Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2023-12-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11828 ⋅ Poprawnie: 732/805 [90%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczba \left(2^{-2.2}\cdot 2^{\frac{1}{5}}}\right)^{\frac{1}{2}} jest równa:
Odpowiedzi:
A. 2^2 B. 2^{\frac{1}{4}}
C. 2^{-2} D. \frac{1}{2}
E. \sqrt{2} F. \sqrt[3]{2^2}
Zadanie 2.  1 pkt ⋅ Numer: pp-11829 ⋅ Poprawnie: 705/754 [93%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \log_{2}{96}-\log_{2}{3} jest równa:
Odpowiedzi:
A. \log_{2}{288} B. 5
C. 4 D. \log_{2}{93}
Zadanie 3.  1 pkt ⋅ Numer: pp-11830 ⋅ Poprawnie: 584/679 [86%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 10\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 3872.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 3400 B. 3700
C. 3300 D. 3500
E. 3200 F. 3600
Zadanie 4.  1 pkt ⋅ Numer: pp-11832 ⋅ Poprawnie: 399/592 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Przedział liczbowy (-9, -3) jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x+6|\lessdot 3 B. |x-6|\lessdot 3
C. |x-3|\lessdot 6 D. |x+5|>3
E. |x+3|\lessdot 6 F. |x+6|>3
Zadanie 5.  1 pkt ⋅ Numer: pp-11834 ⋅ Poprawnie: 685/697 [98%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dany jest układ równań \begin{cases} x-3y-1=0\\ 2x+y+19=0 \end{cases}.

Rozwiązaniem tego układu równań jest para liczb:

Odpowiedzi:
A. x=-9 \wedge y=-1 B. x=-7 \wedge y=-4
C. x=-9 \wedge y=-4 D. x=-6 \wedge y=-4
E. x=-7 \wedge y=-2 F. x=-8 \wedge y=-3
Zadanie 6.  1 pkt ⋅ Numer: pp-11833 ⋅ Poprawnie: 474/580 [81%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od 6 i 4 wartość wyrażenia \frac{x-6}{x^2-8x+16}\cdot \frac{x^2-4x}{4x-24} jest równa wartości wyrażenia:
Odpowiedzi:
A. \frac{1}{4x+16} B. \frac{x-16}{x}
C. \frac{x}{x-4} D. \frac{x}{4x-16}
E. \frac{x}{2} F. \frac{x}{4}
Zadanie 7.  1 pkt ⋅ Numer: pp-11831 ⋅ Poprawnie: 341/567 [60%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dany jest wielomian W(x)=-3x^3-3x^2+kx-6 gdzie k jest pewną liczbą rzeczywistą. Wiadomo, że wielomian W można zapisać w postaci W(x)=(x+1)\cdot Q(x), dla pewnego wielomianu Q.

Liczba k jest równa:

Odpowiedzi:
A. 1 B. -9
C. -2 D. -1
E. -6 F. -10
G. -3 H. -7
Zadanie 8.  3 pkt ⋅ Numer: pp-21062 ⋅ Poprawnie: 380/570 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie 2x^3-5x^2=14x-35.

Podaj najmniejsze rozwiązanie tego równania, które jest liczbą niewymierną.

Odpowiedź:
x_{min,\notin\mathbb{W}}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największe rozwiązanie tego równania, które jest liczbą niewymierną.
Odpowiedź:
x_{max,\notin\mathbb{W}}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj rozwiązanie wymierne tego równania.
Odpowiedź:
x_{\in\mathbb{W}}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11835 ⋅ Poprawnie: 455/592 [76%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f jest określona wzorem f(x)=-\frac{1}{6}x+\frac{1}{3}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : do wykresu funkcji f należy punkt \left(9,-\frac{13}{6}\right) T/N : miejscem zerowym funkcji f jest liczba 2
Zadanie 10.  4 pkt ⋅ Numer: pp-30406 ⋅ Poprawnie: 197/577 [34%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y)przedstawiono fragment wykresu funkcji kwadratowej f(zobacz rysunek). Wierzchołek paraboli, która jest wykresem funkcji f, oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.
Zbiorem wartości funkcji g określonej wzorem g(x)=f(x-1) jest przedział:
Odpowiedzi:
A. [-3, +\infty) B. (-\infty, -2]
C. [-2, +\infty) D. [-1, +\infty)
Podpunkt 10.2 (1 pkt)
 Zapisz w postaci przedziału zbiór rozwiązań nierówności g(x)\lessdot 0. Podaj lewy i prawy koniec tego przedziału.
Odpowiedzi:
x_l= (wpisz liczbę całkowitą)
x_p= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Oceń, które z podanych wzorów poprawnie opisują funkcję f pokazaną na rysunku.
Odpowiedzi:
T/N : f(x)=\frac{1}{2}(x+2)(x+6) T/N : f(x)=\frac{1}{2}(x-2)(x-6)
T/N : f(x)=\frac{1}{2}(x-4)^2-2  
Podpunkt 10.4 (1 pkt)
 Funkcja kwadratowa h jest określona za pomocą funkcji f następująco: h(x)=f(x+1). Na jednym z rysunków A–D przedstawiono, w kartezjańskim układzie współrzędnych (x,y), fragment wykresu funkcji y=h(x).

Fragment wykresu funkcji y=h(x) przedstawiono na rysunku:

Odpowiedzi:
A. A B. C
C. D D. B
Zadanie 11.  1 pkt ⋅ Numer: pp-11839 ⋅ Poprawnie: 553/684 [80%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Proces stygnięcia naparu z ziół w otoczeniu o stałej temperaturze 12^{\circ} opisuje funkcja wykładnicza T(x)=80\cdot 2^{-\frac{1}{20}x}+12, gdzie T(x) to temperatura naparu wyrażona w stopniach Celsjusza po x minutach liczonych od momentu x=0, w którym zioła zalano wrzątkiem.

Temperatura naparu po 20 minutach od momentu zalania ziół wrzątkiem jest równa:

Odpowiedzi:
A. 32^{\circ}C B. 52^{\circ}C
C. 72^{\circ}C D. \frac{116}{3}^{\circ}C
Zadanie 12.  1 pkt ⋅ Numer: pp-11836 ⋅ Poprawnie: 674/750 [89%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=7 oraz a_3=13.

6-ty wyraz tego ciągu a_{6} jest równy:

Odpowiedzi:
A. 37 B. 43
C. 19 D. 49
E. 31 F. 25
Zadanie 13.  1 pkt ⋅ Numer: pp-11837 ⋅ Poprawnie: 397/611 [64%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=2\cdot(3^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : iloczyn a_1\cdot a_2 jest równy 48 T/N : pierwszy wyraz ciągu \left(a_n\right) jest równy 4
Zadanie 14.  1 pkt ⋅ Numer: pp-11838 ⋅ Poprawnie: 529/643 [82%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Trzywyrazowy ciąg (11-2a, 12, 48) jest geometryczny.

Liczba a jest równa:

Odpowiedzi:
A. 8 B. 6
C. 4 D. 2
E. 16 F. 1
Zadanie 15.  2 pkt ⋅ Numer: pp-21063 ⋅ Poprawnie: 322/565 [56%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Dane są dwa kąty o miarach \alpha oraz \beta, spełniające warunki: \alpha\in\left(0^{\circ},180^{\circ}\right) i \tan\alpha=-\frac{2}{3} oraz \beta\in\left(0^{\circ},180^{\circ}\right) i \cos\beta=\frac{1}{\sqrt{10}}.

Na rysunkach A–F w kartezjańskim układzie współrzędnych (x, y) zaznaczono różne kąty – w tym kąt o mierze \alpha oraz kąt o mierze \beta. Jedno z ramion każdego z tych kątów pokrywa się z dodatnią półosią Ox, a drugie przechodzi przez jeden z punktów o współrzędnych całkowitych: A lub B, lub C, lub D, lub E, lub F.

Kąt \alpha zaznaczony jest na rysunku:

Odpowiedzi:
A. F B. E
C. D D. B
E. C F. A
Podpunkt 15.2 (1 pkt)
 Kąt \beta zaznaczony jest na rysunku:
Odpowiedzi:
A. F B. B
C. C D. E
E. A F. D
Zadanie 16.  1 pkt ⋅ Numer: pp-11840 ⋅ Poprawnie: 396/569 [69%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Kąt \alpha jest ostry oraz \sin\alpha=\frac{3\sqrt{10}}{10}.

Tangens kąta \alpha jest równy:

Odpowiedzi:
A. \frac{\sqrt{10}}{10} B. 3
C. \sqrt{10} D. \frac{1}{3}
Zadanie 17.  1 pkt ⋅ Numer: pp-11841 ⋅ Poprawnie: 461/614 [75%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dana jest prosta l o równaniu y=\frac{3}{2}x+11. Prosta k jest prostopadła do prostej l i przechodzi przez punkt P=(1,-4).

Prosta k ma równanie:

Odpowiedzi:
A. y=\frac{3}{2}x-\frac{11}{2} B. y=-\frac{2}{3}x-\frac{4}{3}
C. y=-\frac{2}{3}x-\frac{10}{3} D. y=\frac{3}{2}x+\frac{19}{2}
Zadanie 18.  1 pkt ⋅ Numer: pp-11843 ⋅ Poprawnie: 478/629 [75%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dane są proste k oraz l o równaniach: k:y=-\frac{1}{2}x-7 i l:y=(2m-4)x+13.

Proste k oraz l są równoległe, gdy:

Odpowiedzi:
A. m=-\frac{7}{4} B. m=\frac{3}{4}
C. m=\frac{5}{4} D. m=\frac{11}{4}
E. m=\frac{9}{4} F. m=\frac{7}{4}
Zadanie 19.  1 pkt ⋅ Numer: pp-11842 ⋅ Poprawnie: 497/609 [81%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dany jest okrąg \mathcal{O} o środku w punkcie S=(-6,-9). Okrąg \mathcal{O} jest styczny do osi Ox układu współrzędnych.

Okrąg \mathcal{O} jest określony równaniem:

Odpowiedzi:
A. (x-6)^2+(y+9)^2=81 B. (x+6)^2+(y+9)^2=81
C. (x+6)^2+(y-9)^2=81 D. (x-6)^2+(y-9)^2=9
Zadanie 20.  1 pkt ⋅ Numer: pp-11844 ⋅ Poprawnie: 475/625 [76%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) punkty K=(-13,-6) oraz L=(-7,0) są wierzchołkami trójkata równobocznego KLM.

Pole powierzchni trójkąta KLM jest równe:

Odpowiedzi:
A. 24\sqrt{3} B. \frac{17\sqrt{3}}{3}
C. 9\sqrt{2} D. 18\sqrt{3}
E. 18\sqrt{2} F. \frac{17\sqrt{3}}{2}
Zadanie 21.  1 pkt ⋅ Numer: pp-11845 ⋅ Poprawnie: 444/567 [78%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Punkty A, B oraz C leżą na okręgu o środku w punkcie O. Prosta k jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB kąt o mierze 24^{\circ}. Ponadto odcinek AC jest średnicą tego okręgu (zobacz rysunek).

Miara kąta rozwartego BOC jest równa:

Odpowiedzi:
A. 134^{\circ} B. 126^{\circ}
C. 132^{\circ} D. 128^{\circ}
E. 124^{\circ} F. 130^{\circ}
Zadanie 22.  1 pkt ⋅ Numer: pp-11846 ⋅ Poprawnie: 381/622 [61%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 W rombie ABCD dłuższa przekątna AC ma długość 4 i tworzy z bokiem AB kąt o mierze 30^{\circ} (zobacz rysunek).

Pole rombu ABCD jest równe:

Odpowiedzi:
A. \frac{8}{3} B. \frac{8}{3}
C. 8 D. \frac{4\sqrt{3}}{3}
E. \frac{16\sqrt{3}}{3} F. \frac{8\sqrt{3}}{3}
Zadanie 23.  2 pkt ⋅ Numer: pp-21064 ⋅ Poprawnie: 250/579 [43%] Rozwiąż 
Podpunkt 23.1 (2 pkt)
 Dany jest okrąg \mathcal{O} o środku w punkcie S. Średnica AB tego okręgu przecina cięciwę CD w punkcie P (zobacz rysunek). Ponadto: |PB|=5, |PC|=4 oraz |PD|=6.

Oblicz promień okręgu \mathcal{O}.

Odpowiedź:
R_{\mathcal{O}}=
(wpisz dwie liczby całkowite)
Zadanie 24.  1 pkt ⋅ Numer: pp-11847 ⋅ Poprawnie: 453/603 [75%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Dany jest sześcian ABCDEFGH o krawędzi długości 2. Wewnątrz tego sześcianu znajduje się punkt P (zobacz rysunek).

Suma odległości punktu P od wszystkich ścian sześcianu ABCDEFGH jest równa:

Odpowiedzi:
A. 8 B. 6
C. \frac{16}{3} D. 3
E. 4 F. 10
Zadanie 25.  3 pkt ⋅ Numer: pp-21065 ⋅ Poprawnie: 310/682 [45%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Objętość ostrosłupa prawidłowego czworokątnego jest równa 384. Wysokość ściany bocznej tego ostrosłupa tworzy z płaszczyzną podstawy kąt o mierze \alphataki, że \tan\alpha=\frac{4}{3} (zobacz rysunek).

Oblicz długość krawędzi podstawy tego ostrosłupa.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 25.2 (1 pkt)
 Oblicz długość wysokości tego ostrosłupa.
Odpowiedź:
H= (wpisz liczbę całkowitą)
Podpunkt 25.3 (1 pkt)
 Oblicz długość wysokości ściany bocznej tego ostrosłupa.
Odpowiedź:
h= (wpisz liczbę całkowitą)
Zadanie 26.  2 pkt ⋅ Numer: pp-21067 ⋅ Poprawnie: 291/710 [40%] Rozwiąż 
Podpunkt 26.1 (2 pkt)
 E-dowód ma zapisany na pierwszej stronie specjalny sześciocyfrowy numer CAN, który zabezpiecza go przed odczytaniem danych przez osoby nieuprawnione.

Oblicz, ile jest wszystkich sześciocyfrowych numerów CAN o różnych cyfrach, spełniających warunek: trzy pierwsze cyfry są kolejnymi wyrazami ciągu arytmetycznego o różnicy -4.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 27.  1 pkt ⋅ Numer: pp-11872 ⋅ Poprawnie: 460/602 [76%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną 5-ścienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do 5 oczek.

Prawdopodobieństwo zdarzenia polegającego na tym, że iloczyn liczb wyrzuconych oczek jest liczbą nieparzystą, jest równe:

Odpowiedzi:
A. \frac{6}{25} B. \frac{4}{25}
C. \frac{12}{25} D. \frac{16}{25}
E. \frac{9}{25} F. \frac{8}{25}
Zadanie 28.  2 pkt ⋅ Numer: pp-21066 ⋅ Poprawnie: 483/690 [70%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 W hurtowni owoców wyselekcjonowane jabłko spełnia normę jakości, gdy jego masa (po zaokrągleniu do pełnych dekagramów) mieści się w przedziale [19,20] dag. Pobrano próbę kontrolną liczącą 50 jabłek i następnie zważono każde z nich. Na poniższym wykresie słupkowym przedstawiono rozkład masy jabłek w badanej próbie. Na osi poziomej podano – wyrażoną w dekagramach – masę jabłka (w zaokrągleniu do pełnych dekagramów), a na osi pionowej przedstawiono liczbę jabłek o określonej masie:

Spośród 50 zważonych jabłek z pobranej próby kontrolnej losujemy jedno jabłko. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowane jabłko spełnia normę jakości, jest równe:

Odpowiedzi:
A. \frac{1}{2} B. \frac{14}{25}
C. \frac{27}{50} D. \frac{11}{25}
E. \frac{13}{25} F. \frac{23}{50}
Podpunkt 28.2 (0.33 pkt)
 Dominanta masy 50 zważonych jabłek (w zaokrągleniu do pełnych dekagramów) z pobranej próby kontrolnej jest równa:
Odpowiedzi:
A. 23 dag B. 20 dag
Podpunkt 28.3 (0.67 pkt)
 Powyższa odpowiedź jest poprawna, ponieważ:
Odpowiedzi:
A. ta masa jest największa w tej próbie B. iloczyn tej masy i liczby jabłek o takiej masie jest największy w tej próbie
C. ta masa występuje najliczniej w tej próbie  
Zadanie 29.  4 pkt ⋅ Numer: pp-30405 ⋅ Poprawnie: 186/586 [31%] Rozwiąż 
Podpunkt 29.1 (2 pkt)
 Zgodnie z założeniem architekta okno na poddaszu ma mieć kształt trapezu równoramiennego, który nie jest równoległobokiem. Dłuższa podstawa trapezu ma mieć długość 12 dm, a suma długości krótszej podstawy i wysokości tego trapezu ma być równa 20 dm.

Oblicz, jaką długość powinna mieć krótsza podstawa tego trapezu, tak aby pole powierzchni okna było największe możliwe.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 29.2 (2 pkt)
 Oblicz to największe możliwe pole powierzchni okna.
Odpowiedź:
P_{max}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm