Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@cke-2021-06-pp

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12080  
Podpunkt 1.1 (1 pkt)
 Liczba \sqrt{3}\cdot(\sqrt{3}-\sqrt{10})+\sqrt{10}\cdot(\sqrt{3}-\sqrt{10}) jest równa:
Odpowiedzi:
A. -6\sqrt{30} B. 13-3\sqrt{30}
C. -7 D. 7
E. 6\sqrt{30} F. 13+3\sqrt{30}
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12081  
Podpunkt 2.1 (1 pkt)
 Liczba \left(7^{\frac{1}{6}}\cdot 7^{\frac{1}{3}}\right)^{\frac{5}{6}} jest równa:
Odpowiedzi:
A. 7^{\frac{5}{9}} B. 7^{\frac{5}{12}}
C. 7^{\frac{55}{144}} D. 7^{\frac{5}{72}}
E. 7^{\frac{5}{6}} F. 7^{\frac{25}{48}}
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12082  
Podpunkt 3.1 (1 pkt)
 Niech \log_{5}{2=c}.

Wtedy \log_{5}{10} jest równy:

Odpowiedzi:
A. c+3 B. c+4
C. c-2 D. c-1
E. c+2 F. c+1
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12083  
Podpunkt 4.1 (1 pkt)
 Cenę drukarki obniżono o 10\%, a następnie nową cenę obniżono o 40\%.

W wyniku obu tych zmian cena drukarki zmniejszyła się w stosunku do ceny sprzed obu obniżek o:

Odpowiedzi:
A. 44\% B. 49\%
C. 50\% D. 46\%
E. 48\% F. 43\%
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12084  
Podpunkt 5.1 (1 pkt)
 Dla każdej liczby rzeczywistej x wyrażenie (x+3)^2-(5+x)^2 jest równe:
Odpowiedzi:
A. -2x-16 B. -2x-18
C. -4x-14 D. -4x-16
E. -6x-16 F. -7x-14
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12085  
Podpunkt 6.1 (1 pkt)
 Wskaż rysunek, na którym przedstawiony jest zbiór wszystkich liczb rzeczywistych x, spełniających jednocześnie nierówności 0\lessdot 7-3x oraz 7-3x\leqslant 5x-3:
Odpowiedzi:
A. C B. A
C. B D. D
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12086  
Podpunkt 7.1 (1 pkt)
 Rozwiązaniem równania x\sqrt{3}-5=-5x+3 jest liczba:
Odpowiedzi:
A. \frac{\sqrt{3}+5}{-2} B. \frac{8}{\sqrt{3}-5}
C. \frac{-8}{\sqrt{3}-5} D. \frac{\sqrt{3}+5}{8}
E. \frac{-8}{\sqrt{3}+5} F. \frac{8}{\sqrt{3}+5}
Zadanie 8.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12087  
Podpunkt 8.1 (1 pkt)
 Równanie \frac{x^2-12x}{x^2-144}=0 ma w zbiorze liczb rzeczywistych dokładnie:
Odpowiedzi:
A. zero rozwiązań B. dwa rozwiązania
C. trzy rozwiązania D. jedno rozwiązanie
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12088  
Podpunkt 9.1 (1 pkt)
 Na poniższym rysunku przedstawiono wykres funkcji f określonej w zbiorze (-1,7).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f osiąga wartość największą równą 1 T/N : funkcja f jest monotoniczna w przedziale (-1,4)
T/N : funkcja f ma dwa miejsca zerowe  
Zadanie 10.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12089  
Podpunkt 10.1 (1 pkt)
 Wykresem funkcji kwadratowej f określonej wzorem f(x)=-3(x-6)(x+2) jest parabola o wierzchołku W=(p,q).

Współrzędne wierzchołka W spełniają warunki:

Odpowiedzi:
A. p > 0 i q \lessdot 0 B. p \lessdot 0 i q \lessdot 0
C. p > 0 i q > 0 D. p \lessdot 0 i q > 0
Zadanie 11.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21126  
Podpunkt 11.1 (1 pkt)
 Jednym z miejsc zerowych funkcji kwadratowej jest liczba 4. Do wykresu funkcji f należy punkt (0,-96). Prosta o równaniu x=-1 jest osią symetrii paraboli będącej wykresem funkcji f.

Drugim miejscem zerowym funkcji f jest liczba:

Odpowiedzi:
A. -\frac{15}{2} B. -9
C. -6 D. -10
E. -5 F. -4
Podpunkt 11.2 (1 pkt)
 Wartość funkcji f dla argumentu -2 jest równa:
Odpowiedzi:
A. -100 B. -92
C. -99 D. -97
E. -93 F. -96
Zadanie 12.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12090  
Podpunkt 12.1 (1 pkt)
 Dane są ciągi (a_n), (b_n), (c_n), (d_n), określone dla każdej liczby naturalnej n\geqslant 1 wzorami: a_n=20n+3, b_n=2n^2-3, c_n=n^2+10n-2, d_n=\frac{n+187}{n}.

Liczba 163 jest 8-tym wyrazem ciągu:

Odpowiedzi:
A. (c_n) B. (d_n)
C. (a_n) D. (b_n)
Zadanie 13.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12091  
Podpunkt 13.1 (1 pkt)
 Ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1, jest rosnący i wszystkie jego wyrazy są dodatnie. Ponadto spełniony jest warunek a_3=a_1^{5}\cdot a_2. Niech q oznacza iloraz ciągu (a_n).

Wtedy:

Odpowiedzi:
A. a_1=q B. q=a_1^5
C. q^5=a_1 D. a_1=\frac{1}{q^5}
Zadanie 14.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12092  
Podpunkt 14.1 (1 pkt)
 Kąt o mierze \alpha jest ostry i \tan\alpha=3\sqrt{2}.

Wtedy \cos\alpha jest równy:

Odpowiedzi:
A. \frac{\sqrt{19}}{19} B. \frac{\sqrt{19}}{38}
C. \frac{\sqrt{19}}{57} D. \frac{\sqrt{57}}{57}
E. \frac{\sqrt{38}}{19} F. \frac{3\sqrt{19}}{38}
Zadanie 15.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12093  
Podpunkt 15.1 (1 pkt)
 Na okręgu o środku w punkcie O leżą punkty A, B oraz C. Odcinek AC jest średnicą tego okręgu, a kąt środkowy AOB ma miarę 48^{\circ} (zobacz rysunek).

Miara kąta OBC jest równa:

Odpowiedzi:
A. 29^{\circ} B. 18^{\circ}
C. 22^{\circ} D. 27^{\circ}
E. 20^{\circ} F. 19^{\circ}
G. 24^{\circ} H. 28^{\circ}
Zadanie 16.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12094  
Podpunkt 16.1 (1 pkt)
 Dane są okrąg i prosta styczna do tego okręgu w punkcie A. Punkty B i C są położone na okręgu tak, że BC jest jego średnicą. Cięciwa AB tworzy ze styczną kąt o mierze 26^{\circ} (zobacz rysunek).

Miara kąta ABC jest równa:

Odpowiedzi:
A. 64^{\circ} B. 62^{\circ}
C. 67^{\circ} D. 61^{\circ}
E. 59^{\circ} F. 68^{\circ}
G. 69^{\circ} H. 60^{\circ}
Zadanie 17.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12095  
Podpunkt 17.1 (1 pkt)
 Dany jest trójkąt prostokątny ABC o bokach |AC|=15, |BC|=8, |AB|=17. Dwusieczne kątów tego trójkąta przecinają się w punkcie P (zobacz rysunek).

Odległość x punktu P od przeciwprostokątnej AB jest równa:

Odpowiedzi:
A. \frac{5}{2} B. 3
C. \frac{7}{2} D. 2
E. \frac{9}{2} F. \frac{3}{2}
Zadanie 18.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12096  
Podpunkt 18.1 (1 pkt)
 Jeden z boków równoległoboku ma długość równą 35.

Przekątne tego równoległoboku mogą mieć długości:

Odpowiedzi:
A. 28 i 42 B. 28 i 21
C. 70 i 70 D. 35 i 35
Zadanie 19.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12098  
Podpunkt 19.1 (1 pkt)
 W pewnym trójkącie równoramiennym największy kąt ma miarę 120^{\circ}, a najdłuższy bok ma długość 30 (zobacz rysunek).

Najkrótsza wysokość tego trójkąta ma długość równą:

Odpowiedzi:
A. 5\sqrt{3} B. \frac{15\sqrt{3}}{4}
C. \frac{20\sqrt{3}}{3} D. \frac{5\sqrt{3}}{3}
E. \frac{5\sqrt{3}}{4} F. \frac{5\sqrt{3}}{2}
Zadanie 20.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12099  
Podpunkt 20.1 (1 pkt)
 Prosta przechodząca przez punkty (-1,0) oraz (8,6) ma równanie:
Odpowiedzi:
A. y=\frac{1}{3}x+\frac{5}{3} B. y=\frac{2}{3}x+\frac{1}{3}
C. y=\frac{2}{3}x+\frac{7}{3} D. y=\frac{2}{3}x-\frac{1}{3}
E. y=\frac{2}{3}x+\frac{4}{3} F. y=\frac{2}{3}x+\frac{5}{3}
G. y=\frac{2}{3}x+\frac{2}{3} H. y=\frac{2}{3}x+1
Zadanie 21.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12100  
Podpunkt 21.1 (1 pkt)
 Proste o równaniach y=-\frac{1}{m+3}x-4 i y=\frac{1}{5}x+3 są równoległe.

Wynika stąd, że:

Odpowiedzi:
A. m=-9 B. m=-12
C. m=8 D. m=-\frac{1}{8}
E. m=-10 F. m=\frac{1}{4}
G. m=-11 H. m=-8
Zadanie 22.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12101  
Podpunkt 22.1 (1 pkt)
 W prostokącie ABCD dane są wierzchołki C=(-4,-2) oraz D=(4,-4). Bok AD ma długość 16.

Pole tego prostokąta jest równe:

Odpowiedzi:
A. 32\sqrt{17} B. 64\sqrt{17}
C. 8\sqrt{17} D. \frac{64\sqrt{17}}{5}
E. \frac{64\sqrt{17}}{3} F. \frac{32\sqrt{17}}{3}
G. 16\sqrt{17} H. 48\sqrt{17}
Zadanie 23.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12102  
Podpunkt 23.1 (1 pkt)
 Obrazem prostej o równaniu 3x+y+3=0w symetrii osiowej względem osi Oy jest prosta o równaniu:
Odpowiedzi:
A. -3x-y+3=0 B. -3x-y-3=0
C. -3x-y-3=0 D. 3x-y+3=0
E. 3x-y-3=0 F. x+3y-3=0
Zadanie 24.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12103  
Podpunkt 24.1 (1 pkt)
 Graniastosłup prawidłowy ma 30 krawędzi. Długość każdej z tych krawędzi jest równa 4.

Pole powierzchni bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. 146 B. 160
C. 164 D. 167
E. 187 F. 145
G. 156 H. 161
Zadanie 25.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12104  
Podpunkt 25.1 (1 pkt)
 Wysokość ściany bocznej ostrosłupa prawidłowego sześciokątnego jest 9 razy dłuższa od krawędzi jego podstawy.

Stosunek pola powierzchni bocznej tego ostrosłupa do pola jego podstawy jest równy:

Odpowiedzi:
A. \frac{9\sqrt{3}}{2} B. \frac{3\sqrt{3}}{2}
C. 6\sqrt{3} D. 4\sqrt{3}
E. 6 F. 12\sqrt{3}
G. 9\sqrt{3} H. 8\sqrt{3}
Zadanie 26.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12105  
Podpunkt 26.1 (1 pkt)
 W pudełku znajdują się płytki z literami. Na każdej płytce jest wydrukowana jedna litera – spółgłoskowa albo samogłoskowa. Płytek z literami spółgłoskowymi jest o 40\% więcej niż płytek z literami samogłoskowymi.

Losujemy jedną płytkę. Prawdopodobieństwo wylosowania płytki z literą samogłoskową jest równe:

Odpowiedzi:
A. \frac{25}{48} B. \frac{5}{12}
C. \frac{5}{24} D. \frac{5}{18}
E. \frac{5}{32} F. \frac{5}{16}
G. \frac{1}{4} H. \frac{1}{2}
Zadanie 27.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12106  
Podpunkt 27.1 (1 pkt)
 Średnia arytmetyczna czterech liczb dodatnich: 2, 3x, 3x+2, 3x+4 jest równa \frac{67}{2}.

Wynika stąd, że:

Odpowiedzi:
A. x=17 B. x=\frac{29}{2}
C. x=12 D. x=13
E. x=14 F. x=15
G. x=16 H. x=18
Zadanie 28.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21127  
Podpunkt 28.1 (0.4 pkt)
 Rozwiąż nierówność 2(x-6)(x-10)\lessdot x^2-14x+40.

Rozwiązaniem tej nierówności jest zbiór postaci:

Odpowiedzi:
A. (-\infty,a)\cup(b,+\infty) B. (-\infty,a]\cup[b,+\infty)
C. [a, b] D. (a, b)
Podpunkt 28.2 (0.8 pkt)
 Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 28.3 (0.8 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 29.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21128  
Podpunkt 29.1 (2 pkt)
 Dany jest ciąg arytmetyczny (a_n), określony dla wszystkich liczb naturalnych n\geqslant 1. Suma dwudziestu początkowych wyrazów tego ciągu jest równa 20\cdot a_{21}-2520.

Oblicz różnicę ciągu a_n.

Odpowiedź:
r=
(wpisz dwie liczby całkowite)
Zadanie 30.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21129  
Podpunkt 30.1 (2 pkt)
 Dany jest trapez o podstawach długości a oraz b, i wysokości h. Każdą z podstaw tego trapezu wydłużono o 75\%, a wysokość skrócono tak, że powstał nowy trapez o takim samym polu.

Oblicz, o ile procent, z dokładnością do dwóch miejsc po przecinku, skrócono wysokość h trapezu.

Odpowiedź:
p\ [\%]= (liczba zapisana dziesiętnie)
Zadanie 31.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21130  
Podpunkt 31.1 (2 pkt)
 W trójkącie ABC boki BC i AC są równej długości. Prosta k jest prostopadła do podstawy AB tego trójkąta i przecina boki AB oraz BC w punktach – odpowiednio – D i E. Pole czworokąta ADEC jest 31 razy większe od pola trójkąta BED.

Oblicz \frac{|CE|}{|EB|}.

Odpowiedź:
\frac{|CE|}{|EB|}=
(wpisz dwie liczby całkowite)
Zadanie 32.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21131  
Podpunkt 32.1 (2 pkt)
 Ze zbioru wszystkich liczb naturalnych dwucyfrowych, których cyfra dziesiątek jest nie mniejsza od 5, a cyfra jedności jest nie większa niż 5, losujemy jedną liczbę.

Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że wylosujemy liczbę dwucyfrową, która jest podzielna przez 4.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 33.  (5 pkt) [ Dodaj do testu ]  Numer zadania: pp-30417  
Podpunkt 33.1 (2 pkt)
 Podstawa AB trójkąta równoramiennego ABC jest zawarta w prostej o równaniu y=-2x+23. Wierzchołki B i C mają współrzędne B=(6,11) i C=(1,4).

Oblicz współrzędne środka D=(x_D,y_D) odcinka AB.

Odpowiedzi:
x_D= (dwie liczby całkowite)

y_D= (dwie liczby całkowite)
Podpunkt 33.2 (2 pkt)
 Oblicz współrzędne wierzchołka A=(x_A, y_A).
Odpowiedzi:
x_A= (dwie liczby całkowite)

y_A= (dwie liczby całkowite)
Podpunkt 33.3 (1 pkt)
 Oblicz pole trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm