Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2022-08-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11907 ⋅ Poprawnie: 393/476 [82%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba \frac{25^{-41}}{5^{17}} jest równa:
Odpowiedzi:
A. 5^{-101} B. 5^{99}
C. 5^{-99} D. 125^{-34}
E. 5^{-95} F. 25^{-50}
Zadanie 2.  1 pkt ⋅ Numer: pp-11908 ⋅ Poprawnie: 431/490 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{4}{64}-\log_{4}{256} jest równa:
Odpowiedzi:
A. -\frac{1}{2} B. -4
C. 2 D. -2
E. -1 F. 1
Zadanie 3.  1 pkt ⋅ Numer: pp-11910 ⋅ Poprawnie: 408/432 [94%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba \left(4-4\sqrt{7}\right)^2 jest równa:
Odpowiedzi:
A. 128-32\sqrt{7} B. 128-64\sqrt{7}
C. 256-32\sqrt{7} D. 512-32\sqrt{7}
E. 64-32\sqrt{7} F. 128-16\sqrt{7}
Zadanie 4.  1 pkt ⋅ Numer: pp-11911 ⋅ Poprawnie: 280/345 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Cenę x (w złotych) pewnego towaru obniżono najpierw o 40\%, a następnie obniżono o 20\% w odniesieniu do ceny obowiązującej w danym momencie.

Po obydwu tych obniżkach cena towaru jest równa:

Odpowiedzi:
A. 0.46\cdot x B. 0.48\cdot x
C. 0.45\cdot x D. 0.55\cdot x
E. 0.50\cdot x F. 0.52\cdot x
Zadanie 5.  1 pkt ⋅ Numer: pp-11909 ⋅ Poprawnie: 166/180 [92%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Jednym z rozwiązań równania 8(x-1)-x^2(x-1)=0 jest liczba:
Odpowiedzi:
A. 4 B. 6
C. 1 D. -1
E. 7 F. -5
Zadanie 6.  1 pkt ⋅ Numer: pp-11912 ⋅ Poprawnie: 185/257 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{6x-3}{5}>3x jest przedział:
Odpowiedzi:
A. \left(-\infty,-\frac{1}{3}\right) B. \left(-\infty,-\frac{2}{9}\right)
C. \left(-\frac{1}{9},+\infty\right) D. \left(-\frac{2}{9},+\infty\right)
E. \left(-\infty,-\frac{1}{9}\right) F. \left(-\frac{1}{3},+\infty\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11913 ⋅ Poprawnie: 156/182 [85%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Suma wszystkich rozwiązań równania (4x-1)(4x+2)(x+2)=0 jest równa:
Odpowiedzi:
A. -\frac{19}{4} B. -\frac{23}{12}
C. -\frac{5}{4} D. -\frac{9}{4}
E. -\frac{11}{4} F. -\frac{19}{12}
Zadanie 8.  1 pkt ⋅ Numer: pp-11934 ⋅ Poprawnie: 133/181 [73%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt A=(1,2) należy do wykresu funkcji f, określonej wzorem f(x)=(m^2+6m+6)x^3-m^2-5m-5 dla każdej liczby rzeczywistej x.

Wtedy liczba m jest równa:

Odpowiedzi:
A. 1 B. 0
C. 2 D. -4
E. -1 F. -5
Zadanie 9.  1 pkt ⋅ Numer: pp-11914 ⋅ Poprawnie: 192/265 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=(5m-1)x+22 jest rosnąca dla:
Odpowiedzi:
A. m >\frac{1}{5} B. m >-\frac{4}{5}
C. m >\frac{2}{15} D. m >\frac{1}{20}
E. m \lessdot -\frac{2}{5} F. m \lessdot \frac{1}{4}
Zadanie 10.  1 pkt ⋅ Numer: pp-11915 ⋅ Poprawnie: 213/324 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=x^2+bx+c osiąga dla x=-1 wartość najmniejszą równą -3.

Wtedy:

Odpowiedzi:
A. b=2,\ c=-1 B. b=-2,\ c=-2
C. b=-2,\ c=-3 D. b=2,\ c=2
E. b=2,\ c=-2 F. b=-2,\ c=2
Zadanie 11.  1 pkt ⋅ Numer: pp-11916 ⋅ Poprawnie: 193/276 [69%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja kwadratowa f określona wzorem f(x)=-5(x+1)(x-3).

Funkcja f jest rosnąca w zbiorze:

Odpowiedzi:
A. \left(-\infty, 4\right\rangle B. \left(-\infty, 1\right\rangle
C. \left(-\infty, \frac{5}{4}\right\rangle D. \left\langle 3,+\infty\right)
E. \left\langle -1,+\infty\right) F. \left(-\infty, 3\right\rangle
Zadanie 12.  1 pkt ⋅ Numer: pp-11917 ⋅ Poprawnie: 260/370 [70%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f określonej na zbiorze \langle -2, 5):

Funkcja g jest określona za pomocą funkcji f następująco: g(x)=f(x-2). Wykres funkcji g można otrzymać poprzez odpowiednie przesunięcie wykresu funkcji f.

Dziedziną funkcji g jest zbiór:

Odpowiedzi:
A. \langle -2,5) B. \langle 1,8)
C. \langle -3,4) D. \langle 2,9)
E. \langle 0,7) F. \langle -1,6)
Zadanie 13.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 174/228 [76%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 45:

Odpowiedzi:
A. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) B. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
C. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n) D. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n)
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 192/235 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 4.

Suma pięciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 1367 B. 5461
C. 1365 D. 21
E. 341 F. 85
Zadanie 15.  1 pkt ⋅ Numer: pp-11920 ⋅ Poprawnie: 163/178 [91%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu dwóch godzin trzy jednakowe maszyny produkują razem 2880 guzików.

Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują z taką samą, stałą wydajnością.

Odpowiedzi:
A. 2360 B. 2400
C. 2440 D. 2480
E. 2300 F. 2380
Zadanie 16.  1 pkt ⋅ Numer: pp-11921 ⋅ Poprawnie: 114/181 [62%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Przyprostokątna AC trójkąta prostokątnego ABC ma długość 4, a przeciwprostokątna AB ma długość 2\sqrt{13}.

Wtedy tangens kąta ostrego CAB tego trójkąta jest równy:

Odpowiedzi:
A. \frac{\sqrt{13}}{3} B. \frac{\sqrt{13}}{2}
C. \frac{3\sqrt{13}}{13} D. \frac{3}{2}
E. \frac{2}{3} F. \frac{2\sqrt{13}}{13}
Zadanie 17.  1 pkt ⋅ Numer: pp-11922 ⋅ Poprawnie: 137/204 [67%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Nie istnieje kąt ostry \alpha taki, że:
Odpowiedzi:
A. \sin\alpha=\frac{5}{13} i \cos\alpha=\frac{12}{13} B. \sin\alpha=\frac{9}{15} i \cos\alpha=\frac{12}{15}
C. \sin\alpha=\frac{8}{17} i \cos\alpha=\frac{16}{17} D. \sin\alpha=\frac{3}{5} i \cos\alpha=\frac{4}{5}
Zadanie 18.  1 pkt ⋅ Numer: pp-11923 ⋅ Poprawnie: 121/179 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Wierzchołki A, B, C czworokąta ABSC leżą na okręgu o środku S. Kąt ABS ma miarę 60^{\circ} (zobacz rysunek), a przekątna BC jest dwusieczną tego kąta.

Miara kąta ASC jest równa:

Odpowiedzi:
A. 66^{\circ} B. 72^{\circ}
C. 60^{\circ} D. 80^{\circ}
E. 52^{\circ} F. 64^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-11924 ⋅ Poprawnie: 131/179 [73%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A oraz B leżą na okręgu o środku S. Kąt środkowy ASB ma miarę 130^{\circ}. Prosta l jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB okręgu kąt o mierze \alpha (zobacz rysunek).

Wtedy:

Odpowiedzi:
A. \alpha=71^{\circ} B. \alpha=75^{\circ}
C. \alpha=53^{\circ} D. \alpha=57^{\circ}
E. \alpha=65^{\circ} F. \alpha=69^{\circ}
Zadanie 20.  1 pkt ⋅ Numer: pp-11925 ⋅ Poprawnie: 143/252 [56%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Pole prostokąta jest równe \frac{1058}{3}, a przekątne tego prostokąta przecinają się pod kątem ostrym \alpha, takim, że \sin\alpha=\frac{1}{12}.

Długość przekątnej tego prostokąta jest równa:

Odpowiedzi:
A. 109 B. 97
C. 86 D. 80
E. 89 F. 92
Zadanie 21.  1 pkt ⋅ Numer: pp-11935 ⋅ Poprawnie: 151/244 [61%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Proste o równaniach y=\frac{4}{3}x-4 oraz y=(2m+2)x+1 są prostopadłe, gdy:
Odpowiedzi:
A. m=-\frac{11}{8} B. m=-\frac{11}{2}
C. m=-\frac{11}{4} D. m=-\frac{11}{12}
E. m=\frac{11}{12} F. m=-\frac{55}{32}
Zadanie 22.  1 pkt ⋅ Numer: pp-11926 ⋅ Poprawnie: 150/188 [79%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Punkty A=(2,-1) oraz C=(3,3) są końcami przekątnej AC rombu ABCD.

Środek przekątnej BD tego rombu ma współrzędne:

Odpowiedzi:
A. \left(\frac{5}{2},0\right) B. \left(\frac{7}{2},1\right)
C. \left(\frac{5}{2},2\right) D. \left(\frac{3}{2},1\right)
E. \left(\frac{5}{2},1\right) F. \left(\frac{9}{2},0\right)
Zadanie 23.  1 pkt ⋅ Numer: pp-11928 ⋅ Poprawnie: 130/220 [59%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Punkty A=(-10,6), B=(1,8), C=(6,-2) są wierzchołkami równoległoboku ABCD.

Długość przekątnej BD tego równoległoboku jest równa:

Odpowiedzi:
A. 8\sqrt{5} B. 5\sqrt{5}
C. 3\sqrt{6} D. 3\sqrt{5}
E. 5\sqrt{6} F. 6\sqrt{5}
Zadanie 24.  1 pkt ⋅ Numer: pp-11929 ⋅ Poprawnie: 107/184 [58%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Obrazem prostej o równaniu y=2x-1 w symetrii osiowej względem osi Ox jest prosta o równaniu:
Odpowiedzi:
A. y=2x+1 B. y=-\frac{1}{2}x+1
C. y=-2x+1 D. y=-2x-1
E. y=-\frac{1}{2}x-1 F. y=\frac{1}{2}x-1
Zadanie 25.  1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 126/223 [56%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{27}{10}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 28 B. 24
C. 25 D. 18
E. 27 F. 22
Zadanie 26.  1 pkt ⋅ Numer: pp-11931 ⋅ Poprawnie: 300/311 [96%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Średnia arytmetyczna zestawu liczb a, b c, d jest równa 90.

Wtedy średnia arytmetyczna zestawu liczb a-6, b+26,c,d jest równa:

Odpowiedzi:
A. 97 B. 87
C. 99 D. 101
E. 95 F. 103
Zadanie 27.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 243/347 [70%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 500 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 2\cdot 5\cdot 5 B. 5\cdot 5\cdot 5
C. 5\cdot 5\cdot 5 D. 2\cdot 10\cdot 10
Zadanie 28.  1 pkt ⋅ Numer: pp-11933 ⋅ Poprawnie: 166/257 [64%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną, 20-śnienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do 20. Niech p oznacza prawdopodobieństwo otrzymania w drugim rzucie liczby oczek podzielnej przez 10.

Wtedy:

Odpowiedzi:
A. p=\frac{3}{40} B. p=\frac{1}{10}
C. p=\frac{1}{8} D. p=\frac{1}{20}
E. p=\frac{1}{15} F. p=\frac{1}{5}
Zadanie 29.  1.5 pkt ⋅ Numer: pp-21078 ⋅ Poprawnie: 121/257 [47%] Rozwiąż 
Podpunkt 29.1 (0.5 pkt)
 Rozwiąż nierówność 5x^2+14x\geqslant 3.

Rozwiązanie zapisz w postaci sumy przedziałów. Ile jest tych przedziałów?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 29.2 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 29.3 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
x_{\notin\mathbb{Z}}=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 133/261 [50%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Trójwyrazowy ciąg (x+2,y-5,y-1) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-21080 ⋅ Poprawnie: 106/168 [63%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Rozwiąż równanie \frac{4}{x+7}=x+4

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 31.2 (1 pkt)
 Podaj największe rozwiązanie wymierne tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 32.  2 pkt ⋅ Numer: pp-21081 ⋅ Poprawnie: 65/205 [31%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 Dany jest trójkąt równoboczny ABC o boku długości 30. Punkt E leży na boku AB, a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).

Oblicz długość odcinka EF.

Odpowiedź:
|EF|=
(wpisz dwie liczby całkowite)
Zadanie 33.  2 pkt ⋅ Numer: pp-21079 ⋅ Poprawnie: 139/276 [50%] Rozwiąż 
Podpunkt 33.1 (2 pkt)
 Ze zbioru pięciu liczb \{-8,-5,0,7,10\} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny.

Oblicz prawdopodobieństwo zdarzenia A.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 34.  5 pkt ⋅ Numer: pp-30409 ⋅ Poprawnie: 37/179 [20%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Dany jest graniastosłup prosty ABCDEFGH, którego podstawą jest prostokąt ABCD. W tym graniastosłupie |BD|=34, a ponadto |CD|=14+|BC| oraz |\sphericalangle CDG|=60^{\circ} (zobacz rysunek).

Oblicz pole podstawy tego graniastosłupa.

Odpowiedź:
P_{ABCD}= (wpisz liczbę całkowitą)
Podpunkt 34.2 (2 pkt)
 Oblicz objętość tego graniastosłupa.
Odpowiedź:
V= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 34.3 (2 pkt)
 Oblicz pole powierzchni bocznej tego graniastosłupa.
Odpowiedź:
P_{b}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm