Podgląd arkusza : lo2@cke-2022-08-pp
Zadanie 1. 1 pkt ⋅ Numer: pp-11907 ⋅ Poprawnie: 448/522 [85%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Liczba
\frac{125^{-36}}{5^{18}} jest równa:
Odpowiedzi:
A. 5^{126}
B. 5^{-126}
C. 25^{-64}
D. 125^{-43}
E. 5^{-122}
F. 5^{-127}
Zadanie 2. 1 pkt ⋅ Numer: pp-11908 ⋅ Poprawnie: 486/537 [90%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczba
\log_{4}{1024}-\log_{4}{64} jest równa:
Odpowiedzi:
A. 2
B. 4
C. -4
D. 8
E. 1
F. -2
Zadanie 3. 1 pkt ⋅ Numer: pp-11910 ⋅ Poprawnie: 424/438 [96%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Liczba
\left(4+2\sqrt{7}\right)^2 jest równa:
Odpowiedzi:
A. 22+16\sqrt{7}
B. 176+16\sqrt{7}
C. 44+8\sqrt{7}
D. 44+16\sqrt{7}
E. 88+16\sqrt{7}
F. 44+32\sqrt{7}
Zadanie 4. 1 pkt ⋅ Numer: pp-11911 ⋅ Poprawnie: 284/348 [81%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Cenę
x (w złotych) pewnego towaru obniżono najpierw o
30\% , a następnie obniżono o
50\%
w odniesieniu do ceny obowiązującej w danym momencie.
Po obydwu tych obniżkach cena towaru jest równa:
Odpowiedzi:
A. 0.33\cdot x
B. 0.42\cdot x
C. 0.35\cdot x
D. 0.39\cdot x
E. 0.37\cdot x
F. 0.32\cdot x
Zadanie 5. 1 pkt ⋅ Numer: pp-11909 ⋅ Poprawnie: 169/183 [92%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Jednym z rozwiązań równania
8(x+3)-x^2(x+3)=0
jest liczba:
Odpowiedzi:
A. -3
B. -7
C. 2
D. 1
E. -2
F. 3
Zadanie 6. 1 pkt ⋅ Numer: pp-11912 ⋅ Poprawnie: 189/260 [72%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Zbiorem wszystkich rozwiązań nierówności
\frac{6x-3}{7}>x
jest przedział:
Odpowiedzi:
A. \left(-\infty,-2\right)
B. \left(-2,+\infty\right)
C. \left(-\infty,-3\right)
D. \left(-\infty,-1\right)
E. \left(-3,+\infty\right)
F. \left(-1,+\infty\right)
Zadanie 7. 1 pkt ⋅ Numer: pp-11913 ⋅ Poprawnie: 160/185 [86%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Suma wszystkich rozwiązań równania
(4x+2)(4x+1)(x+3)=0 jest równa:
Odpowiedzi:
A. -\frac{41}{12}
B. -\frac{25}{4}
C. -\frac{15}{4}
D. -\frac{23}{4}
E. -\frac{37}{12}
F. -\frac{9}{4}
Zadanie 8. 1 pkt ⋅ Numer: pp-11934 ⋅ Poprawnie: 138/185 [74%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Punkt
A=(1,2) należy do wykresu funkcji
f , określonej wzorem
f(x)=(m^2+8m+13)x^3-m^2-7m-11
dla każdej liczby rzeczywistej
x .
Wtedy liczba m jest równa:
Odpowiedzi:
A. -5
B. 0
C. -1
D. 5
E. 4
F. 2
Zadanie 9. 1 pkt ⋅ Numer: pp-11914 ⋅ Poprawnie: 196/268 [73%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Funkcja liniowa
f określona wzorem
f(x)=(5m+3)x+22 jest rosnąca dla:
Odpowiedzi:
A. m \lessdot -\frac{3}{4}
B. m >-\frac{3}{5}
C. m >-\frac{3}{20}
D. m >\frac{12}{5}
E. m \lessdot \frac{6}{5}
F. m >-\frac{2}{5}
Zadanie 10. 1 pkt ⋅ Numer: pp-11915 ⋅ Poprawnie: 237/347 [68%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Funkcja kwadratowa
f określona wzorem
f(x)=x^2+bx+c osiąga dla
x=1
wartość najmniejszą równą
-9 .
Wtedy:
Odpowiedzi:
A. b=-3,\ c=-7
B. b=-2,\ c=-8
C. b=2,\ c=-8
D. b=-2,\ c=-7
E. b=2,\ c=8
F. b=2,\ c=-9
Zadanie 11. 1 pkt ⋅ Numer: pp-11916 ⋅ Poprawnie: 220/300 [73%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Dana jest funkcja kwadratowa
f określona wzorem
f(x)=-5(x-3)(x-1) .
Funkcja f jest rosnąca w zbiorze:
Odpowiedzi:
A. \left(-\infty, 4\right\rangle
B. \left\langle 3,+\infty\right)
C. \left(-\infty, 2\right\rangle
D. \left\langle 1,+\infty\right)
E. \left(-\infty, \frac{9}{4}\right\rangle
F. \left(-\infty, 3\right\rangle
Zadanie 12. 1 pkt ⋅ Numer: pp-11917 ⋅ Poprawnie: 264/373 [70%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
f określonej na zbiorze
\langle -2, 5) :
Funkcja g jest określona za pomocą funkcji f
następująco: g(x)=f(x-3) .
Wykres funkcji g można otrzymać poprzez odpowiednie przesunięcie wykresu
funkcji f .
Dziedziną funkcji g jest zbiór:
Odpowiedzi:
A. \langle 1,8)
B. \langle -2,5)
C. \langle -1,6)
D. \langle 2,9)
E. \langle 3,10)
F. \langle 0,7)
Zadanie 13. 1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 204/253 [80%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Dane są ciągi
a_n=3n oraz
b_n=4n-2 , określone
dla każdej liczby naturalnej
n\geqslant 1 .
Liczba 48 :
Odpowiedzi:
A. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
B. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
D. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 14. 1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 201/245 [82%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Dany jest ciąg geometryczny
(a_n) , określony dla każdej liczby naturalnej
n\geqslant 1 . Drugi wyraz tego ciągu oraz iloraz ciągu
(a_n) są równe
4 .
Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:
Odpowiedzi:
A. 5461
B. 5463
C. 21845
D. 85
E. 341
F. 1365
Zadanie 15. 1 pkt ⋅ Numer: pp-11920 ⋅ Poprawnie: 167/181 [92%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
W ciągu dwóch godzin trzy jednakowe maszyny produkują razem
3000
guzików.
Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują
z taką samą, stałą wydajnością.
Odpowiedzi:
A. 2420
B. 2480
C. 2560
D. 2580
E. 2440
F. 2500
Zadanie 16. 1 pkt ⋅ Numer: pp-11921 ⋅ Poprawnie: 116/184 [63%]
Rozwiąż
Podpunkt 16.1 (1 pkt)
Przyprostokątna
AC trójkąta prostokątnego
ABC
ma długość
7 , a przeciwprostokątna
AB
ma długość
\sqrt{74} .
Wtedy tangens kąta ostrego CAB tego trójkąta jest równy:
Odpowiedzi:
A. \frac{\sqrt{74}}{5}
B. \frac{5}{7}
C. \frac{7}{5}
D. \frac{7\sqrt{74}}{74}
E. \frac{5\sqrt{74}}{74}
F. \frac{\sqrt{74}}{7}
Zadanie 17. 1 pkt ⋅ Numer: pp-11922 ⋅ Poprawnie: 142/207 [68%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
Nie istnieje kąt ostry
\alpha taki, że:
Odpowiedzi:
A. \sin\alpha=\frac{3}{5} i \cos\alpha=\frac{4}{5}
B. \sin\alpha=\frac{8}{17} i \cos\alpha=\frac{16}{17}
C. \sin\alpha=\frac{9}{15} i \cos\alpha=\frac{12}{15}
D. \sin\alpha=\frac{5}{13} i \cos\alpha=\frac{12}{13}
Zadanie 18. 1 pkt ⋅ Numer: pp-11923 ⋅ Poprawnie: 123/182 [67%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Wierzchołki
A ,
B ,
C
czworokąta
ABSC leżą na okręgu o środku
S .
Kąt
ABS ma miarę
64^{\circ} (zobacz rysunek),
a przekątna
BC jest dwusieczną tego kąta.
Miara kąta ASC jest równa:
Odpowiedzi:
A. 84^{\circ}
B. 60^{\circ}
C. 56^{\circ}
D. 64^{\circ}
E. 76^{\circ}
F. 70^{\circ}
Zadanie 19. 1 pkt ⋅ Numer: pp-11924 ⋅ Poprawnie: 134/182 [73%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
Punkty
A oraz
B leżą na okręgu o środku
S . Kąt środkowy
ASB ma miarę
134^{\circ} . Prosta
l jest styczna do
tego okręgu w punkcie
A i tworzy z cięciwą
AB
okręgu kąt o mierze
\alpha (zobacz rysunek).
Wtedy:
Odpowiedzi:
A. \alpha=59^{\circ}
B. \alpha=67^{\circ}
C. \alpha=73^{\circ}
D. \alpha=71^{\circ}
E. \alpha=55^{\circ}
F. \alpha=77^{\circ}
Zadanie 20. 1 pkt ⋅ Numer: pp-11925 ⋅ Poprawnie: 147/255 [57%]
Rozwiąż
Podpunkt 20.1 (1 pkt)
Pole prostokąta jest równe
768 , a przekątne
tego prostokąta przecinają się pod kątem ostrym
\alpha , takim, że
\sin\alpha=\frac{1}{6} .
Długość przekątnej tego prostokąta jest równa:
Odpowiedzi:
A. 114
B. 110
C. 96
D. 113
E. 100
F. 91
Zadanie 21. 1 pkt ⋅ Numer: pp-11935 ⋅ Poprawnie: 155/247 [62%]
Rozwiąż
Podpunkt 21.1 (1 pkt)
Proste o równaniach
y=\frac{4}{5}x-5 oraz
y=(2m+1)x+4 są prostopadłe, gdy:
Odpowiedzi:
A. m=-\frac{9}{8}
B. m=\frac{3}{4}
C. m=-\frac{3}{4}
D. m=-\frac{9}{2}
E. m=-\frac{45}{32}
F. m=-\frac{9}{4}
Zadanie 22. 1 pkt ⋅ Numer: pp-11926 ⋅ Poprawnie: 154/191 [80%]
Rozwiąż
Podpunkt 22.1 (1 pkt)
Punkty
A=(3,3) oraz
C=(1,5) są końcami
przekątnej
AC rombu
ABCD .
Środek przekątnej BD tego rombu ma współrzędne:
Odpowiedzi:
A. \left(1,4\right)
B. \left(2,5\right)
C. \left(2,4\right)
D. \left(4,3\right)
E. \left(3,4\right)
F. \left(2,3\right)
Zadanie 23. 1 pkt ⋅ Numer: pp-11928 ⋅ Poprawnie: 134/223 [60%]
Rozwiąż
Podpunkt 23.1 (1 pkt)
Punkty
A=(-9,10) ,
B=(2,12) ,
C=(7,2) są wierzchołkami równoległoboku
ABCD .
Długość przekątnej BD tego równoległoboku jest równa:
Odpowiedzi:
A. 3\sqrt{5}
B. 3\sqrt{6}
C. 8\sqrt{5}
D. 5\sqrt{6}
E. 5\sqrt{5}
F. 6\sqrt{5}
Zadanie 24. 1 pkt ⋅ Numer: pp-11929 ⋅ Poprawnie: 111/187 [59%]
Rozwiąż
Podpunkt 24.1 (1 pkt)
Obrazem prostej o równaniu
y=3x+3 w symetrii osiowej
względem osi
Ox jest prosta o równaniu:
Odpowiedzi:
A. y=-\frac{1}{3}x-3
B. y=3x-3
C. y=\frac{1}{3}x+3
D. y=-\frac{1}{3}x+3
E. y=-3x+3
F. y=-3x-3
Zadanie 25. 1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 132/228 [57%]
Rozwiąż
Podpunkt 25.1 (1 pkt)
W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich
ścian jest równy
\frac{19}{7} .
Podstawą tego graniastosłupa jest n -kąt foremny. Liczba
n jest równa:
Odpowiedzi:
A. 25
B. 16
C. 27
D. 28
E. 29
F. 19
Zadanie 26. 1 pkt ⋅ Numer: pp-11931 ⋅ Poprawnie: 314/322 [97%]
Rozwiąż
Podpunkt 26.1 (1 pkt)
Średnia arytmetyczna zestawu liczb
a ,
b
c ,
d jest równa
100 .
Wtedy średnia arytmetyczna zestawu liczb a-13 ,
b+25 ,c ,d
jest równa:
Odpowiedzi:
A. 94
B. 111
C. 113
D. 110
E. 102
F. 103
Zadanie 27. 1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 258/372 [69%]
Rozwiąż
Podpunkt 27.1 (1 pkt)
Wszystkich trzycyfrowych liczb naturalnych większych od
500
o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 5\cdot 5\cdot 5
B. 2\cdot 10\cdot 10
C. 5\cdot 5\cdot 5
D. 2\cdot 5\cdot 5
Zadanie 28. 1 pkt ⋅ Numer: pp-11933 ⋅ Poprawnie: 170/260 [65%]
Rozwiąż
Podpunkt 28.1 (1 pkt)
Doświadczenie losowe polega na dwukrotnym rzucie symetryczną,
22 -śnienną
kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do
22 . Niech
p oznacza prawdopodobieństwo
otrzymania w drugim rzucie liczby oczek podzielnej przez
11 .
Wtedy:
Odpowiedzi:
A. p=\frac{2}{11}
B. p=\frac{3}{44}
C. p=\frac{2}{33}
D. p=\frac{5}{44}
E. p=\frac{1}{22}
F. p=\frac{1}{11}
Zadanie 29. 1.5 pkt ⋅ Numer: pp-21078 ⋅ Poprawnie: 125/260 [48%]
Rozwiąż
Podpunkt 29.1 (0.5 pkt)
Rozwiąż nierówność
5x^2+8x\geqslant -3 .
Rozwiązanie zapisz w postaci sumy przedziałów. Ile jest tych przedziałów?
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Podpunkt 29.2 (0.5 pkt)
Podaj ten z końców liczbowych tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
x_{\in\mathbb{Z}}=
(wpisz liczbę całkowitą)
Podpunkt 29.3 (0.5 pkt)
Podaj ten z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 30. 2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 136/264 [51%]
Rozwiąż
Podpunkt 30.1 (1 pkt)
Trójwyrazowy ciąg
(x+3,y-1,y+3) jest arytmetyczny.
Suma wszystkich wyrazów tego ciągu jest równa
6 .
Oblicz wszystkie wyrazy tego ciągu.
Wyznacz x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 31. 2 pkt ⋅ Numer: pp-21080 ⋅ Poprawnie: 109/172 [63%]
Rozwiąż
Podpunkt 31.1 (1 pkt)
Rozwiąż równanie
\frac{4}{x+8}=x+5
Podaj najmniejsze rozwiązanie tego równania.
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Podpunkt 31.2 (1 pkt)
Podaj największe rozwiązanie wymierne tego równania.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 32. 2 pkt ⋅ Numer: pp-21081 ⋅ Poprawnie: 66/208 [31%]
Rozwiąż
Podpunkt 32.1 (2 pkt)
Dany jest trójkąt równoboczny
ABC o boku długości
32 . Punkt
E leży na boku
AB , a punkt
F – na boku
BC tego trójkąta. Odcinek
EF
jest równoległy do boku
AC i przechodzi przez środek
S wysokości
CD trójkąta
ABC (zobacz rysunek).
Oblicz długość odcinka EF .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 33. 2 pkt ⋅ Numer: pp-21079 ⋅ Poprawnie: 142/279 [50%]
Rozwiąż
Podpunkt 33.1 (2 pkt)
Ze zbioru pięciu liczb
\{-8,-3,-2,1,2\}
losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie
A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny.
Oblicz prawdopodobieństwo zdarzenia A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 34. 5 pkt ⋅ Numer: pp-30409 ⋅ Poprawnie: 39/182 [21%]
Rozwiąż
Podpunkt 34.1 (1 pkt)
Dany jest graniastosłup prosty
ABCDEFGH ,
którego podstawą jest prostokąt
ABCD . W tym
graniastosłupie
|BD|=61 , a ponadto
|CD|=49+|BC|
oraz
|\sphericalangle CDG|=45^{\circ} (zobacz rysunek).
Oblicz pole podstawy tego graniastosłupa.
Odpowiedź:
P_{ABCD}=
(wpisz liczbę całkowitą)
Podpunkt 34.2 (2 pkt)
Oblicz objętość tego graniastosłupa.
Odpowiedź:
Podpunkt 34.3 (2 pkt)
Oblicz pole powierzchni bocznej tego graniastosłupa.
Odpowiedź:
Rozwiąż