Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2022-08-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11907 ⋅ Poprawnie: 448/522 [85%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba \frac{27^{-34}}{3^{17}} jest równa:
Odpowiedzi:
A. 3^{-119} B. 3^{-120}
C. 27^{-40} D. 9^{-60}
E. 3^{-121} F. 3^{119}
Zadanie 2.  1 pkt ⋅ Numer: pp-11908 ⋅ Poprawnie: 486/537 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{2}{32}-\log_{2}{8} jest równa:
Odpowiedzi:
A. -2 B. 8
C. 2 D. 1
E. 4 F. -4
Zadanie 3.  1 pkt ⋅ Numer: pp-11910 ⋅ Poprawnie: 424/438 [96%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba \left(5+2\sqrt{5}\right)^2 jest równa:
Odpowiedzi:
A. 22+20\sqrt{5} B. 45+40\sqrt{5}
C. 45+10\sqrt{5} D. 45+20\sqrt{5}
E. 90+20\sqrt{5} F. 180+20\sqrt{5}
Zadanie 4.  1 pkt ⋅ Numer: pp-11911 ⋅ Poprawnie: 284/348 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Cenę x (w złotych) pewnego towaru obniżono najpierw o 20\%, a następnie obniżono o 50\% w odniesieniu do ceny obowiązującej w danym momencie.

Po obydwu tych obniżkach cena towaru jest równa:

Odpowiedzi:
A. 0.44\cdot x B. 0.38\cdot x
C. 0.47\cdot x D. 0.42\cdot x
E. 0.37\cdot x F. 0.40\cdot x
Zadanie 5.  1 pkt ⋅ Numer: pp-11909 ⋅ Poprawnie: 169/183 [92%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Jednym z rozwiązań równania 6(x+3)-x^2(x+3)=0 jest liczba:
Odpowiedzi:
A. 0 B. 1
C. -3 D. -5
E. -8 F. -1
Zadanie 6.  1 pkt ⋅ Numer: pp-11912 ⋅ Poprawnie: 189/260 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{6x-3}{4}>5x jest przedział:
Odpowiedzi:
A. \left(-\infty,-\frac{3}{14}\right) B. \left(-\frac{1}{14},+\infty\right)
C. \left(-\infty,-\frac{1}{7}\right) D. \left(-\frac{1}{7},+\infty\right)
E. \left(-\infty,-\frac{1}{14}\right) F. \left(-\frac{3}{14},+\infty\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11913 ⋅ Poprawnie: 160/185 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Suma wszystkich rozwiązań równania (3x+1)(3x-2)(x-3)=0 jest równa:
Odpowiedzi:
A. \frac{13}{3} B. \frac{10}{3}
C. \frac{11}{3} D. \frac{17}{6}
E. \frac{5}{6} F. 4
Zadanie 8.  1 pkt ⋅ Numer: pp-11934 ⋅ Poprawnie: 138/185 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt A=(1,2) należy do wykresu funkcji f, określonej wzorem f(x)=(m^2-8m+13)x^3-m^2+9m-19 dla każdej liczby rzeczywistej x.

Wtedy liczba m jest równa:

Odpowiedzi:
A. 9 B. 3
C. 7 D. 5
E. 8 F. 4
Zadanie 9.  1 pkt ⋅ Numer: pp-11914 ⋅ Poprawnie: 196/268 [73%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=(3m+5)x+22 jest rosnąca dla:
Odpowiedzi:
A. m >-\frac{5}{12} B. m \lessdot -\frac{5}{2}
C. m \lessdot \frac{10}{3} D. m >\frac{20}{3}
E. m >-\frac{10}{9} F. m >-\frac{5}{3}
Zadanie 10.  1 pkt ⋅ Numer: pp-11915 ⋅ Poprawnie: 237/347 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=x^2+bx+c osiąga dla x=1 wartość najmniejszą równą 7.

Wtedy:

Odpowiedzi:
A. b=-3,\ c=9 B. b=-2,\ c=-8
C. b=-2,\ c=8 D. b=2,\ c=8
E. b=2,\ c=7 F. b=2,\ c=-8
Zadanie 11.  1 pkt ⋅ Numer: pp-11916 ⋅ Poprawnie: 220/300 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja kwadratowa f określona wzorem f(x)=-5(x+3)(x-5).

Funkcja f jest rosnąca w zbiorze:

Odpowiedzi:
A. \left(-\infty, 1\right\rangle B. \left(-\infty, \frac{5}{4}\right\rangle
C. \left(-\infty, 5\right\rangle D. \left\langle -3,+\infty\right)
E. \left\langle 5,+\infty\right) F. \left(-\infty, 6\right\rangle
Zadanie 12.  1 pkt ⋅ Numer: pp-11917 ⋅ Poprawnie: 264/373 [70%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f określonej na zbiorze \langle -2, 5):

Funkcja g jest określona za pomocą funkcji f następująco: g(x)=f(x+2). Wykres funkcji g można otrzymać poprzez odpowiednie przesunięcie wykresu funkcji f.

Dziedziną funkcji g jest zbiór:

Odpowiedzi:
A. \langle -6,1) B. \langle -2,5)
C. \langle -3,4) D. \langle -7,0)
E. \langle -4,3) F. \langle -5,2)
Zadanie 13.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 204/253 [80%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 25:

Odpowiedzi:
A. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 201/245 [82%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 2.

Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 127 B. 129
C. 255 D. 15
E. 63 F. 31
Zadanie 15.  1 pkt ⋅ Numer: pp-11920 ⋅ Poprawnie: 167/181 [92%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu dwóch godzin trzy jednakowe maszyny produkują razem 1920 guzików.

Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują z taką samą, stałą wydajnością.

Odpowiedzi:
A. 1500 B. 1680
C. 1520 D. 1620
E. 1600 F. 1700
Zadanie 16.  1 pkt ⋅ Numer: pp-11921 ⋅ Poprawnie: 116/184 [63%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Przyprostokątna AC trójkąta prostokątnego ABC ma długość 7, a przeciwprostokątna AB ma długość \sqrt{58}.

Wtedy tangens kąta ostrego CAB tego trójkąta jest równy:

Odpowiedzi:
A. \frac{7\sqrt{58}}{58} B. \frac{\sqrt{58}}{3}
C. \frac{7}{3} D. \frac{3}{7}
E. \frac{3\sqrt{58}}{58} F. \frac{\sqrt{58}}{7}
Zadanie 17.  1 pkt ⋅ Numer: pp-11922 ⋅ Poprawnie: 142/207 [68%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Nie istnieje kąt ostry \alpha taki, że:
Odpowiedzi:
A. \sin\alpha=\frac{3}{5} i \cos\alpha=\frac{4}{5} B. \sin\alpha=\frac{8}{17} i \cos\alpha=\frac{15}{17}
C. \sin\alpha=\frac{9}{15} i \cos\alpha=\frac{12}{15} D. \sin\alpha=\frac{5}{13} i \cos\alpha=\frac{13}{13}
Zadanie 18.  1 pkt ⋅ Numer: pp-11923 ⋅ Poprawnie: 123/182 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Wierzchołki A, B, C czworokąta ABSC leżą na okręgu o środku S. Kąt ABS ma miarę 36^{\circ} (zobacz rysunek), a przekątna BC jest dwusieczną tego kąta.

Miara kąta ASC jest równa:

Odpowiedzi:
A. 28^{\circ} B. 32^{\circ}
C. 48^{\circ} D. 40^{\circ}
E. 36^{\circ} F. 42^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-11924 ⋅ Poprawnie: 134/182 [73%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A oraz B leżą na okręgu o środku S. Kąt środkowy ASB ma miarę 106^{\circ}. Prosta l jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB okręgu kąt o mierze \alpha (zobacz rysunek).

Wtedy:

Odpowiedzi:
A. \alpha=45^{\circ} B. \alpha=41^{\circ}
C. \alpha=57^{\circ} D. \alpha=59^{\circ}
E. \alpha=53^{\circ} F. \alpha=63^{\circ}
Zadanie 20.  1 pkt ⋅ Numer: pp-11925 ⋅ Poprawnie: 147/255 [57%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Pole prostokąta jest równe 375, a przekątne tego prostokąta przecinają się pod kątem ostrym \alpha, takim, że \sin\alpha=\frac{5}{24}.

Długość przekątnej tego prostokąta jest równa:

Odpowiedzi:
A. 60 B. 69
C. 47 D. 67
E. 46 F. 70
Zadanie 21.  1 pkt ⋅ Numer: pp-11935 ⋅ Poprawnie: 155/247 [62%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Proste o równaniach y=\frac{4}{3}x-5 oraz y=(2m+4)x+3 są prostopadłe, gdy:
Odpowiedzi:
A. m=-\frac{19}{12} B. m=-\frac{19}{2}
C. m=\frac{19}{12} D. m=-\frac{19}{4}
E. m=-\frac{95}{32} F. m=-\frac{19}{8}
Zadanie 22.  1 pkt ⋅ Numer: pp-11926 ⋅ Poprawnie: 154/191 [80%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Punkty A=(-3,5) oraz C=(5,2) są końcami przekątnej AC rombu ABCD.

Środek przekątnej BD tego rombu ma współrzędne:

Odpowiedzi:
A. \left(2,\frac{7}{2}\right) B. \left(1,\frac{7}{2}\right)
C. \left(1,\frac{9}{2}\right) D. \left(3,\frac{5}{2}\right)
E. \left(1,\frac{5}{2}\right) F. \left(0,\frac{7}{2}\right)
Zadanie 23.  1 pkt ⋅ Numer: pp-11928 ⋅ Poprawnie: 134/223 [60%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Punkty A=(-15,12), B=(-4,14), C=(1,4) są wierzchołkami równoległoboku ABCD.

Długość przekątnej BD tego równoległoboku jest równa:

Odpowiedzi:
A. 3\sqrt{5} B. 3\sqrt{6}
C. 5\sqrt{5} D. 8\sqrt{5}
E. 6\sqrt{5} F. 5\sqrt{6}
Zadanie 24.  1 pkt ⋅ Numer: pp-11929 ⋅ Poprawnie: 111/187 [59%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Obrazem prostej o równaniu y=-3x+5 w symetrii osiowej względem osi Ox jest prosta o równaniu:
Odpowiedzi:
A. y=3x-5 B. y=\frac{1}{3}x-5
C. y=\frac{1}{3}x+5 D. y=-3x-5
E. y=3x+5 F. y=-\frac{1}{3}x+5
Zadanie 25.  1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 132/228 [57%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{18}{7}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 15 B. 12
C. 20 D. 21
E. 9 F. 10
Zadanie 26.  1 pkt ⋅ Numer: pp-11931 ⋅ Poprawnie: 314/322 [97%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Średnia arytmetyczna zestawu liczb a, b c, d jest równa 90.

Wtedy średnia arytmetyczna zestawu liczb a-9, b+33,c,d jest równa:

Odpowiedzi:
A. 99 B. 102
C. 94 D. 106
E. 96 F. 89
Zadanie 27.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 258/372 [69%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 300 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 7\cdot 5\cdot 5 B. 3\cdot 5\cdot 5
C. 7\cdot 5\cdot 5 D. 3\cdot 10\cdot 10
Zadanie 28.  1 pkt ⋅ Numer: pp-11933 ⋅ Poprawnie: 170/260 [65%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną, 12-śnienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do 12. Niech p oznacza prawdopodobieństwo otrzymania w drugim rzucie liczby oczek podzielnej przez 6.

Wtedy:

Odpowiedzi:
A. p=\frac{1}{12} B. p=\frac{1}{3}
C. p=\frac{1}{8} D. p=\frac{1}{6}
E. p=\frac{5}{24} F. p=\frac{1}{9}
Zadanie 29.  1.5 pkt ⋅ Numer: pp-21078 ⋅ Poprawnie: 125/260 [48%] Rozwiąż 
Podpunkt 29.1 (0.5 pkt)
 Rozwiąż nierówność 5x^2+22x\geqslant 15.

Rozwiązanie zapisz w postaci sumy przedziałów. Ile jest tych przedziałów?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 29.2 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 29.3 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
x_{\notin\mathbb{Z}}=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 136/264 [51%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Trójwyrazowy ciąg (x-3,y+1,y+5) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-21080 ⋅ Poprawnie: 109/172 [63%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Rozwiąż równanie \frac{4}{x-3}=x-6

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 31.2 (1 pkt)
 Podaj największe rozwiązanie wymierne tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 32.  2 pkt ⋅ Numer: pp-21081 ⋅ Poprawnie: 66/208 [31%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 Dany jest trójkąt równoboczny ABC o boku długości 14. Punkt E leży na boku AB, a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).

Oblicz długość odcinka EF.

Odpowiedź:
|EF|=
(wpisz dwie liczby całkowite)
Zadanie 33.  2 pkt ⋅ Numer: pp-21079 ⋅ Poprawnie: 142/279 [50%] Rozwiąż 
Podpunkt 33.1 (2 pkt)
 Ze zbioru pięciu liczb \{-5,-3,0,6,7\} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny.

Oblicz prawdopodobieństwo zdarzenia A.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 34.  5 pkt ⋅ Numer: pp-30409 ⋅ Poprawnie: 39/182 [21%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Dany jest graniastosłup prosty ABCDEFGH, którego podstawą jest prostokąt ABCD. W tym graniastosłupie |BD|=29, a ponadto |CD|=1+|BC| oraz |\sphericalangle CDG|=60^{\circ} (zobacz rysunek).

Oblicz pole podstawy tego graniastosłupa.

Odpowiedź:
P_{ABCD}= (wpisz liczbę całkowitą)
Podpunkt 34.2 (2 pkt)
 Oblicz objętość tego graniastosłupa.
Odpowiedź:
V= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 34.3 (2 pkt)
 Oblicz pole powierzchni bocznej tego graniastosłupa.
Odpowiedź:
P_{b}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm