Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@cke-2023-12-pp

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11828  
Podpunkt 1.1 (1 pkt)
 Liczba \left(11^{-2.3}\cdot 11^{\frac{3}{10}}}\right)^{\frac{1}{2}} jest równa:
Odpowiedzi:
A. \frac{1}{11} B. 11^{-2}
C. \sqrt{11} D. \sqrt[3]{11^2}
E. 11^{\frac{1}{4}} F. 11^2
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11829  
Podpunkt 2.1 (1 pkt)
 Liczba \log_{2}{48}-\log_{2}{3} jest równa:
Odpowiedzi:
A. 4 B. 3
C. \log_{2}{144} D. \log_{2}{45}
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11830  
Podpunkt 3.1 (1 pkt)
 Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 5\% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 4410.00 zł (bez uwzględnienia podatków).

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa:

Odpowiedzi:
A. 4200 B. 4600
C. 4000 D. 4300
E. 3900 F. 4400
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11832  
Podpunkt 4.1 (1 pkt)
 Przedział liczbowy (-6, -2) jest rozwiązaniem nierówności:
Odpowiedzi:
A. |x-4|\lessdot 2 B. |x+4|\lessdot 2
C. |x-2|\lessdot 4 D. |x+4|>2
E. |x+3|>2 F. |x+2|\lessdot 4
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11834  
Podpunkt 5.1 (1 pkt)
 Dany jest układ równań \begin{cases} x-3y-6=0\\ 2x+y+16=0 \end{cases}.

Rozwiązaniem tego układu równań jest para liczb:

Odpowiedzi:
A. x=-5 \wedge y=-5 B. x=-7 \wedge y=-5
C. x=-7 \wedge y=-2 D. x=-5 \wedge y=-3
E. x=-6 \wedge y=-4 F. x=-4 \wedge y=-5
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11833  
Podpunkt 6.1 (1 pkt)
 Dla każdej liczby rzeczywistej x różnej od 4 i 5 wartość wyrażenia \frac{x-4}{x^2-10x+25}\cdot \frac{x^2-5x}{4x-16} jest równa wartości wyrażenia:
Odpowiedzi:
A. \frac{1}{4x+20} B. \frac{x}{4x-20}
C. \frac{x}{2} D. \frac{x}{x-5}
E. \frac{x}{4} F. \frac{x-20}{x}
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11831  
Podpunkt 7.1 (1 pkt)
 Dany jest wielomian W(x)=3x^3-2x^2+kx-1 gdzie k jest pewną liczbą rzeczywistą. Wiadomo, że wielomian W można zapisać w postaci W(x)=(x+1)\cdot Q(x), dla pewnego wielomianu Q.

Liczba k jest równa:

Odpowiedzi:
A. -12 B. -3
C. -6 D. -9
E. -2 F. -4
G. 2 H. -8
Zadanie 8.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-21062  
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie 3x^3-7x^2=18x-42.

Podaj najmniejsze rozwiązanie tego równania, które jest liczbą niewymierną.

Odpowiedź:
x_{min,\notin\mathbb{W}}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największe rozwiązanie tego równania, które jest liczbą niewymierną.
Odpowiedź:
x_{max,\notin\mathbb{W}}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj rozwiązanie wymierne tego równania.
Odpowiedź:
x_{\in\mathbb{W}}=
(wpisz dwie liczby całkowite)
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11835  
Podpunkt 9.1 (1 pkt)
 Funkcja liniowa f jest określona wzorem f(x)=-\frac{1}{16}x+\frac{1}{8}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : miejscem zerowym funkcji f jest liczba 2 T/N : do wykresu funkcji f należy punkt \left(24,-\frac{19}{8}\right)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30406  
Podpunkt 10.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y)przedstawiono fragment wykresu funkcji kwadratowej f(zobacz rysunek). Wierzchołek paraboli, która jest wykresem funkcji f, oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.
Zbiorem wartości funkcji g określonej wzorem g(x)=f(x-2) jest przedział:
Odpowiedzi:
A. [0, +\infty) B. (-\infty, -2]
C. [-4, +\infty) D. [-2, +\infty)
Podpunkt 10.2 (1 pkt)
 Zapisz w postaci przedziału zbiór rozwiązań nierówności g(x)\lessdot 0. Podaj lewy i prawy koniec tego przedziału.
Odpowiedzi:
x_l= (wpisz liczbę całkowitą)
x_p= (wpisz liczbę całkowitą)
Podpunkt 10.3 (1 pkt)
 Oceń, które z podanych wzorów poprawnie opisują funkcję f pokazaną na rysunku.
Odpowiedzi:
T/N : f(x)=\frac{1}{2}(x-4)^2-2 T/N : f(x)=\frac{1}{2}(x+4)^2-2
T/N : f(x)=2(x+4)^2-2  
Podpunkt 10.4 (1 pkt)
 Funkcja kwadratowa h jest określona za pomocą funkcji f następująco: h(x)=f(x+1). Na jednym z rysunków A–D przedstawiono, w kartezjańskim układzie współrzędnych (x,y), fragment wykresu funkcji y=h(x).

Fragment wykresu funkcji y=h(x) przedstawiono na rysunku:

Odpowiedzi:
A. D B. B
C. C D. A
Zadanie 11.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11839  
Podpunkt 11.1 (1 pkt)
 Proces stygnięcia naparu z ziół w otoczeniu o stałej temperaturze 16^{\circ} opisuje funkcja wykładnicza T(x)=76\cdot 2^{-\frac{1}{20}x}+16, gdzie T(x) to temperatura naparu wyrażona w stopniach Celsjusza po x minutach liczonych od momentu x=0, w którym zioła zalano wrzątkiem.

Temperatura naparu po 20 minutach od momentu zalania ziół wrzątkiem jest równa:

Odpowiedzi:
A. 54^{\circ}C B. 73^{\circ}C
C. 35^{\circ}C D. \frac{124}{3}^{\circ}C
Zadanie 12.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11836  
Podpunkt 12.1 (1 pkt)
 Ciąg arytmetyczny \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. W tym ciągu a_2=9 oraz a_3=17.

7-ty wyraz tego ciągu a_7 jest równy:

Odpowiedzi:
A. 57 B. 49
C. 73 D. 65
E. 41 F. 33
Zadanie 13.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11837  
Podpunkt 13.1 (1 pkt)
 Ciąg \left(a_n\right) jest określony dla każdej liczby naturalnej n\geqslant 1. Suma n początkowych wyrazów tego ciągu jest określona wzorem S_n=2\cdot(2^n-1), dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : różnica a_2-a_1 jest równa 2 T/N : iloczyn a_1\cdot a_2 jest równy 8
Zadanie 14.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11838  
Podpunkt 14.1 (1 pkt)
 Trzywyrazowy ciąg (7-2a, 12, 48) jest geometryczny.

Liczba a jest równa:

Odpowiedzi:
A. \frac{1}{2} B. 4
C. 8 D. 2
E. 3 F. 1
Zadanie 15.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21063  
Podpunkt 15.1 (1 pkt)
 Dane są dwa kąty o miarach \alpha oraz \beta, spełniające warunki: \alpha\in\left(0^{\circ},180^{\circ}\right) i \tan\alpha=-\frac{2}{3} oraz \beta\in\left(0^{\circ},180^{\circ}\right) i \cos\beta=\frac{1}{\sqrt{10}}.

Na rysunkach A–F w kartezjańskim układzie współrzędnych (x, y) zaznaczono różne kąty – w tym kąt o mierze \alpha oraz kąt o mierze \beta. Jedno z ramion każdego z tych kątów pokrywa się z dodatnią półosią Ox, a drugie przechodzi przez jeden z punktów o współrzędnych całkowitych: A lub B, lub C, lub D, lub E, lub F.

Kąt \alpha zaznaczony jest na rysunku:

Odpowiedzi:
A. E B. C
C. F D. D
E. B F. A
Podpunkt 15.2 (1 pkt)
 Kąt \beta zaznaczony jest na rysunku:
Odpowiedzi:
A. F B. C
C. B D. E
E. A F. D
Zadanie 16.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11840  
Podpunkt 16.1 (1 pkt)
 Kąt \alpha jest ostry oraz \sin\alpha=\frac{3\sqrt{13}}{13}.

Tangens kąta \alpha jest równy:

Odpowiedzi:
A. \frac{2\sqrt{13}}{13} B. \frac{\sqrt{13}}{3}
C. \frac{3}{2} D. \frac{\sqrt{13}}{2}
Zadanie 17.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11841  
Podpunkt 17.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dana jest prosta l o równaniu y=\frac{3}{2}x+\frac{17}{2}. Prosta k jest prostopadła do prostej l i przechodzi przez punkt P=(2,-5).

Prosta k ma równanie:

Odpowiedzi:
A. y=\frac{3}{2}x+7 B. y=-\frac{2}{3}x-\frac{11}{3}
C. y=\frac{3}{2}x-8 D. y=-\frac{2}{3}x-\frac{5}{3}
Zadanie 18.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11843  
Podpunkt 18.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dane są proste k oraz l o równaniach: k:y=-\frac{1}{2}x-7 i l:y=(2m-5)x+13.

Proste k oraz l są równoległe, gdy:

Odpowiedzi:
A. m=\frac{13}{4} B. m=\frac{7}{4}
C. m=\frac{11}{4} D. m=\frac{5}{4}
E. m=\frac{9}{4} F. m=-\frac{9}{4}
Zadanie 19.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11842  
Podpunkt 19.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) dany jest okrąg \mathcal{O} o środku w punkcie S=(4,1). Okrąg \mathcal{O} jest styczny do osi Ox układu współrzędnych.

Okrąg \mathcal{O} jest określony równaniem:

Odpowiedzi:
A. (x-4)^2+(y-1)^2=1 B. (x+4)^2+(y-1)^2=1
C. (x-4)^2+(y+1)^2=1 D. (x+4)^2+(y+1)^2=1
Zadanie 20.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11844  
Podpunkt 20.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x, y) punkty K=(-11,-7) oraz L=(-5,-1) są wierzchołkami trójkata równobocznego KLM.

Pole powierzchni trójkąta KLM jest równe:

Odpowiedzi:
A. 18\sqrt{3} B. 24\sqrt{3}
C. 18\sqrt{2} D. \frac{17\sqrt{3}}{3}
E. 9\sqrt{2} F. \frac{17\sqrt{3}}{2}
Zadanie 21.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11845  
Podpunkt 21.1 (1 pkt)
 Punkty A, B oraz C leżą na okręgu o środku w punkcie O. Prosta k jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB kąt o mierze 32^{\circ}. Ponadto odcinek AC jest średnicą tego okręgu (zobacz rysunek).

Miara kąta rozwartego BOC jest równa:

Odpowiedzi:
A. 114^{\circ} B. 118^{\circ}
C. 108^{\circ} D. 112^{\circ}
E. 116^{\circ} F. 110^{\circ}
Zadanie 22.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11846  
Podpunkt 22.1 (1 pkt)
 W rombie ABCD dłuższa przekątna AC ma długość 8 i tworzy z bokiem AB kąt o mierze 30^{\circ} (zobacz rysunek).

Pole rombu ABCD jest równe:

Odpowiedzi:
A. 32 B. \frac{16\sqrt{3}}{3}
C. \frac{32}{3} D. \frac{64\sqrt{3}}{3}
E. \frac{32}{3} F. \frac{32\sqrt{3}}{3}
Zadanie 23.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21064  
Podpunkt 23.1 (2 pkt)
 Dany jest okrąg \mathcal{O} o środku w punkcie S. Średnica AB tego okręgu przecina cięciwę CD w punkcie P (zobacz rysunek). Ponadto: |PB|=3, |PC|=2 oraz |PD|=5.

Oblicz promień okręgu \mathcal{O}.

Odpowiedź:
R_{\mathcal{O}}=
(wpisz dwie liczby całkowite)
Zadanie 24.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11847  
Podpunkt 24.1 (1 pkt)
 Dany jest sześcian ABCDEFGH o krawędzi długości 4. Wewnątrz tego sześcianu znajduje się punkt P (zobacz rysunek).

Suma odległości punktu P od wszystkich ścian sześcianu ABCDEFGH jest równa:

Odpowiedzi:
A. 12 B. 16
C. 20 D. \frac{32}{3}
E. 8 F. 6
Zadanie 25.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-21065  
Podpunkt 25.1 (1 pkt)
 Objętość ostrosłupa prawidłowego czworokątnego jest równa 64. Wysokość ściany bocznej tego ostrosłupa tworzy z płaszczyzną podstawy kąt o mierze \alphataki, że \tan\alpha=\frac{3}{4} (zobacz rysunek).

Oblicz długość krawędzi podstawy tego ostrosłupa.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 25.2 (1 pkt)
 Oblicz długość wysokości tego ostrosłupa.
Odpowiedź:
H= (wpisz liczbę całkowitą)
Podpunkt 25.3 (1 pkt)
 Oblicz długość wysokości ściany bocznej tego ostrosłupa.
Odpowiedź:
h= (wpisz liczbę całkowitą)
Zadanie 26.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21067  
Podpunkt 26.1 (2 pkt)
 E-dowód ma zapisany na pierwszej stronie specjalny sześciocyfrowy numer CAN, który zabezpiecza go przed odczytaniem danych przez osoby nieuprawnione.

Oblicz, ile jest wszystkich sześciocyfrowych numerów CAN o różnych cyfrach, spełniających warunek: trzy pierwsze cyfry są kolejnymi wyrazami ciągu arytmetycznego o różnicy -2.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 27.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11872  
Podpunkt 27.1 (1 pkt)
 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną 5-ścienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do 5 oczek.

Prawdopodobieństwo zdarzenia polegającego na tym, że iloczyn liczb wyrzuconych oczek jest liczbą nieparzystą, jest równe:

Odpowiedzi:
A. \frac{6}{25} B. \frac{9}{25}
C. \frac{8}{25} D. \frac{16}{25}
E. \frac{12}{25} F. \frac{4}{25}
Zadanie 28.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21066  
Podpunkt 28.1 (1 pkt)
 W hurtowni owoców wyselekcjonowane jabłko spełnia normę jakości, gdy jego masa (po zaokrągleniu do pełnych dekagramów) mieści się w przedziale [19,20] dag. Pobrano próbę kontrolną liczącą 50 jabłek i następnie zważono każde z nich. Na poniższym wykresie słupkowym przedstawiono rozkład masy jabłek w badanej próbie. Na osi poziomej podano – wyrażoną w dekagramach – masę jabłka (w zaokrągleniu do pełnych dekagramów), a na osi pionowej przedstawiono liczbę jabłek o określonej masie:

Spośród 50 zważonych jabłek z pobranej próby kontrolnej losujemy jedno jabłko. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowane jabłko spełnia normę jakości, jest równe:

Odpowiedzi:
A. \frac{11}{25} B. \frac{27}{50}
C. \frac{1}{2} D. \frac{13}{25}
E. \frac{14}{25} F. \frac{23}{50}
Podpunkt 28.2 (0.33 pkt)
 Dominanta masy 50 zważonych jabłek (w zaokrągleniu do pełnych dekagramów) z pobranej próby kontrolnej jest równa:
Odpowiedzi:
A. 20 dag B. 23 dag
Podpunkt 28.3 (0.67 pkt)
 Powyższa odpowiedź jest poprawna, ponieważ:
Odpowiedzi:
A. ta masa jest największa w tej próbie B. ta masa występuje najliczniej w tej próbie
C. iloczyn tej masy i liczby jabłek o takiej masie jest największy w tej próbie  
Zadanie 29.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30405  
Podpunkt 29.1 (2 pkt)
 Zgodnie z założeniem architekta okno na poddaszu ma mieć kształt trapezu równoramiennego, który nie jest równoległobokiem. Dłuższa podstawa trapezu ma mieć długość 12 dm, a suma długości krótszej podstawy i wysokości tego trapezu ma być równa 23 dm.

Oblicz, jaką długość powinna mieć krótsza podstawa tego trapezu, tak aby pole powierzchni okna było największe możliwe.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Podpunkt 29.2 (2 pkt)
 Oblicz to największe możliwe pole powierzchni okna.
Odpowiedź:
P_{max}=
(wpisz dwie liczby całkowite)


Masz pytania? Napisz: k42195@poczta.fm