Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2022-08-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11907 ⋅ Poprawnie: 448/522 [85%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba \frac{125^{-47}}{5^{14}} jest równa:
Odpowiedzi:
A. 5^{-156} B. 125^{-52}
C. 5^{-155} D. 5^{-151}
E. 5^{-157} F. 5^{155}
Zadanie 2.  1 pkt ⋅ Numer: pp-11908 ⋅ Poprawnie: 485/537 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{4}{16}-\log_{4}{256} jest równa:
Odpowiedzi:
A. -1 B. -2
C. 4 D. 2
E. -8 F. -4
Zadanie 3.  1 pkt ⋅ Numer: pp-11910 ⋅ Poprawnie: 424/438 [96%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba \left(5+\sqrt{11}\right)^2 jest równa:
Odpowiedzi:
A. 72+10\sqrt{11} B. 144+10\sqrt{11}
C. 36+5\sqrt{11} D. 36+20\sqrt{11}
E. 18+10\sqrt{11} F. 36+10\sqrt{11}
Zadanie 4.  1 pkt ⋅ Numer: pp-11911 ⋅ Poprawnie: 284/348 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Cenę x (w złotych) pewnego towaru obniżono najpierw o 50\%, a następnie obniżono o 10\% w odniesieniu do ceny obowiązującej w danym momencie.

Po obydwu tych obniżkach cena towaru jest równa:

Odpowiedzi:
A. 0.49\cdot x B. 0.43\cdot x
C. 0.42\cdot x D. 0.47\cdot x
E. 0.45\cdot x F. 0.52\cdot x
Zadanie 5.  1 pkt ⋅ Numer: pp-11909 ⋅ Poprawnie: 169/183 [92%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Jednym z rozwiązań równania 8(x+6)-x^2(x+6)=0 jest liczba:
Odpowiedzi:
A. -11 B. -5
C. -8 D. -2
E. -12 F. -6
Zadanie 6.  1 pkt ⋅ Numer: pp-11912 ⋅ Poprawnie: 189/260 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{7x-3}{3}>3x jest przedział:
Odpowiedzi:
A. \left(-\frac{3}{2},+\infty\right) B. \left(-\infty,-\frac{3}{2}\right)
C. \left(-\frac{1}{2},+\infty\right) D. \left(-\infty,-1\right)
E. \left(-\infty,-\frac{1}{2}\right) F. \left(-1,+\infty\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11913 ⋅ Poprawnie: 160/185 [86%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Suma wszystkich rozwiązań równania (4x-3)(4x+2)(x+4)=0 jest równa:
Odpowiedzi:
A. -\frac{17}{4} B. -\frac{15}{4}
C. -\frac{23}{4} D. -\frac{11}{4}
E. -\frac{37}{12} F. -\frac{41}{12}
Zadanie 8.  1 pkt ⋅ Numer: pp-11934 ⋅ Poprawnie: 138/185 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt A=(1,2) należy do wykresu funkcji f, określonej wzorem f(x)=(m^2+12m+33)x^3-m^2-11m-29 dla każdej liczby rzeczywistej x.

Wtedy liczba m jest równa:

Odpowiedzi:
A. 1 B. -1
C. -2 D. 3
E. -3 F. -8
Zadanie 9.  1 pkt ⋅ Numer: pp-11914 ⋅ Poprawnie: 196/268 [73%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=(6m-5)x+22 jest rosnąca dla:
Odpowiedzi:
A. m >\frac{5}{24} B. m >\frac{5}{6}
C. m \lessdot -\frac{5}{3} D. m \lessdot \frac{25}{24}
E. m >-\frac{10}{3} F. m \lessdot \frac{5}{4}
Zadanie 10.  1 pkt ⋅ Numer: pp-11915 ⋅ Poprawnie: 237/347 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=x^2+bx+c osiąga dla x=-1 wartość najmniejszą równą 8.

Wtedy:

Odpowiedzi:
A. b=2,\ c=-9 B. b=1,\ c=10
C. b=2,\ c=10 D. b=2,\ c=9
E. b=-2,\ c=8 F. b=-2,\ c=-9
Zadanie 11.  1 pkt ⋅ Numer: pp-11916 ⋅ Poprawnie: 220/300 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja kwadratowa f określona wzorem f(x)=-6(x+5)(x-3).

Funkcja f jest rosnąca w zbiorze:

Odpowiedzi:
A. \left(-\infty, -1\right\rangle B. \left(-\infty, 4\right\rangle
C. \left(-\infty, -\frac{3}{4}\right\rangle D. \left\langle 3,+\infty\right)
E. \left\langle -5,+\infty\right) F. \left(-\infty, 3\right\rangle
Zadanie 12.  1 pkt ⋅ Numer: pp-11917 ⋅ Poprawnie: 264/373 [70%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f określonej na zbiorze \langle -2, 5):

Funkcja g jest określona za pomocą funkcji f następująco: g(x)=f(x-4). Wykres funkcji g można otrzymać poprzez odpowiednie przesunięcie wykresu funkcji f.

Dziedziną funkcji g jest zbiór:

Odpowiedzi:
A. \langle 3,10) B. \langle 1,8)
C. \langle 4,11) D. \langle -1,6)
E. \langle 2,9) F. \langle 0,7)
Zadanie 13.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 203/253 [80%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 54:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/245 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 4.

Suma czterech początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 1365 B. 5
C. 341 D. 343
E. 21 F. 85
Zadanie 15.  1 pkt ⋅ Numer: pp-11920 ⋅ Poprawnie: 167/181 [92%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu dwóch godzin trzy jednakowe maszyny produkują razem 3360 guzików.

Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują z taką samą, stałą wydajnością.

Odpowiedzi:
A. 2900 B. 2860
C. 2760 D. 2820
E. 2740 F. 2800
Zadanie 16.  1 pkt ⋅ Numer: pp-11921 ⋅ Poprawnie: 116/184 [63%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Przyprostokątna AC trójkąta prostokątnego ABC ma długość 2, a przeciwprostokątna AB ma długość \sqrt{53}.

Wtedy tangens kąta ostrego CAB tego trójkąta jest równy:

Odpowiedzi:
A. \frac{2\sqrt{53}}{53} B. \frac{\sqrt{53}}{7}
C. \frac{\sqrt{53}}{2} D. \frac{7\sqrt{53}}{53}
E. \frac{2}{7} F. \frac{7}{2}
Zadanie 17.  1 pkt ⋅ Numer: pp-11922 ⋅ Poprawnie: 142/207 [68%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Nie istnieje kąt ostry \alpha taki, że:
Odpowiedzi:
A. \sin\alpha=\frac{8}{17} i \cos\alpha=\frac{15}{17} B. \sin\alpha=\frac{5}{13} i \cos\alpha=\frac{12}{13}
C. \sin\alpha=\frac{9}{15} i \cos\alpha=\frac{13}{15} D. \sin\alpha=\frac{3}{5} i \cos\alpha=\frac{4}{5}
Zadanie 18.  1 pkt ⋅ Numer: pp-11923 ⋅ Poprawnie: 123/182 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Wierzchołki A, B, C czworokąta ABSC leżą na okręgu o środku S. Kąt ABS ma miarę 72^{\circ} (zobacz rysunek), a przekątna BC jest dwusieczną tego kąta.

Miara kąta ASC jest równa:

Odpowiedzi:
A. 84^{\circ} B. 92^{\circ}
C. 72^{\circ} D. 78^{\circ}
E. 76^{\circ} F. 68^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-11924 ⋅ Poprawnie: 134/182 [73%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A oraz B leżą na okręgu o środku S. Kąt środkowy ASB ma miarę 142^{\circ}. Prosta l jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB okręgu kąt o mierze \alpha (zobacz rysunek).

Wtedy:

Odpowiedzi:
A. \alpha=71^{\circ} B. \alpha=75^{\circ}
C. \alpha=63^{\circ} D. \alpha=59^{\circ}
E. \alpha=77^{\circ} F. \alpha=81^{\circ}
Zadanie 20.  1 pkt ⋅ Numer: pp-11925 ⋅ Poprawnie: 147/255 [57%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Pole prostokąta jest równe 243, a przekątne tego prostokąta przecinają się pod kątem ostrym \alpha, takim, że \sin\alpha=\frac{1}{24}.

Długość przekątnej tego prostokąta jest równa:

Odpowiedzi:
A. 100 B. 108
C. 115 D. 105
E. 127 F. 106
Zadanie 21.  1 pkt ⋅ Numer: pp-11935 ⋅ Poprawnie: 155/247 [62%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Proste o równaniach y=\frac{5}{2}x-5 oraz y=(2m+2)x+3 są prostopadłe, gdy:
Odpowiedzi:
A. m=-\frac{4}{5} B. m=-\frac{6}{5}
C. m=-\frac{24}{5} D. m=\frac{4}{5}
E. m=-\frac{3}{2} F. m=-\frac{12}{5}
Zadanie 22.  1 pkt ⋅ Numer: pp-11926 ⋅ Poprawnie: 154/191 [80%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Punkty A=(5,-5) oraz C=(3,6) są końcami przekątnej AC rombu ABCD.

Środek przekątnej BD tego rombu ma współrzędne:

Odpowiedzi:
A. \left(6,-\frac{1}{2}\right) B. \left(4,\frac{1}{2}\right)
C. \left(4,-\frac{1}{2}\right) D. \left(4,\frac{3}{2}\right)
E. \left(5,\frac{1}{2}\right) F. \left(3,\frac{1}{2}\right)
Zadanie 23.  1 pkt ⋅ Numer: pp-11928 ⋅ Poprawnie: 134/223 [60%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Punkty A=(-7,2), B=(4,4), C=(9,-6) są wierzchołkami równoległoboku ABCD.

Długość przekątnej BD tego równoległoboku jest równa:

Odpowiedzi:
A. 3\sqrt{6} B. 5\sqrt{6}
C. 6\sqrt{5} D. 5\sqrt{5}
E. 3\sqrt{5} F. 8\sqrt{5}
Zadanie 24.  1 pkt ⋅ Numer: pp-11929 ⋅ Poprawnie: 111/187 [59%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Obrazem prostej o równaniu y=5x-5 w symetrii osiowej względem osi Ox jest prosta o równaniu:
Odpowiedzi:
A. y=5x+5 B. y=-5x+5
C. y=-5x-5 D. y=-\frac{1}{5}x+5
E. y=-\frac{1}{5}x-5 F. y=\frac{1}{5}x-5
Zadanie 25.  1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 131/227 [57%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{63}{23}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 27 B. 18
C. 21 D. 19
E. 26 F. 24
Zadanie 26.  1 pkt ⋅ Numer: pp-11931 ⋅ Poprawnie: 314/322 [97%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Średnia arytmetyczna zestawu liczb a, b c, d jest równa 110.

Wtedy średnia arytmetyczna zestawu liczb a-10, b+18,c,d jest równa:

Odpowiedzi:
A. 115 B. 111
C. 117 D. 118
E. 112 F. 103
Zadanie 27.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 255/365 [69%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 600 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 4\cdot 5\cdot 5 B. 2\cdot 10\cdot 10-1
C. 2\cdot 5\cdot 5 D. 2\cdot 5\cdot 5-1
Zadanie 28.  1 pkt ⋅ Numer: pp-11933 ⋅ Poprawnie: 170/260 [65%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną, 24-śnienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do 24. Niech p oznacza prawdopodobieństwo otrzymania w drugim rzucie liczby oczek podzielnej przez 12.

Wtedy:

Odpowiedzi:
A. p=\frac{1}{24} B. p=\frac{1}{12}
C. p=\frac{1}{18} D. p=\frac{1}{6}
E. p=\frac{1}{16} F. p=\frac{5}{48}
Zadanie 29.  1.5 pkt ⋅ Numer: pp-21078 ⋅ Poprawnie: 125/260 [48%] Rozwiąż 
Podpunkt 29.1 (0.5 pkt)
 Rozwiąż nierówność 6x^2+13x\geqslant 15.

Rozwiązanie zapisz w postaci sumy przedziałów. Ile jest tych przedziałów?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 29.2 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 29.3 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
x_{\notin\mathbb{Z}}=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 136/264 [51%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Trójwyrazowy ciąg (x+5,y-9,y-5) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-21080 ⋅ Poprawnie: 109/172 [63%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Rozwiąż równanie \frac{4}{x+11}=x+8

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 31.2 (1 pkt)
 Podaj największe rozwiązanie wymierne tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 32.  2 pkt ⋅ Numer: pp-21081 ⋅ Poprawnie: 66/208 [31%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 Dany jest trójkąt równoboczny ABC o boku długości 38. Punkt E leży na boku AB, a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).

Oblicz długość odcinka EF.

Odpowiedź:
|EF|=
(wpisz dwie liczby całkowite)
Zadanie 33.  2 pkt ⋅ Numer: pp-21079 ⋅ Poprawnie: 142/279 [50%] Rozwiąż 
Podpunkt 33.1 (2 pkt)
 Ze zbioru pięciu liczb \{-8,-5,-3,1,3\} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny.

Oblicz prawdopodobieństwo zdarzenia A.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 34.  5 pkt ⋅ Numer: pp-30409 ⋅ Poprawnie: 39/182 [21%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Dany jest graniastosłup prosty ABCDEFGH, którego podstawą jest prostokąt ABCD. W tym graniastosłupie |BD|=37, a ponadto |CD|=23+|BC| oraz |\sphericalangle CDG|=60^{\circ} (zobacz rysunek).

Oblicz pole podstawy tego graniastosłupa.

Odpowiedź:
P_{ABCD}= (wpisz liczbę całkowitą)
Podpunkt 34.2 (2 pkt)
 Oblicz objętość tego graniastosłupa.
Odpowiedź:
V= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 34.3 (2 pkt)
 Oblicz pole powierzchni bocznej tego graniastosłupa.
Odpowiedź:
P_{b}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm