Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2022-08-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11907 ⋅ Poprawnie: 451/525 [85%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba \frac{8^{-20}}{2^{14}} jest równa:
Odpowiedzi:
A. 2^{-74} B. 2^{74}
C. 2^{-76} D. 4^{-38}
E. 2^{-70} F. 8^{-25}
Zadanie 2.  1 pkt ⋅ Numer: pp-11908 ⋅ Poprawnie: 489/540 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{2}{32}-\log_{2}{4} jest równa:
Odpowiedzi:
A. -6 B. 6
C. 3 D. \frac{3}{2}
E. 12 F. -3
Zadanie 3.  1 pkt ⋅ Numer: pp-11910 ⋅ Poprawnie: 427/441 [96%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba \left(1+3\sqrt{2}\right)^2 jest równa:
Odpowiedzi:
A. 9+6\sqrt{2} B. 19+12\sqrt{2}
C. 76+6\sqrt{2} D. 19+3\sqrt{2}
E. 38+6\sqrt{2} F. 19+6\sqrt{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-11911 ⋅ Poprawnie: 286/351 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Cenę x (w złotych) pewnego towaru obniżono najpierw o 10\%, a następnie obniżono o 40\% w odniesieniu do ceny obowiązującej w danym momencie.

Po obydwu tych obniżkach cena towaru jest równa:

Odpowiedzi:
A. 0.61\cdot x B. 0.58\cdot x
C. 0.54\cdot x D. 0.52\cdot x
E. 0.56\cdot x F. 0.51\cdot x
Zadanie 5.  1 pkt ⋅ Numer: pp-11909 ⋅ Poprawnie: 172/186 [92%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Jednym z rozwiązań równania 3(x+4)-x^2(x+4)=0 jest liczba:
Odpowiedzi:
A. 0 B. -3
C. -5 D. -7
E. -9 F. -4
Zadanie 6.  1 pkt ⋅ Numer: pp-11912 ⋅ Poprawnie: 192/263 [73%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{2x-3}{8}>-6x jest przedział:
Odpowiedzi:
A. \left(-\infty,\frac{1}{50}\right) B. \left(-\infty,\frac{3}{25}\right)
C. \left(\frac{3}{50},+\infty\right) D. \left(-\infty,\frac{3}{50}\right)
E. \left(\frac{1}{25},+\infty\right) F. \left(\frac{9}{100},+\infty\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11913 ⋅ Poprawnie: 163/188 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Suma wszystkich rozwiązań równania (2x-1)(2x+4)(x+1)=0 jest równa:
Odpowiedzi:
A. -\frac{5}{2} B. -3
C. -\frac{11}{6} D. -\frac{13}{6}
E. -\frac{3}{2} F. -1
Zadanie 8.  1 pkt ⋅ Numer: pp-11934 ⋅ Poprawnie: 141/188 [75%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt A=(1,2) należy do wykresu funkcji f, określonej wzorem f(x)=(m^2-12m+33)x^3-m^2+13m-41 dla każdej liczby rzeczywistej x.

Wtedy liczba m jest równa:

Odpowiedzi:
A. 16 B. 13
C. 5 D. 11
E. 6 F. 10
Zadanie 9.  1 pkt ⋅ Numer: pp-11914 ⋅ Poprawnie: 198/271 [73%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=(2m+4)x+22 jest rosnąca dla:
Odpowiedzi:
A. m \lessdot -3 B. m >-2
C. m >8 D. m \lessdot -\frac{5}{2}
E. m >-\frac{1}{2} F. m >-\frac{4}{3}
Zadanie 10.  1 pkt ⋅ Numer: pp-11915 ⋅ Poprawnie: 240/350 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=x^2+bx+c osiąga dla x=3 wartość najmniejszą równą -10.

Wtedy:

Odpowiedzi:
A. b=-6,\ c=0 B. b=6,\ c=-2
C. b=-6,\ c=-1 D. b=-7,\ c=0
E. b=-6,\ c=1 F. b=6,\ c=-1
Zadanie 11.  1 pkt ⋅ Numer: pp-11916 ⋅ Poprawnie: 223/303 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja kwadratowa f określona wzorem f(x)=-2(x-4)(x+6).

Funkcja f jest rosnąca w zbiorze:

Odpowiedzi:
A. \left\langle 4,+\infty\right) B. \left(-\infty, -1\right\rangle
C. \left\langle -6,+\infty\right) D. \left(-\infty, 4\right\rangle
E. \left(-\infty, 5\right\rangle F. \left(-\infty, -\frac{3}{4}\right\rangle
Zadanie 12.  1 pkt ⋅ Numer: pp-11917 ⋅ Poprawnie: 266/376 [70%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f określonej na zbiorze \langle -2, 5):

Funkcja g jest określona za pomocą funkcji f następująco: g(x)=f(x+4). Wykres funkcji g można otrzymać poprzez odpowiednie przesunięcie wykresu funkcji f.

Dziedziną funkcji g jest zbiór:

Odpowiedzi:
A. \langle -6,1) B. \langle -8,-1)
C. \langle -4,3) D. \langle -7,0)
E. \langle -9,-2) F. \langle -5,2)
Zadanie 13.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 208/256 [81%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 17:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 209/251 [83%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 2.

Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 63 B. 255
C. 15 D. 127
E. 31 F. 129
Zadanie 15.  1 pkt ⋅ Numer: pp-11920 ⋅ Poprawnie: 170/184 [92%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu dwóch godzin trzy jednakowe maszyny produkują razem 1560 guzików.

Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują z taką samą, stałą wydajnością.

Odpowiedzi:
A. 1280 B. 1200
C. 1360 D. 1320
E. 1300 F. 1260
Zadanie 16.  1 pkt ⋅ Numer: pp-11921 ⋅ Poprawnie: 118/187 [63%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Przyprostokątna AC trójkąta prostokątnego ABC ma długość 6, a przeciwprostokątna AB ma długość 2\sqrt{10}.

Wtedy tangens kąta ostrego CAB tego trójkąta jest równy:

Odpowiedzi:
A. \frac{\sqrt{10}}{3} B. 3
C. \sqrt{10} D. \frac{3\sqrt{10}}{10}
E. \frac{\sqrt{10}}{10} F. \frac{1}{3}
Zadanie 17.  1 pkt ⋅ Numer: pp-11922 ⋅ Poprawnie: 145/210 [69%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Nie istnieje kąt ostry \alpha taki, że:
Odpowiedzi:
A. \sin\alpha=\frac{8}{17} i \cos\alpha=\frac{15}{17} B. \sin\alpha=\frac{5}{13} i \cos\alpha=\frac{12}{13}
C. \sin\alpha=\frac{3}{5} i \cos\alpha=\frac{5}{5} D. \sin\alpha=\frac{9}{15} i \cos\alpha=\frac{12}{15}
Zadanie 18.  1 pkt ⋅ Numer: pp-11923 ⋅ Poprawnie: 125/185 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Wierzchołki A, B, C czworokąta ABSC leżą na okręgu o środku S. Kąt ABS ma miarę 28^{\circ} (zobacz rysunek), a przekątna BC jest dwusieczną tego kąta.

Miara kąta ASC jest równa:

Odpowiedzi:
A. 28^{\circ} B. 20^{\circ}
C. 34^{\circ} D. 40^{\circ}
E. 32^{\circ} F. 24^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-11924 ⋅ Poprawnie: 137/185 [74%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A oraz B leżą na okręgu o środku S. Kąt środkowy ASB ma miarę 98^{\circ}. Prosta l jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB okręgu kąt o mierze \alpha (zobacz rysunek).

Wtedy:

Odpowiedzi:
A. \alpha=59^{\circ} B. \alpha=41^{\circ}
C. \alpha=53^{\circ} D. \alpha=55^{\circ}
E. \alpha=49^{\circ} F. \alpha=37^{\circ}
Zadanie 20.  1 pkt ⋅ Numer: pp-11925 ⋅ Poprawnie: 158/273 [57%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Pole prostokąta jest równe 192, a przekątne tego prostokąta przecinają się pod kątem ostrym \alpha, takim, że \sin\alpha=\frac{1}{6}.

Długość przekątnej tego prostokąta jest równa:

Odpowiedzi:
A. 44 B. 58
C. 56 D. 48
E. 63 F. 42
Zadanie 21.  1 pkt ⋅ Numer: pp-11935 ⋅ Poprawnie: 158/250 [63%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Proste o równaniach y=\frac{3}{2}x-5 oraz y=(2m-1)x+3 są prostopadłe, gdy:
Odpowiedzi:
A. m=\frac{5}{24} B. m=\frac{1}{9}
C. m=\frac{2}{3} D. m=\frac{1}{3}
E. m=-\frac{1}{9} F. m=\frac{1}{6}
Zadanie 22.  1 pkt ⋅ Numer: pp-11926 ⋅ Poprawnie: 157/194 [80%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Punkty A=(-5,4) oraz C=(-6,-1) są końcami przekątnej AC rombu ABCD.

Środek przekątnej BD tego rombu ma współrzędne:

Odpowiedzi:
A. \left(-\frac{11}{2},\frac{5}{2}\right) B. \left(-\frac{7}{2},\frac{1}{2}\right)
C. \left(-\frac{9}{2},\frac{3}{2}\right) D. \left(-\frac{11}{2},\frac{1}{2}\right)
E. \left(-\frac{13}{2},\frac{3}{2}\right) F. \left(-\frac{11}{2},\frac{3}{2}\right)
Zadanie 23.  1 pkt ⋅ Numer: pp-11928 ⋅ Poprawnie: 136/226 [60%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Punkty A=(-17,11), B=(-6,13), C=(-1,3) są wierzchołkami równoległoboku ABCD.

Długość przekątnej BD tego równoległoboku jest równa:

Odpowiedzi:
A. 5\sqrt{6} B. 8\sqrt{5}
C. 3\sqrt{5} D. 6\sqrt{5}
E. 3\sqrt{6} F. 5\sqrt{5}
Zadanie 24.  1 pkt ⋅ Numer: pp-11929 ⋅ Poprawnie: 113/190 [59%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Obrazem prostej o równaniu y=-5x+4 w symetrii osiowej względem osi Ox jest prosta o równaniu:
Odpowiedzi:
A. y=5x+4 B. y=5x-4
C. y=-\frac{1}{5}x+4 D. y=-5x-4
E. y=\frac{1}{5}x+4 F. y=\frac{1}{5}x-4
Zadanie 25.  1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 135/231 [58%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{5}{2}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 13 B. 19
C. 8 D. 15
E. 10 F. 9
Zadanie 26.  1 pkt ⋅ Numer: pp-11931 ⋅ Poprawnie: 317/325 [97%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Średnia arytmetyczna zestawu liczb a, b c, d jest równa 70.

Wtedy średnia arytmetyczna zestawu liczb a-15, b+35,c,d jest równa:

Odpowiedzi:
A. 67 B. 75
C. 77 D. 74
E. 68 F. 66
Zadanie 27.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 263/378 [69%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 200 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 8\cdot 5\cdot 5 B. 4\cdot 10\cdot 10-1
C. 4\cdot 5\cdot 5-1 D. 4\cdot 5\cdot 5
Zadanie 28.  1 pkt ⋅ Numer: pp-11933 ⋅ Poprawnie: 174/264 [65%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną, 10-śnienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do 10. Niech p oznacza prawdopodobieństwo otrzymania w drugim rzucie liczby oczek podzielnej przez 5.

Wtedy:

Odpowiedzi:
A. p=\frac{1}{10} B. p=\frac{2}{5}
C. p=\frac{3}{20} D. p=\frac{1}{4}
E. p=\frac{2}{15} F. p=\frac{1}{5}
Zadanie 29.  1.5 pkt ⋅ Numer: pp-21078 ⋅ Poprawnie: 128/263 [48%] Rozwiąż 
Podpunkt 29.1 (0.5 pkt)
 Rozwiąż nierówność 4x^2-13x\geqslant -10.

Rozwiązanie zapisz w postaci sumy przedziałów. Ile jest tych przedziałów?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 29.2 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 29.3 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
x_{\notin\mathbb{Z}}=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 139/269 [51%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Trójwyrazowy ciąg (x-5,y,y+4) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-21080 ⋅ Poprawnie: 112/175 [64%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Rozwiąż równanie \frac{4}{x-7}=x-10

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 31.2 (1 pkt)
 Podaj największe rozwiązanie wymierne tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 32.  2 pkt ⋅ Numer: pp-21081 ⋅ Poprawnie: 68/226 [30%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 Dany jest trójkąt równoboczny ABC o boku długości 8. Punkt E leży na boku AB, a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).

Oblicz długość odcinka EF.

Odpowiedź:
|EF|=
(wpisz dwie liczby całkowite)
Zadanie 33.  2 pkt ⋅ Numer: pp-21079 ⋅ Poprawnie: 145/283 [51%] Rozwiąż 
Podpunkt 33.1 (2 pkt)
 Ze zbioru pięciu liczb \{-8,-6,-2,1,9\} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny.

Oblicz prawdopodobieństwo zdarzenia A.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 34.  5 pkt ⋅ Numer: pp-30409 ⋅ Poprawnie: 40/185 [21%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Dany jest graniastosłup prosty ABCDEFGH, którego podstawą jest prostokąt ABCD. W tym graniastosłupie |BD|=10, a ponadto |CD|=2+|BC| oraz |\sphericalangle CDG|=45^{\circ} (zobacz rysunek).

Oblicz pole podstawy tego graniastosłupa.

Odpowiedź:
P_{ABCD}= (wpisz liczbę całkowitą)
Podpunkt 34.2 (2 pkt)
 Oblicz objętość tego graniastosłupa.
Odpowiedź:
V= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 34.3 (2 pkt)
 Oblicz pole powierzchni bocznej tego graniastosłupa.
Odpowiedź:
P_{b}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm