Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2022-08-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11907 ⋅ Poprawnie: 353/432 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba \frac{27^{-36}}{3^{17}} jest równa:
Odpowiedzi:
A. 27^{-42} B. 3^{-121}
C. 3^{125} D. 3^{-127}
E. 3^{-126} F. 3^{-125}
Zadanie 2.  1 pkt ⋅ Numer: pp-11908 ⋅ Poprawnie: 390/449 [86%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{4}{16}-\log_{4}{1024} jest równa:
Odpowiedzi:
A. -12 B. -\frac{3}{2}
C. -6 D. 3
E. 6 F. -3
Zadanie 3.  1 pkt ⋅ Numer: pp-11910 ⋅ Poprawnie: 381/417 [91%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba \left(3-2\sqrt{5}\right)^2 jest równa:
Odpowiedzi:
A. 29-12\sqrt{5} B. 14-12\sqrt{5}
C. 58-12\sqrt{5} D. 29-24\sqrt{5}
E. 116-12\sqrt{5} F. 29-6\sqrt{5}
Zadanie 4.  1 pkt ⋅ Numer: pp-11911 ⋅ Poprawnie: 272/336 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Cenę x (w złotych) pewnego towaru obniżono najpierw o 50\%, a następnie obniżono o 10\% w odniesieniu do ceny obowiązującej w danym momencie.

Po obydwu tych obniżkach cena towaru jest równa:

Odpowiedzi:
A. 0.47\cdot x B. 0.43\cdot x
C. 0.42\cdot x D. 0.52\cdot x
E. 0.45\cdot x F. 0.49\cdot x
Zadanie 5.  1 pkt ⋅ Numer: pp-11909 ⋅ Poprawnie: 157/171 [91%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Jednym z rozwiązań równania 10(x-6)-x^2(x-6)=0 jest liczba:
Odpowiedzi:
A. 5 B. 6
C. 7 D. 10
E. 1 F. 11
Zadanie 6.  1 pkt ⋅ Numer: pp-11912 ⋅ Poprawnie: 176/248 [70%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{3x-3}{9}>2x jest przedział:
Odpowiedzi:
A. \left(-\frac{1}{15},+\infty\right) B. \left(-\frac{2}{15},+\infty\right)
C. \left(-\frac{1}{5},+\infty\right) D. \left(-\infty,-\frac{1}{15}\right)
E. \left(-\infty,-\frac{1}{5}\right) F. \left(-\infty,-\frac{2}{15}\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11913 ⋅ Poprawnie: 147/173 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Suma wszystkich rozwiązań równania (4x-4)(4x+3)(x-2)=0 jest równa:
Odpowiedzi:
A. \frac{13}{4} B. \frac{35}{12}
C. -\frac{1}{4} D. \frac{7}{4}
E. \frac{9}{4} F. \frac{1}{4}
Zadanie 8.  1 pkt ⋅ Numer: pp-11934 ⋅ Poprawnie: 126/172 [73%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt A=(1,2) należy do wykresu funkcji f, określonej wzorem f(x)=(m^2+14m+46)x^3-m^2-13m-41 dla każdej liczby rzeczywistej x.

Wtedy liczba m jest równa:

Odpowiedzi:
A. -7 B. -5
C. 2 D. 0
E. -4 F. -3
Zadanie 9.  1 pkt ⋅ Numer: pp-11914 ⋅ Poprawnie: 184/256 [71%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=(6m-6)x+22 jest rosnąca dla:
Odpowiedzi:
A. m \lessdot -2 B. m >1
C. m \lessdot \frac{3}{2} D. m >\frac{2}{3}
E. m >-4 F. m >\frac{1}{4}
Zadanie 10.  1 pkt ⋅ Numer: pp-11915 ⋅ Poprawnie: 186/287 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=x^2+bx+c osiąga dla x=-3 wartość najmniejszą równą -18.

Wtedy:

Odpowiedzi:
A. b=-6,\ c=-9 B. b=5,\ c=-8
C. b=6,\ c=9 D. b=6,\ c=-8
E. b=6,\ c=-9 F. b=-6,\ c=9
Zadanie 11.  1 pkt ⋅ Numer: pp-11916 ⋅ Poprawnie: 158/242 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja kwadratowa f określona wzorem f(x)=-6(x+6)(x-4).

Funkcja f jest rosnąca w zbiorze:

Odpowiedzi:
A. \left(-\infty, -\frac{3}{4}\right\rangle B. \left\langle -6,+\infty\right)
C. \left\langle 4,+\infty\right) D. \left(-\infty, -1\right\rangle
E. \left(-\infty, 4\right\rangle F. \left(-\infty, 5\right\rangle
Zadanie 12.  1 pkt ⋅ Numer: pp-11917 ⋅ Poprawnie: 252/361 [69%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f określonej na zbiorze \langle -2, 5):

Funkcja g jest określona za pomocą funkcji f następująco: g(x)=f(x-5). Wykres funkcji g można otrzymać poprzez odpowiednie przesunięcie wykresu funkcji f.

Dziedziną funkcji g jest zbiór:

Odpowiedzi:
A. \langle 5,12) B. \langle 1,8)
C. \langle 3,10) D. \langle 4,11)
E. \langle 2,9) F. \langle 0,7)
Zadanie 13.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 144/196 [73%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 57:

Odpowiedzi:
A. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 176/217 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 4.

Suma czterech początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 5 B. 343
C. 85 D. 341
E. 1365 F. 21
Zadanie 15.  1 pkt ⋅ Numer: pp-11920 ⋅ Poprawnie: 156/169 [92%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu dwóch godzin trzy jednakowe maszyny produkują razem 3480 guzików.

Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują z taką samą, stałą wydajnością.

Odpowiedzi:
A. 2900 B. 2840
C. 2860 D. 2820
E. 2800 F. 2960
Zadanie 16.  1 pkt ⋅ Numer: pp-11921 ⋅ Poprawnie: 107/172 [62%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Przyprostokątna AC trójkąta prostokątnego ABC ma długość 2, a przeciwprostokątna AB ma długość \sqrt{53}.

Wtedy tangens kąta ostrego CAB tego trójkąta jest równy:

Odpowiedzi:
A. \frac{\sqrt{53}}{7} B. \frac{7\sqrt{53}}{53}
C. \frac{7}{2} D. \frac{\sqrt{53}}{2}
E. \frac{2}{7} F. \frac{2\sqrt{53}}{53}
Zadanie 17.  1 pkt ⋅ Numer: pp-11922 ⋅ Poprawnie: 124/180 [68%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Nie istnieje kąt ostry \alpha taki, że:
Odpowiedzi:
A. \sin\alpha=\frac{3}{5} i \cos\alpha=\frac{4}{5} B. \sin\alpha=\frac{5}{13} i \cos\alpha=\frac{12}{13}
C. \sin\alpha=\frac{8}{17} i \cos\alpha=\frac{15}{17} D. \sin\alpha=\frac{9}{15} i \cos\alpha=\frac{13}{15}
Zadanie 18.  1 pkt ⋅ Numer: pp-11923 ⋅ Poprawnie: 117/170 [68%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Wierzchołki A, B, C czworokąta ABSC leżą na okręgu o środku S. Kąt ABS ma miarę 76^{\circ} (zobacz rysunek), a przekątna BC jest dwusieczną tego kąta.

Miara kąta ASC jest równa:

Odpowiedzi:
A. 72^{\circ} B. 80^{\circ}
C. 76^{\circ} D. 82^{\circ}
E. 88^{\circ} F. 68^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-11924 ⋅ Poprawnie: 123/170 [72%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A oraz B leżą na okręgu o środku S. Kąt środkowy ASB ma miarę 146^{\circ}. Prosta l jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB okręgu kąt o mierze \alpha (zobacz rysunek).

Wtedy:

Odpowiedzi:
A. \alpha=61^{\circ} B. \alpha=83^{\circ}
C. \alpha=79^{\circ} D. \alpha=77^{\circ}
E. \alpha=65^{\circ} F. \alpha=73^{\circ}
Zadanie 20.  1 pkt ⋅ Numer: pp-11925 ⋅ Poprawnie: 136/228 [59%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Pole prostokąta jest równe \frac{784}{3}, a przekątne tego prostokąta przecinają się pod kątem ostrym \alpha, takim, że \sin\alpha=\frac{1}{24}.

Długość przekątnej tego prostokąta jest równa:

Odpowiedzi:
A. 126 B. 121
C. 112 D. 107
E. 102 F. 116
Zadanie 21.  1 pkt ⋅ Numer: pp-11935 ⋅ Poprawnie: 144/235 [61%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Proste o równaniach y=\frac{5}{2}x-2 oraz y=(2m+3)x+4 są prostopadłe, gdy:
Odpowiedzi:
A. m=-\frac{34}{5} B. m=\frac{17}{15}
C. m=-\frac{17}{8} D. m=-\frac{17}{5}
E. m=-\frac{17}{15} F. m=-\frac{17}{10}
Zadanie 22.  1 pkt ⋅ Numer: pp-11926 ⋅ Poprawnie: 145/179 [81%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Punkty A=(6,-6) oraz C=(4,-2) są końcami przekątnej AC rombu ABCD.

Środek przekątnej BD tego rombu ma współrzędne:

Odpowiedzi:
A. \left(6,-4\right) B. \left(7,-5\right)
C. \left(4,-4\right) D. \left(5,-4\right)
E. \left(5,-5\right) F. \left(5,-3\right)
Zadanie 23.  1 pkt ⋅ Numer: pp-11928 ⋅ Poprawnie: 122/211 [57%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Punkty A=(-6,1), B=(5,3), C=(10,-7) są wierzchołkami równoległoboku ABCD.

Długość przekątnej BD tego równoległoboku jest równa:

Odpowiedzi:
A. 8\sqrt{5} B. 3\sqrt{5}
C. 5\sqrt{5} D. 6\sqrt{5}
E. 5\sqrt{6} F. 3\sqrt{6}
Zadanie 24.  1 pkt ⋅ Numer: pp-11929 ⋅ Poprawnie: 102/175 [58%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Obrazem prostej o równaniu y=6x-6 w symetrii osiowej względem osi Ox jest prosta o równaniu:
Odpowiedzi:
A. y=-\frac{1}{6}x+6 B. y=-\frac{1}{6}x-6
C. y=-6x-6 D. y=-6x+6
E. y=\frac{1}{6}x-6 F. y=6x+6
Zadanie 25.  1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 110/205 [53%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{11}{4}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 23 B. 22
C. 25 D. 21
E. 32 F. 24
Zadanie 26.  1 pkt ⋅ Numer: pp-11931 ⋅ Poprawnie: 290/298 [97%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Średnia arytmetyczna zestawu liczb a, b c, d jest równa 60.

Wtedy średnia arytmetyczna zestawu liczb a-15, b+23,c,d jest równa:

Odpowiedzi:
A. 68 B. 58
C. 52 D. 54
E. 62 F. 60
Zadanie 27.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 184/287 [64%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 600 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 4\cdot 5\cdot 5 B. 2\cdot 5\cdot 5-1
C. 2\cdot 10\cdot 10-1 D. 2\cdot 5\cdot 5
Zadanie 28.  1 pkt ⋅ Numer: pp-11933 ⋅ Poprawnie: 121/195 [62%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną, 26-śnienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do 26. Niech p oznacza prawdopodobieństwo otrzymania w drugim rzucie liczby oczek podzielnej przez 13.

Wtedy:

Odpowiedzi:
A. p=\frac{1}{13} B. p=\frac{1}{26}
C. p=\frac{5}{52} D. p=\frac{3}{52}
E. p=\frac{2}{39} F. p=\frac{2}{13}
Zadanie 29.  1.5 pkt ⋅ Numer: pp-21078 ⋅ Poprawnie: 116/248 [46%] Rozwiąż 
Podpunkt 29.1 (0.5 pkt)
 Rozwiąż nierówność 4x^2-7x\geqslant -3.

Rozwiązanie zapisz w postaci sumy przedziałów. Ile jest tych przedziałów?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 29.2 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 29.3 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
x_{\notin\mathbb{Z}}=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 129/252 [51%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Trójwyrazowy ciąg (x+6,y-10,y-6) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-21080 ⋅ Poprawnie: 98/159 [61%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Rozwiąż równanie \frac{4}{x+13}=x+10

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 31.2 (1 pkt)
 Podaj największe rozwiązanie wymierne tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 32.  2 pkt ⋅ Numer: pp-21081 ⋅ Poprawnie: 64/195 [32%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 Dany jest trójkąt równoboczny ABC o boku długości 40. Punkt E leży na boku AB, a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).

Oblicz długość odcinka EF.

Odpowiedź:
|EF|=
(wpisz dwie liczby całkowite)
Zadanie 33.  2 pkt ⋅ Numer: pp-21079 ⋅ Poprawnie: 71/181 [39%] Rozwiąż 
Podpunkt 33.1 (2 pkt)
 Ze zbioru pięciu liczb \{-3,-1,2,4,5\} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny.

Oblicz prawdopodobieństwo zdarzenia A.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 34.  5 pkt ⋅ Numer: pp-30409 ⋅ Poprawnie: 33/170 [19%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Dany jest graniastosłup prosty ABCDEFGH, którego podstawą jest prostokąt ABCD. W tym graniastosłupie |BD|=37, a ponadto |CD|=23+|BC| oraz |\sphericalangle CDG|=60^{\circ} (zobacz rysunek).

Oblicz pole podstawy tego graniastosłupa.

Odpowiedź:
P_{ABCD}= (wpisz liczbę całkowitą)
Podpunkt 34.2 (2 pkt)
 Oblicz objętość tego graniastosłupa.
Odpowiedź:
V= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 34.3 (2 pkt)
 Oblicz pole powierzchni bocznej tego graniastosłupa.
Odpowiedź:
P_{b}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm