Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2022-08-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11907 ⋅ Poprawnie: 445/519 [85%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba \frac{8^{-32}}{2^{19}} jest równa:
Odpowiedzi:
A. 4^{-58} B. 2^{-116}
C. 2^{-115} D. 2^{115}
E. 8^{-39} F. 2^{-111}
Zadanie 2.  1 pkt ⋅ Numer: pp-11908 ⋅ Poprawnie: 482/535 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{4}{1024}-\log_{4}{256} jest równa:
Odpowiedzi:
A. 1 B. 2
C. \frac{1}{2} D. 4
E. -2 F. -1
Zadanie 3.  1 pkt ⋅ Numer: pp-11910 ⋅ Poprawnie: 423/438 [96%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba \left(5+2\sqrt{7}\right)^2 jest równa:
Odpowiedzi:
A. 53+20\sqrt{7} B. 106+20\sqrt{7}
C. 212+20\sqrt{7} D. 26+20\sqrt{7}
E. 53+40\sqrt{7} F. 53+10\sqrt{7}
Zadanie 4.  1 pkt ⋅ Numer: pp-11911 ⋅ Poprawnie: 283/348 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Cenę x (w złotych) pewnego towaru obniżono najpierw o 50\%, a następnie obniżono o 40\% w odniesieniu do ceny obowiązującej w danym momencie.

Po obydwu tych obniżkach cena towaru jest równa:

Odpowiedzi:
A. 0.37\cdot x B. 0.30\cdot x
C. 0.34\cdot x D. 0.27\cdot x
E. 0.28\cdot x F. 0.32\cdot x
Zadanie 5.  1 pkt ⋅ Numer: pp-11909 ⋅ Poprawnie: 168/183 [91%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Jednym z rozwiązań równania 10(x+3)-x^2(x+3)=0 jest liczba:
Odpowiedzi:
A. -3 B. 0
C. -2 D. 1
E. 3 F. -6
Zadanie 6.  1 pkt ⋅ Numer: pp-11912 ⋅ Poprawnie: 188/260 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{5x-3}{9}>-5x jest przedział:
Odpowiedzi:
A. \left(-\infty,\frac{3}{50}\right) B. \left(-\infty,\frac{1}{50}\right)
C. \left(\frac{3}{50},+\infty\right) D. \left(\frac{9}{100},+\infty\right)
E. \left(\frac{1}{25},+\infty\right) F. \left(-\infty,\frac{3}{25}\right)
Zadanie 7.  1 pkt ⋅ Numer: pp-11913 ⋅ Poprawnie: 159/185 [85%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Suma wszystkich rozwiązań równania (4x-3)(4x-2)(x+2)=0 jest równa:
Odpowiedzi:
A. \frac{1}{4} B. -\frac{5}{12}
C. -\frac{11}{4} D. -\frac{1}{12}
E. -\frac{3}{4} F. -\frac{5}{4}
Zadanie 8.  1 pkt ⋅ Numer: pp-11934 ⋅ Poprawnie: 137/185 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkt A=(1,2) należy do wykresu funkcji f, określonej wzorem f(x)=(m^2+14m+46)x^3-m^2-13m-41 dla każdej liczby rzeczywistej x.

Wtedy liczba m jest równa:

Odpowiedzi:
A. 2 B. 0
C. -2 D. -5
E. -3 F. -9
Zadanie 9.  1 pkt ⋅ Numer: pp-11914 ⋅ Poprawnie: 195/268 [72%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=(6m+3)x+22 jest rosnąca dla:
Odpowiedzi:
A. m >-\frac{1}{2} B. m \lessdot -\frac{3}{4}
C. m >-\frac{1}{8} D. m \lessdot -\frac{5}{8}
E. m >2 F. m \lessdot 1
Zadanie 10.  1 pkt ⋅ Numer: pp-11915 ⋅ Poprawnie: 236/347 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja kwadratowa f określona wzorem f(x)=x^2+bx+c osiąga dla x=1 wartość najmniejszą równą 3.

Wtedy:

Odpowiedzi:
A. b=-2,\ c=4 B. b=2,\ c=-4
C. b=2,\ c=3 D. b=2,\ c=4
E. b=-3,\ c=5 F. b=-2,\ c=5
Zadanie 11.  1 pkt ⋅ Numer: pp-11916 ⋅ Poprawnie: 219/299 [73%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Dana jest funkcja kwadratowa f określona wzorem f(x)=-4(x-5)(x+5).

Funkcja f jest rosnąca w zbiorze:

Odpowiedzi:
A. \left(-\infty, 6\right\rangle B. \left(-\infty, 0\right\rangle
C. \left(-\infty, 5\right\rangle D. \left\langle 5,+\infty\right)
E. \left\langle -5,+\infty\right) F. \left(-\infty, \frac{1}{4}\right\rangle
Zadanie 12.  1 pkt ⋅ Numer: pp-11917 ⋅ Poprawnie: 263/373 [70%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f określonej na zbiorze \langle -2, 5):

Funkcja g jest określona za pomocą funkcji f następująco: g(x)=f(x-5). Wykres funkcji g można otrzymać poprzez odpowiednie przesunięcie wykresu funkcji f.

Dziedziną funkcji g jest zbiór:

Odpowiedzi:
A. \langle 3,10) B. \langle 4,11)
C. \langle 1,8) D. \langle 2,9)
E. \langle 5,12) F. \langle 0,7)
Zadanie 13.  1 pkt ⋅ Numer: pp-11918 ⋅ Poprawnie: 202/253 [79%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Dane są ciągi a_n=3n oraz b_n=4n-2, określone dla każdej liczby naturalnej n\geqslant 1.

Liczba 56:

Odpowiedzi:
A. jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) B. jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
C. nie jest wyrazem ciągu (a_n) i nie jest wyrazem ciągu (b_n) D. nie jest wyrazem ciągu (a_n) i jest wyrazem ciągu (b_n)
Zadanie 14.  1 pkt ⋅ Numer: pp-11919 ⋅ Poprawnie: 200/244 [81%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Dany jest ciąg geometryczny (a_n), określony dla każdej liczby naturalnej n\geqslant 1. Drugi wyraz tego ciągu oraz iloraz ciągu (a_n) są równe 4.

Suma sześciu początkowych kolejnych wyrazów tego ciągu jest równa:

Odpowiedzi:
A. 5461 B. 5463
C. 1365 D. 85
E. 21845 F. 341
Zadanie 15.  1 pkt ⋅ Numer: pp-11920 ⋅ Poprawnie: 166/181 [91%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 W ciągu dwóch godzin trzy jednakowe maszyny produkują razem 3480 guzików.

Ile guzików wyprodukuje pięć takich maszyn w ciągu jednej godziny? Przyjmij, że maszyny pracują z taką samą, stałą wydajnością.

Odpowiedzi:
A. 2800 B. 2880
C. 2900 D. 2940
E. 2820 F. 2920
Zadanie 16.  1 pkt ⋅ Numer: pp-11921 ⋅ Poprawnie: 116/184 [63%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Przyprostokątna AC trójkąta prostokątnego ABC ma długość 6, a przeciwprostokątna AB ma długość \sqrt{85}.

Wtedy tangens kąta ostrego CAB tego trójkąta jest równy:

Odpowiedzi:
A. \frac{\sqrt{85}}{6} B. \frac{6\sqrt{85}}{85}
C. \frac{7}{6} D. \frac{\sqrt{85}}{7}
E. \frac{6}{7} F. \frac{7\sqrt{85}}{85}
Zadanie 17.  1 pkt ⋅ Numer: pp-11922 ⋅ Poprawnie: 141/207 [68%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Nie istnieje kąt ostry \alpha taki, że:
Odpowiedzi:
A. \sin\alpha=\frac{8}{17} i \cos\alpha=\frac{15}{17} B. \sin\alpha=\frac{9}{15} i \cos\alpha=\frac{13}{15}
C. \sin\alpha=\frac{5}{13} i \cos\alpha=\frac{12}{13} D. \sin\alpha=\frac{3}{5} i \cos\alpha=\frac{4}{5}
Zadanie 18.  1 pkt ⋅ Numer: pp-11923 ⋅ Poprawnie: 122/182 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Wierzchołki A, B, C czworokąta ABSC leżą na okręgu o środku S. Kąt ABS ma miarę 74^{\circ} (zobacz rysunek), a przekątna BC jest dwusieczną tego kąta.

Miara kąta ASC jest równa:

Odpowiedzi:
A. 86^{\circ} B. 78^{\circ}
C. 80^{\circ} D. 74^{\circ}
E. 70^{\circ} F. 94^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-11924 ⋅ Poprawnie: 133/182 [73%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Punkty A oraz B leżą na okręgu o środku S. Kąt środkowy ASB ma miarę 144^{\circ}. Prosta l jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB okręgu kąt o mierze \alpha (zobacz rysunek).

Wtedy:

Odpowiedzi:
A. \alpha=72^{\circ} B. \alpha=64^{\circ}
C. \alpha=60^{\circ} D. \alpha=82^{\circ}
E. \alpha=78^{\circ} F. \alpha=76^{\circ}
Zadanie 20.  1 pkt ⋅ Numer: pp-11925 ⋅ Poprawnie: 146/255 [57%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Pole prostokąta jest równe \frac{3136}{3}, a przekątne tego prostokąta przecinają się pod kątem ostrym \alpha, takim, że \sin\alpha=\frac{1}{6}.

Długość przekątnej tego prostokąta jest równa:

Odpowiedzi:
A. 125 B. 131
C. 112 D. 118
E. 109 F. 129
Zadanie 21.  1 pkt ⋅ Numer: pp-11935 ⋅ Poprawnie: 154/247 [62%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Proste o równaniach y=\frac{2}{5}x-5 oraz y=(2m-5)x+2 są prostopadłe, gdy:
Odpowiedzi:
A. m=\frac{5}{4} B. m=\frac{5}{6}
C. m=5 D. m=-\frac{5}{6}
E. m=\frac{5}{2} F. m=\frac{25}{16}
Zadanie 22.  1 pkt ⋅ Numer: pp-11926 ⋅ Poprawnie: 153/191 [80%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 Punkty A=(5,-5) oraz C=(-2,3) są końcami przekątnej AC rombu ABCD.

Środek przekątnej BD tego rombu ma współrzędne:

Odpowiedzi:
A. \left(\frac{3}{2},0\right) B. \left(\frac{5}{2},-1\right)
C. \left(\frac{1}{2},-1\right) D. \left(\frac{7}{2},-2\right)
E. \left(\frac{3}{2},-2\right) F. \left(\frac{3}{2},-1\right)
Zadanie 23.  1 pkt ⋅ Numer: pp-11928 ⋅ Poprawnie: 133/223 [59%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Punkty A=(-7,10), B=(4,12), C=(9,2) są wierzchołkami równoległoboku ABCD.

Długość przekątnej BD tego równoległoboku jest równa:

Odpowiedzi:
A. 8\sqrt{5} B. 6\sqrt{5}
C. 5\sqrt{6} D. 5\sqrt{5}
E. 3\sqrt{5} F. 3\sqrt{6}
Zadanie 24.  1 pkt ⋅ Numer: pp-11929 ⋅ Poprawnie: 110/187 [58%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Obrazem prostej o równaniu y=5x+3 w symetrii osiowej względem osi Ox jest prosta o równaniu:
Odpowiedzi:
A. y=-5x+3 B. y=-\frac{1}{5}x-3
C. y=5x-3 D. y=\frac{1}{5}x+3
E. y=-5x-3 F. y=-\frac{1}{5}x+3
Zadanie 25.  1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 130/227 [57%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{63}{23}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 19 B. 28
C. 20 D. 29
E. 21 F. 30
Zadanie 26.  1 pkt ⋅ Numer: pp-11931 ⋅ Poprawnie: 309/319 [96%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Średnia arytmetyczna zestawu liczb a, b c, d jest równa 100.

Wtedy średnia arytmetyczna zestawu liczb a-10, b+34,c,d jest równa:

Odpowiedzi:
A. 108 B. 110
C. 109 D. 101
E. 114 F. 106
Zadanie 27.  1 pkt ⋅ Numer: pp-11932 ⋅ Poprawnie: 252/361 [69%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Wszystkich trzycyfrowych liczb naturalnych większych od 600 o wszystkich cyfrach parzystych jest:
Odpowiedzi:
A. 4\cdot 5\cdot 5 B. 2\cdot 5\cdot 5-1
C. 2\cdot 10\cdot 10-1 D. 2\cdot 5\cdot 5
Zadanie 28.  1 pkt ⋅ Numer: pp-11933 ⋅ Poprawnie: 169/260 [65%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną, 26-śnienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego do 26. Niech p oznacza prawdopodobieństwo otrzymania w drugim rzucie liczby oczek podzielnej przez 13.

Wtedy:

Odpowiedzi:
A. p=\frac{5}{52} B. p=\frac{1}{26}
C. p=\frac{3}{52} D. p=\frac{1}{13}
E. p=\frac{2}{39} F. p=\frac{2}{13}
Zadanie 29.  1.5 pkt ⋅ Numer: pp-21078 ⋅ Poprawnie: 124/260 [47%] Rozwiąż 
Podpunkt 29.1 (0.5 pkt)
 Rozwiąż nierówność 4x^2-15x\geqslant 25.

Rozwiązanie zapisz w postaci sumy przedziałów. Ile jest tych przedziałów?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Podpunkt 29.2 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który jest liczbą całkowitą.
Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 29.3 (0.5 pkt)
 Podaj ten z końców liczbowych tych przedziałów, który nie jest liczbą całkowitą.
Odpowiedź:
x_{\notin\mathbb{Z}}=
(wpisz dwie liczby całkowite)
Zadanie 30.  2 pkt ⋅ Numer: pp-21082 ⋅ Poprawnie: 135/264 [51%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Trójwyrazowy ciąg (x+5,y-1,y+3) jest arytmetyczny. Suma wszystkich wyrazów tego ciągu jest równa 6. Oblicz wszystkie wyrazy tego ciągu.

Wyznacz x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 30.2 (1 pkt)
 Wyznacz y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 31.  2 pkt ⋅ Numer: pp-21080 ⋅ Poprawnie: 108/172 [62%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Rozwiąż równanie \frac{4}{x+12}=x+9

Podaj najmniejsze rozwiązanie tego równania.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 31.2 (1 pkt)
 Podaj największe rozwiązanie wymierne tego równania.
Odpowiedź:
x_{max}=
(wpisz dwie liczby całkowite)
Zadanie 32.  2 pkt ⋅ Numer: pp-21081 ⋅ Poprawnie: 66/208 [31%] Rozwiąż 
Podpunkt 32.1 (2 pkt)
 Dany jest trójkąt równoboczny ABC o boku długości 40. Punkt E leży na boku AB, a punkt F – na boku BC tego trójkąta. Odcinek EF jest równoległy do boku AC i przechodzi przez środek S wysokości CD trójkąta ABC (zobacz rysunek).

Oblicz długość odcinka EF.

Odpowiedź:
|EF|=
(wpisz dwie liczby całkowite)
Zadanie 33.  2 pkt ⋅ Numer: pp-21079 ⋅ Poprawnie: 142/279 [50%] Rozwiąż 
Podpunkt 33.1 (2 pkt)
 Ze zbioru pięciu liczb \{-8,-6,-3,5,8\} losujemy kolejno ze zwracaniem dwa razy po jednej liczbie. Zdarzenie A polega na wylosowaniu dwóch liczb, których iloczyn jest ujemny.

Oblicz prawdopodobieństwo zdarzenia A.

Odpowiedź:
P(A)=
(wpisz dwie liczby całkowite)
Zadanie 34.  5 pkt ⋅ Numer: pp-30409 ⋅ Poprawnie: 38/182 [20%] Rozwiąż 
Podpunkt 34.1 (1 pkt)
 Dany jest graniastosłup prosty ABCDEFGH, którego podstawą jest prostokąt ABCD. W tym graniastosłupie |BD|=61, a ponadto |CD|=49+|BC| oraz |\sphericalangle CDG|=45^{\circ} (zobacz rysunek).

Oblicz pole podstawy tego graniastosłupa.

Odpowiedź:
P_{ABCD}= (wpisz liczbę całkowitą)
Podpunkt 34.2 (2 pkt)
 Oblicz objętość tego graniastosłupa.
Odpowiedź:
V= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 34.3 (2 pkt)
 Oblicz pole powierzchni bocznej tego graniastosłupa.
Odpowiedź:
P_{b}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm