Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2022-08-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11907 ⋅ Poprawnie: 451/525 [85%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba \frac{27^{-42}}{3^{11}} jest równa:
Odpowiedzi:
A. 9^{-69} B. 3^{-138}
C. 3^{-139} D. 3^{-137}
E. 3^{137} F. 27^{-46}
Zadanie 2.  1 pkt ⋅ Numer: pp-11908 ⋅ Poprawnie: 489/540 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{3}{81}-\log_{3}{243} jest równa:
Odpowiedzi:
A. -2 B. -\frac{1}{2}
C. -4 D. 1
E. -1 F. 2
Zadanie 3.  1 pkt ⋅ Numer: pp-11910 ⋅ Poprawnie: 427/441 [96%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba \left(2-2\sqrt{5}\right)^2 jest równa:
Odpowiedzi:
A. 24-8\sqrt{5} B. 24-16\sqrt{5}
C. 48-8\sqrt{5} D. 96-8\sqrt{5}
E. 12-8\sqrt{5} F. 24-4\sqrt{5}
Zadanie 4.  1 pkt ⋅ Numer: pp-11911 ⋅ Poprawnie: 286/351 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Cenę x (w złotych) pewnego towaru obniżono najpierw o 40\%, a następnie obniżono o 50\% w odniesieniu do ceny obowiązującej w danym momencie.

Po obydwu tych obniżkach cena towaru jest równa:

Odpowiedzi:
A. 0.37\cdot x B. 0.34\cdot x
C. 0.30\cdot x D. 0.32\cdot x
E. 0.27\cdot x F. 0.28\cdot x
Zadanie 5.  1 pkt ⋅ Numer: pp-11909 ⋅ Poprawnie: 172/186 [92%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Jednym z rozwiązań równania 5(x+2)-x^2(x+2)=0 jest liczba:
Odpowiedzi:
A. -8 B. -7
C. 2 D. -4
E. 4 F. -2
Zadanie 6.  1 pkt ⋅ Numer: pp-11912 ⋅ Poprawnie: 192/263 [73%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{4x-3}{6}>4x jest przedział:
Odpowiedzi:
A. \left(-\infty,-\frac{1}{10}\right) B. \left(-\frac{3}{20},+\infty\right)
C. \left(-\frac{1}{20},+\infty\right) D. \left(-\infty,-\frac{1}{20}\right)
E. \left(-\infty,-\frac{3}{20}\right) F. \left(-\frac{1}{10},+\infty\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11913 ⋅ Poprawnie: 163/188 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Suma wszystkich rozwiązań równania (3x+1)(3x+2)(x-3)=0 jest równa:
Odpowiedzi:
A. 2 B. \frac{8}{3}
C. 3 D. \frac{7}{2}
E. -\frac{1}{2} F. 0
Zadanie 8.  1 pkt ⋅ Numer: pp-11934 ⋅ Poprawnie: 141/188 [75%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt A=(1,2) należy do wykresu funkcji f, określonej wzorem f(x)=(m^2+2m-2)x^3-m^2-m+1 dla każdej liczby rzeczywistej x.

Wtedy liczba m jest równa:

Odpowiedzi:
A. 1 B. -3
C. 7 D. 3
E. 8 F. -2
Zadanie 9.  1 pkt ⋅ Numer: pp-11914 ⋅ Poprawnie: 198/271 [73%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=(5m+5)x+22 jest rosnąca dla:
Odpowiedzi:
A. m >4 B. m \lessdot -\frac{3}{2}
C. m \lessdot 2 D. m >-1
E. m \lessdot -\frac{5}{4} F. m >-\frac{2}{3}
Zadanie 10.  1 pkt ⋅ Numer: pp-11915 ⋅ Poprawnie: 240/350 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=x^2+bx+c osiąga dla x=-2 wartość najmniejszą równą 4.

Wtedy:

Odpowiedzi:
A. b=4,\ c=-8 B. b=4,\ c=8
C. b=4,\ c=9 D. b=3,\ c=9
E. b=-4,\ c=8 F. b=-4,\ c=-8
Zadanie 11.  1 pkt ⋅ Numer: pp-11916 ⋅ Poprawnie: 223/303 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja kwadratowa f określona wzorem f(x)=-6(x+1)(x-2).

Funkcja f jest rosnąca w zbiorze:

Odpowiedzi:
A. \left(-\infty, 3\right\rangle B. \left\langle -1,+\infty\right)
C. \left(-\infty, 2\right\rangle D. \left(-\infty, \frac{3}{4}\right\rangle
E. \left(-\infty, \frac{1}{2}\right\rangle F. \left\langle 2,+\infty\right)
Zadanie 12.  1 pkt ⋅ Numer: pp-11917 ⋅ Poprawnie: 266/376 [70%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f określonej na zbiorze \langle -2, 5):

Funkcja g jest określona za pomocą funkcji f następująco: g(x)=f(x-3). Wykres funkcji g można otrzymać poprzez odpowiednie przesunięcie wykresu funkcji f.

Dziedziną funkcji g jest zbiór:

Odpowiedzi:
A. \langle 3,10) B. \langle -2,5)
C. \langle 0,7) D. \langle 1,8)
E. \langle -1,6) F. \langle 2,9)
Zadanie 13.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 208/256 [81%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 35:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) D. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 209/251 [83%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 3.

Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 366 B. 40
C. 13 D. 1093
E. 121 F. 364
Zadanie 15.  1 pkt ⋅ Numer: pp-11920 ⋅ Poprawnie: 170/184 [92%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu dwóch godzin trzy jednakowe maszyny produkują razem 2400 guzików.

Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują z taką samą, stałą wydajnością.

Odpowiedzi:
A. 2060 B. 1980
C. 2040 D. 2020
E. 1940 F. 2000
Zadanie 16.  1 pkt ⋅ Numer: pp-11921 ⋅ Poprawnie: 118/187 [63%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Przyprostokątna AC trójkąta prostokątnego ABC ma długość 5, a przeciwprostokątna AB ma długość \sqrt{41}.

Wtedy tangens kąta ostrego CAB tego trójkąta jest równy:

Odpowiedzi:
A. \frac{\sqrt{41}}{4} B. \frac{\sqrt{41}}{5}
C. \frac{4}{5} D. \frac{5}{4}
E. \frac{5\sqrt{41}}{41} F. \frac{4\sqrt{41}}{41}
Zadanie 17.  1 pkt ⋅ Numer: pp-11922 ⋅ Poprawnie: 145/210 [69%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Nie istnieje kąt ostry \alpha taki, że:
Odpowiedzi:
A. \sin\alpha=\frac{5}{13} i \cos\alpha=\frac{13}{13} B. \sin\alpha=\frac{3}{5} i \cos\alpha=\frac{4}{5}
C. \sin\alpha=\frac{8}{17} i \cos\alpha=\frac{15}{17} D. \sin\alpha=\frac{9}{15} i \cos\alpha=\frac{12}{15}
Zadanie 18.  1 pkt ⋅ Numer: pp-11923 ⋅ Poprawnie: 125/185 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Wierzchołki A, B, C czworokąta ABSC leżą na okręgu o środku S. Kąt ABS ma miarę 48^{\circ} (zobacz rysunek), a przekątna BC jest dwusieczną tego kąta.

Miara kąta ASC jest równa:

Odpowiedzi:
A. 60^{\circ} B. 54^{\circ}
C. 48^{\circ} D. 40^{\circ}
E. 52^{\circ} F. 68^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-11924 ⋅ Poprawnie: 137/185 [74%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A oraz B leżą na okręgu o środku S. Kąt środkowy ASB ma miarę 118^{\circ}. Prosta l jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB okręgu kąt o mierze \alpha (zobacz rysunek).

Wtedy:

Odpowiedzi:
A. \alpha=51^{\circ} B. \alpha=63^{\circ}
C. \alpha=69^{\circ} D. \alpha=59^{\circ}
E. \alpha=65^{\circ} F. \alpha=47^{\circ}
Zadanie 20.  1 pkt ⋅ Numer: pp-11925 ⋅ Poprawnie: 158/273 [57%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Pole prostokąta jest równe 361, a przekątne tego prostokąta przecinają się pod kątem ostrym \alpha, takim, że \sin\alpha=\frac{1}{8}.

Długość przekątnej tego prostokąta jest równa:

Odpowiedzi:
A. 63 B. 69
C. 86 D. 66
E. 67 F. 76
Zadanie 21.  1 pkt ⋅ Numer: pp-11935 ⋅ Poprawnie: 158/250 [63%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Proste o równaniach y=\frac{3}{4}x-5 oraz y=(2m+3)x+2 są prostopadłe, gdy:
Odpowiedzi:
A. m=\frac{13}{9} B. m=-\frac{13}{9}
C. m=-\frac{13}{6} D. m=-\frac{65}{24}
E. m=-\frac{13}{3} F. m=-\frac{26}{3}
Zadanie 22.  1 pkt ⋅ Numer: pp-11926 ⋅ Poprawnie: 157/194 [80%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Punkty A=(-1,2) oraz C=(3,-4) są końcami przekątnej AC rombu ABCD.

Środek przekątnej BD tego rombu ma współrzędne:

Odpowiedzi:
A. \left(1,-1\right) B. \left(1,-2\right)
C. \left(2,-1\right) D. \left(1,0\right)
E. \left(3,-2\right) F. \left(0,-1\right)
Zadanie 23.  1 pkt ⋅ Numer: pp-11928 ⋅ Poprawnie: 136/226 [60%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Punkty A=(-8,12), B=(3,14), C=(8,4) są wierzchołkami równoległoboku ABCD.

Długość przekątnej BD tego równoległoboku jest równa:

Odpowiedzi:
A. 3\sqrt{6} B. 5\sqrt{5}
C. 5\sqrt{6} D. 6\sqrt{5}
E. 3\sqrt{5} F. 8\sqrt{5}
Zadanie 24.  1 pkt ⋅ Numer: pp-11929 ⋅ Poprawnie: 113/190 [59%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Obrazem prostej o równaniu y=4x+5 w symetrii osiowej względem osi Ox jest prosta o równaniu:
Odpowiedzi:
A. y=-\frac{1}{4}x-5 B. y=-4x+5
C. y=\frac{1}{4}x+5 D. y=-4x-5
E. y=-\frac{1}{4}x+5 F. y=4x-5
Zadanie 25.  1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 135/231 [58%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{45}{17}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 18 B. 15
C. 23 D. 12
E. 17 F. 19
Zadanie 26.  1 pkt ⋅ Numer: pp-11931 ⋅ Poprawnie: 317/325 [97%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Średnia arytmetyczna zestawu liczb a, b c, d jest równa 60.

Wtedy średnia arytmetyczna zestawu liczb a-11, b+31,c,d jest równa:

Odpowiedzi:
A. 60 B. 55
C. 69 D. 67
E. 73 F. 65
Zadanie 27.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 264/380 [69%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 400 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 3\cdot 5\cdot 5-1 B. 6\cdot 5\cdot 5
C. 3\cdot 5\cdot 5 D. 3\cdot 10\cdot 10-1
Zadanie 28.  1 pkt ⋅ Numer: pp-11933 ⋅ Poprawnie: 174/264 [65%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną, 16-śnienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do 16. Niech p oznacza prawdopodobieństwo otrzymania w drugim rzucie liczby oczek podzielnej przez 8.

Wtedy:

Odpowiedzi:
A. p=\frac{1}{16} B. p=\frac{1}{8}
C. p=\frac{1}{4} D. p=\frac{1}{12}
E. p=\frac{5}{32} F. p=\frac{3}{32}
Zadanie 29.  1.5 pkt ⋅ Numer: pp-21078 ⋅ Poprawnie: 128/263 [48%] Rozwiąż 
Podpunkt 29.1 (0.5 pkt)
 Rozwiąż nierówność 6x^2+11x\geqslant 2.

Rozwiązanie zapisz w postaci sumy przedziałów. Ile jest tych przedziałów?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 29.2 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 29.3 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
x_{\notin\mathbb{Z}}=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 139/269 [51%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Trójwyrazowy ciąg (x+4,y+1,y+5) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-21080 ⋅ Poprawnie: 112/175 [64%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Rozwiąż równanie \frac{4}{x+3}=x

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 31.2 (1 pkt)
 Podaj największe rozwiązanie wymierne tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 32.  2 pkt ⋅ Numer: pp-21081 ⋅ Poprawnie: 68/226 [30%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 Dany jest trójkąt równoboczny ABC o boku długości 22. Punkt E leży na boku AB, a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).

Oblicz długość odcinka EF.

Odpowiedź:
|EF|=
(wpisz dwie liczby całkowite)
Zadanie 33.  2 pkt ⋅ Numer: pp-21079 ⋅ Poprawnie: 145/283 [51%] Rozwiąż 
Podpunkt 33.1 (2 pkt)
 Ze zbioru pięciu liczb \{-6,-2,4,5,7\} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny.

Oblicz prawdopodobieństwo zdarzenia A.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 34.  5 pkt ⋅ Numer: pp-30409 ⋅ Poprawnie: 40/185 [21%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Dany jest graniastosłup prosty ABCDEFGH, którego podstawą jest prostokąt ABCD. W tym graniastosłupie |BD|=45, a ponadto |CD|=9+|BC| oraz |\sphericalangle CDG|=45^{\circ} (zobacz rysunek).

Oblicz pole podstawy tego graniastosłupa.

Odpowiedź:
P_{ABCD}= (wpisz liczbę całkowitą)
Podpunkt 34.2 (2 pkt)
 Oblicz objętość tego graniastosłupa.
Odpowiedź:
V= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 34.3 (2 pkt)
 Oblicz pole powierzchni bocznej tego graniastosłupa.
Odpowiedź:
P_{b}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm