Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@cke-2022-08-pp

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11907  
Podpunkt 1.1 (1 pkt)
 Liczba \frac{27^{-32}}{3^{14}} jest równa:
Odpowiedzi:
A. 3^{-111} B. 3^{110}
C. 3^{-106} D. 3^{-110}
E. 3^{-112} F. 27^{-37}
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11908  
Podpunkt 2.1 (1 pkt)
 Liczba \log_{4}{256}-\log_{4}{16} jest równa:
Odpowiedzi:
A. 2 B. 8
C. -4 D. -2
E. 1 F. 4
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11910  
Podpunkt 3.1 (1 pkt)
 Liczba \left(1+3\sqrt{7}\right)^2 jest równa:
Odpowiedzi:
A. 256+6\sqrt{7} B. 128+6\sqrt{7}
C. 64+6\sqrt{7} D. 64+3\sqrt{7}
E. 64+12\sqrt{7} F. 32+6\sqrt{7}
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11911  
Podpunkt 4.1 (1 pkt)
 Cenę x (w złotych) pewnego towaru obniżono najpierw o 50\%, a następnie obniżono o 30\% w odniesieniu do ceny obowiązującej w danym momencie.

Po obydwu tych obniżkach cena towaru jest równa:

Odpowiedzi:
A. 0.42\cdot x B. 0.39\cdot x
C. 0.33\cdot x D. 0.35\cdot x
E. 0.32\cdot x F. 0.37\cdot x
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11909  
Podpunkt 5.1 (1 pkt)
 Jednym z rozwiązań równania 2(x-2)-x^2(x-2)=0 jest liczba:
Odpowiedzi:
A. -2 B. -4
C. 8 D. -3
E. 2 F. 7
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11912  
Podpunkt 6.1 (1 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{8x-3}{6}>-6x jest przedział:
Odpowiedzi:
A. \left(\frac{3}{44},+\infty\right) B. \left(-\infty,\frac{3}{22}\right)
C. \left(-\infty,\frac{3}{44}\right) D. \left(\frac{9}{88},+\infty\right)
E. \left(\frac{1}{22},+\infty\right) F. \left(-\infty,\frac{1}{44}\right)
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11913  
Podpunkt 7.1 (1 pkt)
 Suma wszystkich rozwiązań równania (2x-1)(2x-4)(x+4)=0 jest równa:
Odpowiedzi:
A. -\frac{7}{6} B. -\frac{1}{2}
C. 0 D. -2
E. -\frac{3}{2} F. -4
Zadanie 8.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11934  
Podpunkt 8.1 (1 pkt)
 Punkt A=(1,2) należy do wykresu funkcji f, określonej wzorem f(x)=(m^2+14m+46)x^3-m^2-13m-41 dla każdej liczby rzeczywistej x.

Wtedy liczba m jest równa:

Odpowiedzi:
A. -5 B. 2
C. 3 D. -3
E. -1 F. -4
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11914  
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=(2m-2)x+22 jest rosnąca dla:
Odpowiedzi:
A. m \lessdot \frac{5}{4} B. m \lessdot -2
C. m \lessdot \frac{3}{2} D. m >1
E. m >\frac{2}{3} F. m >-4
Zadanie 10.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11915  
Podpunkt 10.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=x^2+bx+c osiąga dla x=3 wartość najmniejszą równą -12.

Wtedy:

Odpowiedzi:
A. b=-7,\ c=-2 B. b=-6,\ c=-2
C. b=6,\ c=-4 D. b=-6,\ c=-3
E. b=-6,\ c=3 F. b=6,\ c=3
Zadanie 11.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11916  
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja kwadratowa f określona wzorem f(x)=-3(x+4)(x-5).

Funkcja f jest rosnąca w zbiorze:

Odpowiedzi:
A. \left\langle 5,+\infty\right) B. \left(-\infty, \frac{1}{2}\right\rangle
C. \left\langle -4,+\infty\right) D. \left(-\infty, 6\right\rangle
E. \left(-\infty, \frac{3}{4}\right\rangle F. \left(-\infty, 5\right\rangle
Zadanie 12.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11917  
Podpunkt 12.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f określonej na zbiorze \langle -2, 5):

Funkcja g jest określona za pomocą funkcji f następująco: g(x)=f(x-5). Wykres funkcji g można otrzymać poprzez odpowiednie przesunięcie wykresu funkcji f.

Dziedziną funkcji g jest zbiór:

Odpowiedzi:
A. \langle 4,11) B. \langle 1,8)
C. \langle 3,10) D. \langle 2,9)
E. \langle 5,12) F. \langle 0,7)
Zadanie 13.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11918  
Podpunkt 13.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 57:

Odpowiedzi:
A. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 14.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11919  
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 4.

Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 1367 B. 21
C. 5461 D. 85
E. 1365 F. 341
Zadanie 15.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11920  
Podpunkt 15.1 (1 pkt)
 W ciągu dwóch godzin trzy jednakowe maszyny produkują razem 3480 guzików.

Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują z taką samą, stałą wydajnością.

Odpowiedzi:
A. 2960 B. 2880
C. 2800 D. 2900
E. 2980 F. 3000
Zadanie 16.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11921  
Podpunkt 16.1 (1 pkt)
 Przyprostokątna AC trójkąta prostokątnego ABC ma długość 5, a przeciwprostokątna AB ma długość \sqrt{74}.

Wtedy tangens kąta ostrego CAB tego trójkąta jest równy:

Odpowiedzi:
A. \frac{\sqrt{74}}{5} B. \frac{5\sqrt{74}}{74}
C. \frac{7}{5} D. \frac{7\sqrt{74}}{74}
E. \frac{5}{7} F. \frac{\sqrt{74}}{7}
Zadanie 17.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11922  
Podpunkt 17.1 (1 pkt)
 Nie istnieje kąt ostry \alpha taki, że:
Odpowiedzi:
A. \sin\alpha=\frac{8}{17} i \cos\alpha=\frac{15}{17} B. \sin\alpha=\frac{5}{13} i \cos\alpha=\frac{12}{13}
C. \sin\alpha=\frac{9}{15} i \cos\alpha=\frac{13}{15} D. \sin\alpha=\frac{3}{5} i \cos\alpha=\frac{4}{5}
Zadanie 18.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11923  
Podpunkt 18.1 (1 pkt)
 Wierzchołki A, B, C czworokąta ABSC leżą na okręgu o środku S. Kąt ABS ma miarę 74^{\circ} (zobacz rysunek), a przekątna BC jest dwusieczną tego kąta.

Miara kąta ASC jest równa:

Odpowiedzi:
A. 66^{\circ} B. 80^{\circ}
C. 78^{\circ} D. 70^{\circ}
E. 86^{\circ} F. 74^{\circ}
Zadanie 19.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11924  
Podpunkt 19.1 (1 pkt)
 Punkty A oraz B leżą na okręgu o środku S. Kąt środkowy ASB ma miarę 144^{\circ}. Prosta l jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB okręgu kąt o mierze \alpha (zobacz rysunek).

Wtedy:

Odpowiedzi:
A. \alpha=76^{\circ} B. \alpha=60^{\circ}
C. \alpha=82^{\circ} D. \alpha=72^{\circ}
E. \alpha=64^{\circ} F. \alpha=78^{\circ}
Zadanie 20.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11925  
Podpunkt 20.1 (1 pkt)
 Pole prostokąta jest równe 784, a przekątne tego prostokąta przecinają się pod kątem ostrym \alpha, takim, że \sin\alpha=\frac{1}{8}.

Długość przekątnej tego prostokąta jest równa:

Odpowiedzi:
A. 117 B. 111
C. 104 D. 110
E. 108 F. 112
Zadanie 21.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11935  
Podpunkt 21.1 (1 pkt)
 Proste o równaniach y=\frac{5}{4}x-2 oraz y=(2m-5)x+1 są prostopadłe, gdy:
Odpowiedzi:
A. m=\frac{21}{8} B. m=\frac{7}{5}
C. m=\frac{21}{10} D. m=-\frac{7}{5}
E. m=\frac{21}{5} F. m=\frac{42}{5}
Zadanie 22.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11926  
Podpunkt 22.1 (1 pkt)
 Punkty A=(-4,-1) oraz C=(-6,5) są końcami przekątnej AC rombu ABCD.

Środek przekątnej BD tego rombu ma współrzędne:

Odpowiedzi:
A. \left(-5,1\right) B. \left(-5,2\right)
C. \left(-3,1\right) D. \left(-4,2\right)
E. \left(-5,3\right) F. \left(-6,2\right)
Zadanie 23.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11928  
Podpunkt 23.1 (1 pkt)
 Punkty A=(-18,5), B=(-7,7), C=(-2,-3) są wierzchołkami równoległoboku ABCD.

Długość przekątnej BD tego równoległoboku jest równa:

Odpowiedzi:
A. 5\sqrt{6} B. 6\sqrt{5}
C. 8\sqrt{5} D. 5\sqrt{5}
E. 3\sqrt{5} F. 3\sqrt{6}
Zadanie 24.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11929  
Podpunkt 24.1 (1 pkt)
 Obrazem prostej o równaniu y=-6x-2 w symetrii osiowej względem osi Ox jest prosta o równaniu:
Odpowiedzi:
A. y=\frac{1}{6}x+2 B. y=6x-2
C. y=\frac{1}{6}x-2 D. y=-\frac{1}{6}x-2
E. y=-6x+2 F. y=6x+2
Zadanie 25.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11930  
Podpunkt 25.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{63}{23}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 28 B. 25
C. 27 D. 21
E. 29 F. 26
Zadanie 26.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11931  
Podpunkt 26.1 (1 pkt)
 Średnia arytmetyczna zestawu liczb a, b c, d jest równa 30.

Wtedy średnia arytmetyczna zestawu liczb a-14, b+26,c,d jest równa:

Odpowiedzi:
A. 42 B. 33
C. 36 D. 28
E. 29 F. 34
Zadanie 27.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11932  
Podpunkt 27.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 600 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 4\cdot 5\cdot 5 B. 2\cdot 10\cdot 10-1
C. 2\cdot 5\cdot 5 D. 2\cdot 5\cdot 5-1
Zadanie 28.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11933  
Podpunkt 28.1 (1 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną, 26-śnienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do 26. Niech p oznacza prawdopodobieństwo otrzymania w drugim rzucie liczby oczek podzielnej przez 13.

Wtedy:

Odpowiedzi:
A. p=\frac{1}{13} B. p=\frac{1}{26}
C. p=\frac{2}{39} D. p=\frac{5}{52}
E. p=\frac{2}{13} F. p=\frac{3}{52}
Zadanie 29.  (1.5 pkt) [ Dodaj do testu ]  Numer zadania: pp-21078  
Podpunkt 29.1 (0.5 pkt)
 Rozwiąż nierówność 3x^2+11x\geqslant 20.

Rozwiązanie zapisz w postaci sumy przedziałów. Ile jest tych przedziałów?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 29.2 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 29.3 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
x_{\notin\mathbb{Z}}=
(wpisz dwie liczby całkowite)
Zadanie 30.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21082  
Podpunkt 30.1 (1 pkt)
 Trójwyrazowy ciąg (x-6,y-6,y-2) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 31.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21080  
Podpunkt 31.1 (1 pkt)
 Rozwiąż równanie \frac{4}{x+13}=x+10

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 31.2 (1 pkt)
 Podaj największe rozwiązanie wymierne tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 32.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21081  
Podpunkt 32.1 (2 pkt)
 Dany jest trójkąt równoboczny ABC o boku długości 40. Punkt E leży na boku AB, a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).

Oblicz długość odcinka EF.

Odpowiedź:
|EF|=
(wpisz dwie liczby całkowite)
Zadanie 33.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21079  
Podpunkt 33.1 (2 pkt)
 Ze zbioru pięciu liczb \{-8,-4,-2,1,9\} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny.

Oblicz prawdopodobieństwo zdarzenia A.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 34.  (5 pkt) [ Dodaj do testu ]  Numer zadania: pp-30409  
Podpunkt 34.1 (1 pkt)
 Dany jest graniastosłup prosty ABCDEFGH, którego podstawą jest prostokąt ABCD. W tym graniastosłupie |BD|=52, a ponadto |CD|=28+|BC| oraz |\sphericalangle CDG|=30^{\circ} (zobacz rysunek).

Oblicz pole podstawy tego graniastosłupa.

Odpowiedź:
P_{ABCD}= (wpisz liczbę całkowitą)
Podpunkt 34.2 (2 pkt)
 Oblicz objętość tego graniastosłupa.
Odpowiedź:
V= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 34.3 (2 pkt)
 Oblicz pole powierzchni bocznej tego graniastosłupa.
Odpowiedź:
P_{b}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm