ⋅ Poprawnie: 12/57 [21%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 W trapezie ABCD dane są wierzchołki: A=(-11,-4), B=(-7,-2) i C=(-10,2). Kąty przy wierzchołkach A i D=(x_d,y_d) są proste. Prosta zawierająca podstawę CD tego trapezu ma równanie BD:y=ax+b.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 18.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 18.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 19.  4 pkt ⋅ Numer: pp-20617 ⋅ Poprawnie: 0/12 [0%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A=(-1,-3) i B=(1,-1) wyznaczają jedną z podstaw trapezu ABCD. Punkt O=\left(-7,-\frac{9}{2}\right) jest środkiem drugiej podstawy CD tego trapezu, przy czym |CD|=2\cdot|AB|.
Wyznacz C=(x_c,y_c) i D=(x_d,y_d).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 19.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 19.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 19.4 (1 pkt)
 Oblicz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 20.  3 pkt ⋅ Numer: pp-20618 ⋅ Poprawnie: 7/76 [9%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Podstawę trapezu równoramiennego ABCD wyznaczają punkty A=(-9,-7) i B=(-1,-3), zaś C=(-7,0) jest jednym z jego pozostałych wierzchołków. Wyznacz równanie osi symetrii y=ax+b tego trapezu.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 20.2 (1 pkt)
 Wierzchołek D tego trapezu ma współrzędne D=(x_d,y_d).

Podaj x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 20.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 21.  3 pkt ⋅ Numer: pp-20856 ⋅ Poprawnie: 49/730 [6%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 (1 pkt) Punkty o współrzędnych A=(-8,-1) i C=(-3,5) są przeciwległymi wierzchołkami trapezu równoramiennego ABCD (odwrotnie do ruchu wskazówek zegara). Podstawa AB tego trapezu zawiera się w prostej o równaniu y=\frac{1}{2}x+3, a osią symetrii tego trapezu jest prosta o równaniu y=-2x-7.

Wyznacz punkt B=(x_b,y_b).
Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 21.2 (1 pkt)
 (1 pkt) Wyznacz punkt D=(x_d,y_d).
Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 21.3 (1 pkt)
 (1 pkt) Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 22.  2 pkt ⋅ Numer: pp-20633 ⋅ Poprawnie: 11/126 [8%] Rozwiąż 
Podpunkt 22.1 (2 pkt)
 Punkty A=(-9,-5), B=(0,-7), C=(4,-1), D=(-3,4) i E=(-8,2) są wierzchołkami wielokąta.

Oblicz pole powierzchni tego wielokąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 23.  2 pkt ⋅ Numer: pp-20634 ⋅ Poprawnie: 3/9 [33%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Przekątne wielokąta o wierzchołkach A=(-5,-8), B=(-2,-6), C=(0,2), D=(-3,1) przecinają się w punkcie o współrzędnych S=(x,y).

Podaj x.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 23.2 (1 pkt)
 Podaj y.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 24.  4 pkt ⋅ Numer: pp-30216 ⋅ Poprawnie: 0/14 [0%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Punkt C=(x_c,y_c) neleży do symetralnej odcinka AB, gdzie A=(x_a,y_a) i B=(x_b,y_b). Wyznacz współrzedne tego punktu wiedząc, że P_{\triangle ABC}=30.

Podaj najmniejsze możliwe x_c.

Dane
x_a=-5
y_a=-2
x_b=1
y_b=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 24.2 (1 pkt)
 Podaj największe możliwe y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 24.3 (2 pkt)
 Wyznacz obwód trójkąta ABC.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 25.  4 pkt ⋅ Numer: pp-30227 ⋅ Poprawnie: 2/17 [11%] Rozwiąż 
Podpunkt 25.1 (2 pkt)
 » Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,0) są wierzchołkami trójkąta ABC, przy czym P_{\triangle ABC}=49.

Podaj najmniejsze możliwe x_c.

Dane
x_a=-1
y_a=-8
x_b=8
y_b=-18
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 25.2 (2 pkt)
 Podaj największe możliwe x_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 26.  4 pkt ⋅ Numer: pp-30235 ⋅ Poprawnie: 2/7 [28%] Rozwiąż 
Podpunkt 26.1 (2 pkt)
 Przez punkt (8,2) poprowadzono prostą, która wraz z osiami układu tworzy trójkąt o polu powierzchni 32 i kąt rozwarty z dodatnią półosią osi Ox. Prosta ta przecięła oś Ox w punkcie A=(x_a, 0).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 26.2 (2 pkt)
 Prosta ta przecięła oś Oy w punkcie B=(0, y_b).
Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 27.  4 pkt ⋅ Numer: pp-30236 ⋅ Poprawnie: 5/14 [35%] Rozwiąż 
Podpunkt 27.1 (2 pkt)
 » Proste o równaniach x-y+3=0, x+y+21=0 oraz x-7y+21=0 tworzą trójkąt.

Oblicz długość najkrótszego boku tego trójkąta.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 27.2 (2 pkt)
 Oblicz długość najdłuższego boku tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 28.  4 pkt ⋅ Numer: pp-30237 ⋅ Poprawnie: 0/11 [0%] Rozwiąż 
Podpunkt 28.1 (2 pkt)
 « Punkt A należy do prostej o równaniu x=-4 oraz B=(-4,-10) i C=(0,-8). Trójkąt ABC jest prostokątny, a prosty jest kąt przy wierzchołku C. Wyznacz punkt A=(x_a,y_a).

Podaj y_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 28.2 (2 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 29.  4 pkt ⋅ Numer: pp-30238 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 29.1 (2 pkt)
 Dane są punkty A=(0,-5), B=(-6,1) i C=(-9,-8), które są wierzchołkami trójkąta, a prosta o równaniu x+by+c=0 jest osią symetrii tego trójkąta.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 29.2 (2 pkt)
 Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 30.  4 pkt ⋅ Numer: pp-30239 ⋅ Poprawnie: 2/8 [25%] Rozwiąż 
Podpunkt 30.1 (2 pkt)
 Dane sa punkty A=(-2,-4), B=(12,-4) i C=(-2,m). Okrąg wpisany w trójkąt ABC ma promień o długości r=6.

Podaj najmniejsze możliwe m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 30.2 (2 pkt)
 Podaj największe możliwe m.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 31.  4 pkt ⋅ Numer: pp-30220 ⋅ Poprawnie: 2/8 [25%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Punkty A=(-5,-9) i B=(0,-2) tworzą ramię trójkąta równoramiennego, a oś symetrii tego trójkąta ma równanie x-2y-4=0. Wyznacz współrzędne wierzchołka C=(x_c, y_c) tego trójkąta.

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 31.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 31.3 (1 pkt)
 Wyznacz równanie boku AC:ax+y+c=0.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 31.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 32.  4 pkt ⋅ Numer: pp-30221 ⋅ Poprawnie: 1/12 [8%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 » Prosta x-2y-7=0 zawiera podstawę AB trójkąta równoramiennego ABC o wierzchołkach A=(-1,-4) oraz C=(-2,4). Prosta CD:y=ax+b jest osią symetrii tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 32.2 (1 pkt)
 Wyznacz współrzędne wierzchołka B=(x_b,y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 32.3 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 33.  4 pkt ⋅ Numer: pp-30223 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 Proste \sqrt{3}x+3y=-6-2\sqrt{3} i x=-2 zawierają odpowiednio boki AC i BC trójkąta równobocznego ABC, w którym punkt P=\left(-\frac{1}{2},\frac{-4-3\sqrt{3}}{2}\right) jest środkiem boku AB(odwrotnie do ruchu wskazówek zegara). Wyznacz punkt B=(x_b, y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 33.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 33.3 (2 pkt)
 Oblicz długość wysokości tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 34.  4 pkt ⋅ Numer: pp-30224 ⋅ Poprawnie: 0/13 [0%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 » W prostej o równaniu 3x-4y-17=0 zawiera się przeciwprostokątna AB trójkąta ABC, przy czym A=(-5,-8), C=(-2,-4) oraz B=(x_b,y_b). Prosta o równaniu 3x+by+c=0 zawiera bok BC tego trójkąta.

Podaj b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 34.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 34.3 (1 pkt)
 Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 34.4 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 35.  3 pkt ⋅ Numer: pp-30225 ⋅ Poprawnie: 1/5 [20%] Rozwiąż 
Podpunkt 35.1 (1 pkt)
 » Wysokość opuszczona z wierzchołka C trójkąta równoramiennego ABC o podstawie AB zawiera się w prostej x+2y-13=0. Wiadomo, że A=(-8,-17) i C=(-5,9). Podstawa AB tego trójkata zawiera się w prostej o równaniu ax+y+c=0.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 35.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 35.3 (1 pkt)
 Oblicz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 36.  4 pkt ⋅ Numer: pp-30226 ⋅ Poprawnie: 3/8 [37%] Rozwiąż 
Podpunkt 36.1 (1 pkt)
 » Punkty B=(-2,-6) i C=(8,-17) są wierzchołkami trójkąta ABC. W prostej 7x-y+8=0 zawiera się bok AB, zaś w prostej 2x+y+1=0 bok AC tego trójkąta. Z wierzchołka B opuszczono wysokość, która przecięła bok AC w punkcie E=(x_e, y_e).

Wyznacz x_e.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.2 (1 pkt)
 Wyznacz y_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.3 (2 pkt)
 Wyznacz P_{\triangle ABC}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 37.  4 pkt ⋅ Numer: pp-30230 ⋅ Poprawnie: 0/7 [0%] Rozwiąż 
Podpunkt 37.1 (1 pkt)
 Punkty A=(-5,-3), B=(0,3) i C=(-2,6) są wierzchołkami trójkąta. Z punktu B poprowadzono wysokość trójkąta, która przecięła bok AC w punkcie D=(x_d,y_d). Wysokość ta opisana jest wzorem BD:y=ax+b

Wyznacz b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 37.2 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 37.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 37.4 (1 pkt)
 Prosta k:y=a_1x+b_1 przechodzi przez punkt D i jest równoległa do boku AB trójkąta.

Podaj b_1.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 38.  4 pkt ⋅ Numer: pp-30231 ⋅ Poprawnie: 0/10 [0%] Rozwiąż 
Podpunkt 38.1 (1 pkt)
 « Prosta k przechodzi przez punkty A=(1,-2) i B=(7,-4). Punkt D=(-1,1) jest środkiem odcinka AC, a prosta l:ax+y+c=0 wysokością trójkąta ABC opuszczoną z punktu C, która przecina prostą k w punkcie E=(x_e,y_e).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 38.2 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 38.3 (1 pkt)
 Podaj x_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 38.4 (1 pkt)
 Podaj y_e.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 39.  4 pkt ⋅ Numer: pp-30232 ⋅ Poprawnie: 0/5 [0%] Rozwiąż 
Podpunkt 39.1 (1 pkt)
 » Punkty A=(-5,-3), B=(6,-1) i C=(-4,4) są wierzchołkami trójkąta ABC. Prosta CD jest wysokością tego trójkąta, D=(x_d,y_d)\in AB. Prosta k:x+by+c=0 przechodzi przez punkt D i k\parallel BC.

Wyznacz x_d.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 39.2 (1 pkt)
 Wyznacz y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 39.3 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 39.4 (1 pkt)
 Podaj c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 40.  4 pkt ⋅ Numer: pp-30201 ⋅ Poprawnie: 3/165 [1%] Rozwiąż 
Podpunkt 40.1 (2 pkt)
 » Dane są punkty M=(-11,-1) oraz N=(-3,2). Symetralna odcinka MN opisana jest wzorem x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 40.2 (1 pkt)
 Symetralna odcinka MN przecina prostą 3x-2y+10=0 w punkcie P=(x_p,y_p).

Podaj x_p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 40.3 (1 pkt)
 Podaj y_p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 41.  4 pkt ⋅ Numer: pp-30200 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 41.1 (1 pkt)
 Punkt A=\left(-7,-\frac{1}{2}\right) jest wierzchołkiem kwadratu ABCD o środku symetrii O=\left(-\frac{11}{4},-\frac{13}{8}\right) (odwrotnie do ruchu wskazówek zegara). Wyznacz C=(x_c,y_c) oraz D=(x_d,y_d).

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 41.2 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 41.3 (1 pkt)
 Podaj x_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 41.4 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 42.  4 pkt ⋅ Numer: pp-30202 ⋅ Poprawnie: 0/6 [0%] Rozwiąż 
Podpunkt 42.1 (1 pkt)
 Do boku CD prostokąta ABCD należy punkt M=\left(-\frac{22}{3},-\frac{5}{3}\right). Ponadto A=(3,-1) i B=(-13,3) (odwrotnie do ruchu wskazówek zegara). Wyznacz równanie prostej CD:y=ax+b.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 42.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 42.3 (1 pkt)
 Wyznacz wierzchołek C=(x_c,y_c) tego prostokąta.

Podaj x_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 42.4 (1 pkt)
 Podaj y_c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 43.  8 pkt ⋅ Numer: pp-30204 ⋅ Poprawnie: 0/31 [0%] Rozwiąż 
Podpunkt 43.1 (2 pkt)
 Punkty C=(-6,7) i D=(-11,-3) są dwoma kolejnymi wierzchołkami prostokąta ABCD, do boku AB którego należy punkt P=\left(-\frac{7}{2},0\right). Wyznacz wierzchołek A=(x_a,y_a) tego prostokąta (odwrotnie do ruchu wskazówek zegara).

Podaj x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 43.2 (2 pkt)
 Podaj y_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 43.3 (2 pkt)
 Przez punkt D i środek boku AB poprowadzono prostą o równaniu y=ax+b.

Wyznacz a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 43.4 (2 pkt)
 Wyznacz b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 44.  4 pkt ⋅ Numer: pp-30206 ⋅ Poprawnie: 0/44 [0%] Rozwiąż 
Podpunkt 44.1 (1 pkt)
 » W prostej o równaniu 2x-y+3=0 zawiera się przekątna AC rombu ABCD (odwrotnie do ruchu wskazówek zegara), przy czym A=(-9,-7) i D=(-14,3).

Przekątna BD tego rombu opisana jest równaniem BD:x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 44.2 (1 pkt)
 Wierzchołek C tego rombu ma współrzędne C=(x_c,y_c).

Podaj y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 44.3 (1 pkt)
 Wyznacz długość obwodu tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 44.4 (1 pkt)
 Wyznacz pole powierzchni tego rombu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 45.  4 pkt ⋅ Numer: pp-30207 ⋅ Poprawnie: 0/21 [0%] Rozwiąż 
Podpunkt 45.1 (1 pkt)
 Na prostej o równaniu x-3y-4=0 leży wierzchołek D rombu ABCD, w którym A=(-15,8) i przekątne przecinają się w punkcie S=(-7,-5). Prosta o równaniu 4x+by+c=0 zawiera przekątną BD tego rombu. Wyznacz wierzchołki B=(x_b,y_b) i D=(x_d,y_d) (odwrotnie do ruchu wskazówek zegara) tego rombu.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.2 (1 pkt)
 Podaj x_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.3 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.4 (1 pkt)
 Wyznacz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 46.  4 pkt ⋅ Numer: pp-30208 ⋅ Poprawnie: 8/41 [19%] Rozwiąż 
Podpunkt 46.1 (1 pkt)
 » Punkty A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c) są trzema kolejnymi wierzchołkami równoległoboku ABCD. Wyznacz D=(x_d,y_d).

Podaj x_d.

Dane
x_a=-9
y_a=1
x_b=-1
y_b=-5
x_c=5
y_c=-2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 46.2 (1 pkt)
 Podaj y_d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 46.3 (2 pkt)
 Wyznacz P_{ABCD}.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 47.  4 pkt ⋅ Numer: pp-30209 ⋅ Poprawnie: 1/30 [3%] Rozwiąż 
Podpunkt 47.1 (1 pkt)
 » Prosta y=-\frac{1}{5}x+\frac{1}{10} zawiera bok AB równoległoboku ABCD, a prosta y=-7x-\frac{27}{2} zawiera bok AD tego równoległoboku. Przekątne tego równoległoboku przecinają się w punkcie S=\left(-\frac{13}{2},-2\right). Wierzchołek C ma współrzędne C=(x_c,y_c) (odwrotnie do ruchu wskazówek zegara).

Podaj y_c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 47.2 (1 pkt)
 Wierzchołek B ma współrzędne B=(x_b,y_b).

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 47.3 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 47.4 (1 pkt)
 Przekątna BD tego równoległoboku opisana jest równaniem BD:9x+by+c=0.

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 48.  4 pkt ⋅ Numer: pp-30211 ⋅ Poprawnie: 0/4 [0%] Rozwiąż 
Podpunkt 48.1 (1 pkt)
 » Prosta x+2y+15=0 zawiera podstawę trapezu równoramiennego AB, a prosta 2x-y+10=0 jest osią symetrii tego trapezu. Wierzchołki trapezu mają współrzędne: A=(-3,-6), B=(x_b,y_b), D=(0,-5), zaś prosta zawierająca bok CD równanie CD:y=ax+b.

Podaj x_b.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 48.2 (1 pkt)
 Podaj y_b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 48.3 (1 pkt)
 Podaj a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 48.4 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 49.  4 pkt ⋅ Numer: pp-30196 ⋅ Poprawnie: 0/9 [0%] Rozwiąż 
Podpunkt 49.1 (2 pkt)
 Dane są punkty A=(3,-4), B=(0,0) i C=(-1,-4). Odcinki AB i CD są podstawami trapezu ABCD. Wiedząc, że przekątne tego trapezu są prostopadłe, wyznacz współrzędne wierzchołka D=(x, y).

Podaj x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 49.2 (2 pkt)
 Podaj y.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 50.  5 pkt ⋅ Numer: pp-30416 ⋅ Poprawnie: 8/21 [38%] Rozwiąż 
Podpunkt 50.1 (3 pkt)
 Punkty A=(-23,7) i B=(4,-2) są wierzchołkami trójkąta równoramiennego ABC, w którym |AC|=|BC|. Wierzchołek C należy do prostej określonej równaniem x=-3.

Oblicz współrzędne wierzchołka C=(-3, y_C).
Podaj współrzędną y_C.

Odpowiedź:
y_C=
(wpisz dwie liczby całkowite)
Podpunkt 50.2 (2 pkt)
 Oblicz obwód trójkąta ABC.
Odpowiedź:
L_{\triangle ABC}= + \cdot
(wpisz trzy liczby całkowite)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm