Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2022-08-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11907 ⋅ Poprawnie: 445/519 [85%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba \frac{25^{-41}}{5^{14}} jest równa:
Odpowiedzi:
A. 5^{96} B. 5^{-92}
C. 25^{-49} D. 125^{-33}
E. 5^{-97} F. 5^{-96}
Zadanie 2.  1 pkt ⋅ Numer: pp-11908 ⋅ Poprawnie: 483/536 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{3}{81}-\log_{3}{27} jest równa:
Odpowiedzi:
A. 2 B. 4
C. -2 D. 1
E. -1 F. \frac{1}{2}
Zadanie 3.  1 pkt ⋅ Numer: pp-11910 ⋅ Poprawnie: 423/438 [96%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba \left(5+3\sqrt{2}\right)^2 jest równa:
Odpowiedzi:
A. 21+30\sqrt{2} B. 86+30\sqrt{2}
C. 43+60\sqrt{2} D. 172+30\sqrt{2}
E. 43+30\sqrt{2} F. 43+15\sqrt{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-11911 ⋅ Poprawnie: 283/348 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Cenę x (w złotych) pewnego towaru obniżono najpierw o 30\%, a następnie obniżono o 40\% w odniesieniu do ceny obowiązującej w danym momencie.

Po obydwu tych obniżkach cena towaru jest równa:

Odpowiedzi:
A. 0.46\cdot x B. 0.42\cdot x
C. 0.40\cdot x D. 0.49\cdot x
E. 0.44\cdot x F. 0.39\cdot x
Zadanie 5.  1 pkt ⋅ Numer: pp-11909 ⋅ Poprawnie: 168/183 [91%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Jednym z rozwiązań równania 6(x+1)-x^2(x+1)=0 jest liczba:
Odpowiedzi:
A. 2 B. -2
C. -6 D. 5
E. -1 F. 1
Zadanie 6.  1 pkt ⋅ Numer: pp-11912 ⋅ Poprawnie: 188/260 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{4x-3}{6}>-3x jest przedział:
Odpowiedzi:
A. \left(-\infty,\frac{3}{11}\right) B. \left(-\infty,\frac{3}{22}\right)
C. \left(-\infty,\frac{1}{22}\right) D. \left(\frac{3}{22},+\infty\right)
E. \left(\frac{9}{44},+\infty\right) F. \left(\frac{1}{11},+\infty\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11913 ⋅ Poprawnie: 159/185 [85%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Suma wszystkich rozwiązań równania (3x+1)(3x-2)(x+4)=0 jest równa:
Odpowiedzi:
A. -\frac{13}{6} B. -\frac{11}{3}
C. -\frac{10}{3} D. -\frac{25}{6}
E. -3 F. -\frac{17}{3}
Zadanie 8.  1 pkt ⋅ Numer: pp-11934 ⋅ Poprawnie: 137/185 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt A=(1,2) należy do wykresu funkcji f, określonej wzorem f(x)=(m^2+4m+1)x^3-m^2-3m-1 dla każdej liczby rzeczywistej x.

Wtedy liczba m jest równa:

Odpowiedzi:
A. 1 B. 2
C. 4 D. -3
E. 5 F. 8
Zadanie 9.  1 pkt ⋅ Numer: pp-11914 ⋅ Poprawnie: 195/268 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=(4m+1)x+22 jest rosnąca dla:
Odpowiedzi:
A. m >-\frac{1}{4} B. m >-\frac{1}{16}
C. m >-\frac{1}{6} D. m \lessdot \frac{1}{2}
E. m \lessdot -\frac{5}{16} F. m >1
Zadanie 10.  1 pkt ⋅ Numer: pp-11915 ⋅ Poprawnie: 236/347 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=x^2+bx+c osiąga dla x=-2 wartość najmniejszą równą -14.

Wtedy:

Odpowiedzi:
A. b=4,\ c=10 B. b=-4,\ c=10
C. b=-4,\ c=-10 D. b=4,\ c=-10
E. b=3,\ c=-9 F. b=4,\ c=-9
Zadanie 11.  1 pkt ⋅ Numer: pp-11916 ⋅ Poprawnie: 219/299 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja kwadratowa f określona wzorem f(x)=-4(x-1)(x+3).

Funkcja f jest rosnąca w zbiorze:

Odpowiedzi:
A. \left\langle -3,+\infty\right) B. \left(-\infty, -1\right\rangle
C. \left(-\infty, 2\right\rangle D. \left(-\infty, -\frac{3}{4}\right\rangle
E. \left\langle 1,+\infty\right) F. \left(-\infty, 1\right\rangle
Zadanie 12.  1 pkt ⋅ Numer: pp-11917 ⋅ Poprawnie: 263/373 [70%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f określonej na zbiorze \langle -2, 5):

Funkcja g jest określona za pomocą funkcji f następująco: g(x)=f(x-1). Wykres funkcji g można otrzymać poprzez odpowiednie przesunięcie wykresu funkcji f.

Dziedziną funkcji g jest zbiór:

Odpowiedzi:
A. \langle 0,7) B. \langle -4,3)
C. \langle 1,8) D. \langle -2,5)
E. \langle -3,4) F. \langle -1,6)
Zadanie 13.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 202/253 [79%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 34:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/244 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 3.

Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 40 B. 1093
C. 364 D. 121
E. 13 F. 366
Zadanie 15.  1 pkt ⋅ Numer: pp-11920 ⋅ Poprawnie: 166/181 [91%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu dwóch godzin trzy jednakowe maszyny produkują razem 2400 guzików.

Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują z taką samą, stałą wydajnością.

Odpowiedzi:
A. 1920 B. 2000
C. 2060 D. 1980
E. 2100 F. 2020
Zadanie 16.  1 pkt ⋅ Numer: pp-11921 ⋅ Poprawnie: 116/184 [63%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Przyprostokątna AC trójkąta prostokątnego ABC ma długość 5, a przeciwprostokątna AB ma długość \sqrt{41}.

Wtedy tangens kąta ostrego CAB tego trójkąta jest równy:

Odpowiedzi:
A. \frac{5}{4} B. \frac{4\sqrt{41}}{41}
C. \frac{\sqrt{41}}{5} D. \frac{5\sqrt{41}}{41}
E. \frac{4}{5} F. \frac{\sqrt{41}}{4}
Zadanie 17.  1 pkt ⋅ Numer: pp-11922 ⋅ Poprawnie: 141/207 [68%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Nie istnieje kąt ostry \alpha taki, że:
Odpowiedzi:
A. \sin\alpha=\frac{8}{17} i \cos\alpha=\frac{15}{17} B. \sin\alpha=\frac{5}{13} i \cos\alpha=\frac{13}{13}
C. \sin\alpha=\frac{3}{5} i \cos\alpha=\frac{4}{5} D. \sin\alpha=\frac{9}{15} i \cos\alpha=\frac{12}{15}
Zadanie 18.  1 pkt ⋅ Numer: pp-11923 ⋅ Poprawnie: 122/182 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Wierzchołki A, B, C czworokąta ABSC leżą na okręgu o środku S. Kąt ABS ma miarę 48^{\circ} (zobacz rysunek), a przekątna BC jest dwusieczną tego kąta.

Miara kąta ASC jest równa:

Odpowiedzi:
A. 44^{\circ} B. 54^{\circ}
C. 48^{\circ} D. 68^{\circ}
E. 40^{\circ} F. 60^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-11924 ⋅ Poprawnie: 133/182 [73%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A oraz B leżą na okręgu o środku S. Kąt środkowy ASB ma miarę 118^{\circ}. Prosta l jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB okręgu kąt o mierze \alpha (zobacz rysunek).

Wtedy:

Odpowiedzi:
A. \alpha=69^{\circ} B. \alpha=59^{\circ}
C. \alpha=63^{\circ} D. \alpha=51^{\circ}
E. \alpha=65^{\circ} F. \alpha=47^{\circ}
Zadanie 20.  1 pkt ⋅ Numer: pp-11925 ⋅ Poprawnie: 146/255 [57%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Pole prostokąta jest równe \frac{1444}{3}, a przekątne tego prostokąta przecinają się pod kątem ostrym \alpha, takim, że \sin\alpha=\frac{1}{6}.

Długość przekątnej tego prostokąta jest równa:

Odpowiedzi:
A. 62 B. 83
C. 87 D. 69
E. 67 F. 76
Zadanie 21.  1 pkt ⋅ Numer: pp-11935 ⋅ Poprawnie: 154/247 [62%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Proste o równaniach y=\frac{3}{5}x-5 oraz y=(2m-2)x+4 są prostopadłe, gdy:
Odpowiedzi:
A. m=-\frac{1}{9} B. m=\frac{2}{3}
C. m=\frac{1}{3} D. m=\frac{1}{9}
E. m=\frac{1}{6} F. m=\frac{5}{24}
Zadanie 22.  1 pkt ⋅ Numer: pp-11926 ⋅ Poprawnie: 153/191 [80%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Punkty A=(-5,5) oraz C=(3,-6) są końcami przekątnej AC rombu ABCD.

Środek przekątnej BD tego rombu ma współrzędne:

Odpowiedzi:
A. \left(-1,-\frac{3}{2}\right) B. \left(1,-\frac{3}{2}\right)
C. \left(-1,-\frac{1}{2}\right) D. \left(-2,-\frac{1}{2}\right)
E. \left(0,-\frac{1}{2}\right) F. \left(-1,\frac{1}{2}\right)
Zadanie 23.  1 pkt ⋅ Numer: pp-11928 ⋅ Poprawnie: 133/223 [59%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Punkty A=(-15,13), B=(-4,15), C=(1,5) są wierzchołkami równoległoboku ABCD.

Długość przekątnej BD tego równoległoboku jest równa:

Odpowiedzi:
A. 5\sqrt{5} B. 5\sqrt{6}
C. 3\sqrt{5} D. 6\sqrt{5}
E. 3\sqrt{6} F. 8\sqrt{5}
Zadanie 24.  1 pkt ⋅ Numer: pp-11929 ⋅ Poprawnie: 110/187 [58%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Obrazem prostej o równaniu y=-3x+6 w symetrii osiowej względem osi Ox jest prosta o równaniu:
Odpowiedzi:
A. y=-\frac{1}{3}x+6 B. y=\frac{1}{3}x-6
C. y=3x+6 D. y=3x-6
E. y=-3x-6 F. y=\frac{1}{3}x+6
Zadanie 25.  1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 130/227 [57%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{45}{17}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 23 B. 15
C. 21 D. 16
E. 22 F. 14
Zadanie 26.  1 pkt ⋅ Numer: pp-11931 ⋅ Poprawnie: 310/320 [96%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Średnia arytmetyczna zestawu liczb a, b c, d jest równa 70.

Wtedy średnia arytmetyczna zestawu liczb a-6, b+18,c,d jest równa:

Odpowiedzi:
A. 73 B. 81
C. 70 D. 74
E. 65 F. 67
Zadanie 27.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 252/361 [69%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 400 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 6\cdot 5\cdot 5 B. 3\cdot 10\cdot 10-1
C. 3\cdot 5\cdot 5 D. 3\cdot 5\cdot 5-1
Zadanie 28.  1 pkt ⋅ Numer: pp-11933 ⋅ Poprawnie: 169/260 [65%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną, 16-śnienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do 16. Niech p oznacza prawdopodobieństwo otrzymania w drugim rzucie liczby oczek podzielnej przez 8.

Wtedy:

Odpowiedzi:
A. p=\frac{3}{32} B. p=\frac{1}{4}
C. p=\frac{1}{12} D. p=\frac{5}{32}
E. p=\frac{1}{8} F. p=\frac{1}{16}
Zadanie 29.  1.5 pkt ⋅ Numer: pp-21078 ⋅ Poprawnie: 124/260 [47%] Rozwiąż 
Podpunkt 29.1 (0.5 pkt)
 Rozwiąż nierówność 4x^2-11x\geqslant 3.

Rozwiązanie zapisz w postaci sumy przedziałów. Ile jest tych przedziałów?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 29.2 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 29.3 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
x_{\notin\mathbb{Z}}=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 135/264 [51%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Trójwyrazowy ciąg (x-3,y+2,y+6) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-21080 ⋅ Poprawnie: 108/172 [62%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Rozwiąż równanie \frac{4}{x+1}=x-2

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 31.2 (1 pkt)
 Podaj największe rozwiązanie wymierne tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 32.  2 pkt ⋅ Numer: pp-21081 ⋅ Poprawnie: 66/208 [31%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 Dany jest trójkąt równoboczny ABC o boku długości 22. Punkt E leży na boku AB, a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).

Oblicz długość odcinka EF.

Odpowiedź:
|EF|=
(wpisz dwie liczby całkowite)
Zadanie 33.  2 pkt ⋅ Numer: pp-21079 ⋅ Poprawnie: 142/279 [50%] Rozwiąż 
Podpunkt 33.1 (2 pkt)
 Ze zbioru pięciu liczb \{-8,-7,0,5,9\} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny.

Oblicz prawdopodobieństwo zdarzenia A.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 34.  5 pkt ⋅ Numer: pp-30409 ⋅ Poprawnie: 38/182 [20%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Dany jest graniastosłup prosty ABCDEFGH, którego podstawą jest prostokąt ABCD. W tym graniastosłupie |BD|=61, a ponadto |CD|=49+|BC| oraz |\sphericalangle CDG|=30^{\circ} (zobacz rysunek).

Oblicz pole podstawy tego graniastosłupa.

Odpowiedź:
P_{ABCD}= (wpisz liczbę całkowitą)
Podpunkt 34.2 (2 pkt)
 Oblicz objętość tego graniastosłupa.
Odpowiedź:
V= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 34.3 (2 pkt)
 Oblicz pole powierzchni bocznej tego graniastosłupa.
Odpowiedź:
P_{b}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm