Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2022-08-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11907 ⋅ Poprawnie: 448/522 [85%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba \frac{27^{-40}}{3^{10}} jest równa:
Odpowiedzi:
A. 3^{-126} B. 9^{-66}
C. 3^{-131} D. 3^{130}
E. 27^{-44} F. 3^{-130}
Zadanie 2.  1 pkt ⋅ Numer: pp-11908 ⋅ Poprawnie: 485/537 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{3}{243}-\log_{3}{81} jest równa:
Odpowiedzi:
A. -1 B. 4
C. \frac{1}{2} D. 1
E. -2 F. 2
Zadanie 3.  1 pkt ⋅ Numer: pp-11910 ⋅ Poprawnie: 424/438 [96%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba \left(1-2\sqrt{2}\right)^2 jest równa:
Odpowiedzi:
A. 9-4\sqrt{2} B. 9-8\sqrt{2}
C. 9-2\sqrt{2} D. 18-4\sqrt{2}
E. 4-4\sqrt{2} F. 36-4\sqrt{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-11911 ⋅ Poprawnie: 284/348 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Cenę x (w złotych) pewnego towaru obniżono najpierw o 20\%, a następnie obniżono o 50\% w odniesieniu do ceny obowiązującej w danym momencie.

Po obydwu tych obniżkach cena towaru jest równa:

Odpowiedzi:
A. 0.38\cdot x B. 0.47\cdot x
C. 0.42\cdot x D. 0.40\cdot x
E. 0.37\cdot x F. 0.44\cdot x
Zadanie 5.  1 pkt ⋅ Numer: pp-11909 ⋅ Poprawnie: 169/183 [92%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Jednym z rozwiązań równania 5(x+4)-x^2(x+4)=0 jest liczba:
Odpowiedzi:
A. -3 B. 2
C. -1 D. -4
E. -8 F. -2
Zadanie 6.  1 pkt ⋅ Numer: pp-11912 ⋅ Poprawnie: 189/260 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{4x-3}{8}>2x jest przedział:
Odpowiedzi:
A. \left(-\infty,-\frac{1}{12}\right) B. \left(-\infty,-\frac{1}{4}\right)
C. \left(-\frac{1}{12},+\infty\right) D. \left(-\frac{1}{6},+\infty\right)
E. \left(-\infty,-\frac{1}{6}\right) F. \left(-\frac{1}{4},+\infty\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11913 ⋅ Poprawnie: 160/185 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Suma wszystkich rozwiązań równania (3x+3)(3x+2)(x-4)=0 jest równa:
Odpowiedzi:
A. \frac{10}{3} B. \frac{1}{3}
C. \frac{8}{3} D. \frac{11}{6}
E. -\frac{1}{6} F. \frac{7}{3}
Zadanie 8.  1 pkt ⋅ Numer: pp-11934 ⋅ Poprawnie: 138/185 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt A=(1,2) należy do wykresu funkcji f, określonej wzorem f(x)=(m^2-4m+1)x^3-m^2+5m-5 dla każdej liczby rzeczywistej x.

Wtedy liczba m jest równa:

Odpowiedzi:
A. 1 B. 0
C. 7 D. 6
E. 4 F. 2
Zadanie 9.  1 pkt ⋅ Numer: pp-11914 ⋅ Poprawnie: 196/268 [73%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=(3m+4)x+22 jest rosnąca dla:
Odpowiedzi:
A. m \lessdot -\frac{5}{3} B. m \lessdot \frac{8}{3}
C. m >-\frac{1}{3} D. m >\frac{16}{3}
E. m >-\frac{4}{3} F. m >-\frac{8}{9}
Zadanie 10.  1 pkt ⋅ Numer: pp-11915 ⋅ Poprawnie: 237/347 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=x^2+bx+c osiąga dla x=-1 wartość najmniejszą równą -11.

Wtedy:

Odpowiedzi:
A. b=2,\ c=-9 B. b=2,\ c=-10
C. b=-2,\ c=10 D. b=2,\ c=10
E. b=-2,\ c=-10 F. b=-2,\ c=-11
Zadanie 11.  1 pkt ⋅ Numer: pp-11916 ⋅ Poprawnie: 220/300 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja kwadratowa f określona wzorem f(x)=-3(x-4)(x-2).

Funkcja f jest rosnąca w zbiorze:

Odpowiedzi:
A. \left(-\infty, 4\right\rangle B. \left(-\infty, 5\right\rangle
C. \left(-\infty, \frac{13}{4}\right\rangle D. \left\langle 2,+\infty\right)
E. \left\langle 4,+\infty\right) F. \left(-\infty, 3\right\rangle
Zadanie 12.  1 pkt ⋅ Numer: pp-11917 ⋅ Poprawnie: 264/373 [70%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f określonej na zbiorze \langle -2, 5):

Funkcja g jest określona za pomocą funkcji f następująco: g(x)=f(x+1). Wykres funkcji g można otrzymać poprzez odpowiednie przesunięcie wykresu funkcji f.

Dziedziną funkcji g jest zbiór:

Odpowiedzi:
A. \langle -2,5) B. \langle -5,2)
C. \langle -3,4) D. \langle -4,3)
E. \langle -6,1) F. \langle -1,6)
Zadanie 13.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 203/253 [80%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 30:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/245 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 3.

Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 1093 B. 121
C. 1095 D. 3280
E. 364 F. 40
Zadanie 15.  1 pkt ⋅ Numer: pp-11920 ⋅ Poprawnie: 167/181 [92%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu dwóch godzin trzy jednakowe maszyny produkują razem 2160 guzików.

Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują z taką samą, stałą wydajnością.

Odpowiedzi:
A. 1760 B. 1700
C. 1820 D. 1880
E. 1800 F. 1860
Zadanie 16.  1 pkt ⋅ Numer: pp-11921 ⋅ Poprawnie: 116/184 [63%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Przyprostokątna AC trójkąta prostokątnego ABC ma długość 7, a przeciwprostokątna AB ma długość \sqrt{65}.

Wtedy tangens kąta ostrego CAB tego trójkąta jest równy:

Odpowiedzi:
A. \frac{7}{4} B. \frac{\sqrt{65}}{4}
C. \frac{\sqrt{65}}{7} D. \frac{7\sqrt{65}}{65}
E. \frac{4\sqrt{65}}{65} F. \frac{4}{7}
Zadanie 17.  1 pkt ⋅ Numer: pp-11922 ⋅ Poprawnie: 142/207 [68%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Nie istnieje kąt ostry \alpha taki, że:
Odpowiedzi:
A. \sin\alpha=\frac{8}{17} i \cos\alpha=\frac{15}{17} B. \sin\alpha=\frac{9}{15} i \cos\alpha=\frac{12}{15}
C. \sin\alpha=\frac{5}{13} i \cos\alpha=\frac{13}{13} D. \sin\alpha=\frac{3}{5} i \cos\alpha=\frac{4}{5}
Zadanie 18.  1 pkt ⋅ Numer: pp-11923 ⋅ Poprawnie: 123/182 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Wierzchołki A, B, C czworokąta ABSC leżą na okręgu o środku S. Kąt ABS ma miarę 42^{\circ} (zobacz rysunek), a przekątna BC jest dwusieczną tego kąta.

Miara kąta ASC jest równa:

Odpowiedzi:
A. 42^{\circ} B. 38^{\circ}
C. 46^{\circ} D. 34^{\circ}
E. 54^{\circ} F. 48^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-11924 ⋅ Poprawnie: 134/182 [73%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A oraz B leżą na okręgu o środku S. Kąt środkowy ASB ma miarę 112^{\circ}. Prosta l jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB okręgu kąt o mierze \alpha (zobacz rysunek).

Wtedy:

Odpowiedzi:
A. \alpha=48^{\circ} B. \alpha=60^{\circ}
C. \alpha=56^{\circ} D. \alpha=66^{\circ}
E. \alpha=62^{\circ} F. \alpha=44^{\circ}
Zadanie 20.  1 pkt ⋅ Numer: pp-11925 ⋅ Poprawnie: 147/255 [57%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Pole prostokąta jest równe \frac{1445}{3}, a przekątne tego prostokąta przecinają się pod kątem ostrym \alpha, takim, że \sin\alpha=\frac{5}{24}.

Długość przekątnej tego prostokąta jest równa:

Odpowiedzi:
A. 87 B. 81
C. 63 D. 82
E. 76 F. 68
Zadanie 21.  1 pkt ⋅ Numer: pp-11935 ⋅ Poprawnie: 155/247 [62%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Proste o równaniach y=\frac{1}{3}x-2 oraz y=(2m-5)x+2 są prostopadłe, gdy:
Odpowiedzi:
A. m=\frac{5}{4} B. m=1
C. m=2 D. m=\frac{2}{3}
E. m=4 F. m=-\frac{2}{3}
Zadanie 22.  1 pkt ⋅ Numer: pp-11926 ⋅ Poprawnie: 154/191 [80%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Punkty A=(-1,4) oraz C=(2,-6) są końcami przekątnej AC rombu ABCD.

Środek przekątnej BD tego rombu ma współrzędne:

Odpowiedzi:
A. \left(\frac{5}{2},-2\right) B. \left(\frac{1}{2},-2\right)
C. \left(\frac{3}{2},-1\right) D. \left(-\frac{1}{2},-1\right)
E. \left(\frac{1}{2},0\right) F. \left(\frac{1}{2},-1\right)
Zadanie 23.  1 pkt ⋅ Numer: pp-11928 ⋅ Poprawnie: 134/223 [60%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Punkty A=(-13,11), B=(-2,13), C=(3,3) są wierzchołkami równoległoboku ABCD.

Długość przekątnej BD tego równoległoboku jest równa:

Odpowiedzi:
A. 8\sqrt{5} B. 5\sqrt{5}
C. 6\sqrt{5} D. 3\sqrt{5}
E. 5\sqrt{6} F. 3\sqrt{6}
Zadanie 24.  1 pkt ⋅ Numer: pp-11929 ⋅ Poprawnie: 111/187 [59%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Obrazem prostej o równaniu y=2x-6 w symetrii osiowej względem osi Ox jest prosta o równaniu:
Odpowiedzi:
A. y=-\frac{1}{2}x+6 B. y=-2x-6
C. y=2x+6 D. y=\frac{1}{2}x-6
E. y=-2x+6 F. y=-\frac{1}{2}x-6
Zadanie 25.  1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 131/227 [57%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{13}{5}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 16 B. 13
C. 10 D. 19
E. 12 F. 23
Zadanie 26.  1 pkt ⋅ Numer: pp-11931 ⋅ Poprawnie: 314/322 [97%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Średnia arytmetyczna zestawu liczb a, b c, d jest równa 20.

Wtedy średnia arytmetyczna zestawu liczb a-10, b+30,c,d jest równa:

Odpowiedzi:
A. 17 B. 25
C. 21 D. 29
E. 27 F. 22
Zadanie 27.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 255/365 [69%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 300 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 3\cdot 5\cdot 5 B. 7\cdot 5\cdot 5
C. 7\cdot 5\cdot 5 D. 3\cdot 10\cdot 10
Zadanie 28.  1 pkt ⋅ Numer: pp-11933 ⋅ Poprawnie: 170/260 [65%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną, 14-śnienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do 14. Niech p oznacza prawdopodobieństwo otrzymania w drugim rzucie liczby oczek podzielnej przez 7.

Wtedy:

Odpowiedzi:
A. p=\frac{1}{14} B. p=\frac{1}{7}
C. p=\frac{3}{28} D. p=\frac{5}{28}
E. p=\frac{2}{21} F. p=\frac{2}{7}
Zadanie 29.  1.5 pkt ⋅ Numer: pp-21078 ⋅ Poprawnie: 125/260 [48%] Rozwiąż 
Podpunkt 29.1 (0.5 pkt)
 Rozwiąż nierówność 3x^2+10x\geqslant -8.

Rozwiązanie zapisz w postaci sumy przedziałów. Ile jest tych przedziałów?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 29.2 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 29.3 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
x_{\notin\mathbb{Z}}=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 136/264 [51%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Trójwyrazowy ciąg (x-1,y,y+4) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-21080 ⋅ Poprawnie: 109/172 [63%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Rozwiąż równanie \frac{4}{x-1}=x-4

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 31.2 (1 pkt)
 Podaj największe rozwiązanie wymierne tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 32.  2 pkt ⋅ Numer: pp-21081 ⋅ Poprawnie: 66/208 [31%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 Dany jest trójkąt równoboczny ABC o boku długości 18. Punkt E leży na boku AB, a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).

Oblicz długość odcinka EF.

Odpowiedź:
|EF|=
(wpisz dwie liczby całkowite)
Zadanie 33.  2 pkt ⋅ Numer: pp-21079 ⋅ Poprawnie: 142/279 [50%] Rozwiąż 
Podpunkt 33.1 (2 pkt)
 Ze zbioru pięciu liczb \{-8,-4,-1,4,7\} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny.

Oblicz prawdopodobieństwo zdarzenia A.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 34.  5 pkt ⋅ Numer: pp-30409 ⋅ Poprawnie: 39/182 [21%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Dany jest graniastosłup prosty ABCDEFGH, którego podstawą jest prostokąt ABCD. W tym graniastosłupie |BD|=34, a ponadto |CD|=14+|BC| oraz |\sphericalangle CDG|=60^{\circ} (zobacz rysunek).

Oblicz pole podstawy tego graniastosłupa.

Odpowiedź:
P_{ABCD}= (wpisz liczbę całkowitą)
Podpunkt 34.2 (2 pkt)
 Oblicz objętość tego graniastosłupa.
Odpowiedź:
V= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 34.3 (2 pkt)
 Oblicz pole powierzchni bocznej tego graniastosłupa.
Odpowiedź:
P_{b}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm