Punkty A=(x_a,y_a) i
B=(x_b,y_b) są końcami odcinka
AB, a punkt S=(x_s,y_s)
środkiem jednokładności. Wyznacz
A'=(x_{a'},y_{a'})=J^k_S(A) i
B'=(x_{b'},y_{b'})=J^k_S(B).
Dany jest trójkąt ABC, w którym
A=(x_a,y_a), B=(x_b,y_b) i
C=(x_c,y_c). Obrazem trójkąta
ABC w jednokładności o środku
S=(x_s,y_s) i skali ujemnej
k, jest trójkąt A'B'C', w
którym środkowa poprowadzona z wierzchołka A' ma
długość 10.
Dane sa okręgi o_1:x^2+y^2+a_1x+b_1y+c_1=0 oraz
o_2:x^2+y^2+a_2x+b_2y+c_2=0. Wiadomo, że
J^{k}_{S}(o_1)=o_2. Wyznacz środek
S=(x_s,y_s) i skalę k
tej jednokładności.
Podaj ujemną skalę k.
Dane
a_1=-6 b_1=6 c_1=-7 a_2=-54 b_2=24 c_2=473
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
Podaj x_s wyznaczone dla skali dodatniej.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.3 (1 pkt)
Podaj y_s wyznaczone dla skali dodatniej.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 12.4 (1 pkt)
Podaj x_s wyznaczone dla skali ujemnej.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 13.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-30317
Podpunkt 13.1 (2 pkt)
Obrazem odcinka AB w jednokładności o środku
S=(x_s,y_s) i skali k jest
odcinek A_1B_1 taki, że spełnione są warunki:
A=(-6,4), B_1=(-1,4),
\overrightarrow{SA_1}=[3,9] i
\overrightarrow{SB}=[2,1].
Podaj k.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
Podaj x_s+y_s.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Liczba wyświetlonych zadań: 8
Liczba pozostałych zadań dostępnych dla zarejestrowanych nauczycieli: 7