Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2024-05-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11980 ⋅ Poprawnie: 357/570 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest nierówność |x-1|\geqslant 3.

Na którym rysunku poprawnie zaznaczono na osi liczbowej zbiór wszystkich liczb rzeczywistych spełniających powyższą nierówność?

Odpowiedzi:
A. D B. C
C. A D. B
Zadanie 2.  1 pkt ⋅ Numer: pp-11981 ⋅ Poprawnie: 1058/1117 [94%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \left(\frac{1}{8}\right)^{7}\cdot 4^{17} jest równa:
Odpowiedzi:
A. 2^{13} B. 2^{15}
C. 2^{10} D. 2^{11}
E. 2^{9} F. 2^{14}
Zadanie 3.  1 pkt ⋅ Numer: pp-11982 ⋅ Poprawnie: 774/841 [92%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba \log_{\sqrt{2}}{4} jest równa:
Odpowiedzi:
A. 6 B. 8
C. 3 D. 4
E. 7 F. 2
Zadanie 4.  1 pkt ⋅ Numer: pp-11983 ⋅ Poprawnie: 838/854 [98%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla każdej liczby rzeczywistej a i dla każdej liczby rzeczywistej b wartość wyrażenia (3a+b)^2-(3a-b)^2 jest równa wartości wyrażenia:
Odpowiedzi:
A. -12ab B. 12ab
C. 12a^2 D. 36ab
Zadanie 5.  1 pkt ⋅ Numer: pp-11984 ⋅ Poprawnie: 331/630 [52%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Zbiorem wszystkich rozwiązań nierówności -10-\frac{3}{2}x\lessdot \frac{2}{3}-x jest przedział postaci:
Odpowiedzi:
A. (a, +\infty) B. \langle a, +\infty)
C. (-\infty, a\rangle D. (-\infty, a)
Podpunkt 5.2 (0.8 pkt)
 Liczba a jest równa:
Odpowiedzi:
A. -\frac{64}{5} B. -\frac{64}{3}
C. -16 D. -\frac{320}{9}
E. -\frac{128}{3} F. -\frac{32}{3}
Zadanie 6.  1 pkt ⋅ Numer: pp-11985 ⋅ Poprawnie: 444/613 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Równanie \frac{x-2}{(x-1)(x-5)}=0 ma w zbiorze liczb rzeczywistych dokładnie:
Odpowiedzi:
A. zero rozwiązań B. dwa rozwiązania
C. jedno rozwiązanie D. trzy rozwiązania
Zadanie 7.  1 pkt ⋅ Numer: pp-11986 ⋅ Poprawnie: 446/689 [64%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dany jest wielomian W(x)=2x^3+6x^2+4x.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wielomian W(x) dzieli się przez dwumian x+0 T/N : liczba -2 jest pierwiastkiem wielomianu W(x)
Zadanie 8.  3 pkt ⋅ Numer: pp-21101 ⋅ Poprawnie: 304/548 [55%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie x^3+7x^2-6x-42=0.

Podaj rozwiązanie całkowite tego równania.

Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj ujemne nie całkowite rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj dodatnie niecałkowite rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11987 ⋅ Poprawnie: 252/634 [39%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W październiku 2022 roku założono dwa sady, w których posadzono łącznie 1720 drzew. Po roku stwierdzono, że uschło 11\% drzew w pierwszym sadzie i 12\% drzew w drugim sadzie. Uschnięte drzewa usunięto, a nowych nie dosadzano. Liczba drzew, które pozostały w drugim sadzie, stanowiła 40\% liczby drzew, które pozostały w pierwszym sadzie.
Niech x oraz y oznaczają liczby drzew posadzonych – odpowiednio – w pierwszym i drugim sadzie.

Układem równań, którego poprawne rozwiązanie prowadzi do obliczenia liczby x drzew posadzonych w pierwszym sadzie oraz liczby y drzew posadzonych w drugim sadzie, jest:

Odpowiedzi:
A. \begin{cases}x+y=1720\\0.60x=40\cdot0.12y\end{cases} B. \begin{cases}x+y=1720\\0.88x=40\cdot0.89y\end{cases}
C. \begin{cases}y=1720-x\\0.89x=40\cdot0.88y\end{cases} D. \begin{cases}x=1720-y\\0.40x=40\cdot0.88y\end{cases}
Zadanie 10.  1 pkt ⋅ Numer: pp-11988 ⋅ Poprawnie: 553/800 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku, w kartezjańskim układzie współrzędnych (x, y), przedstawiono dwie proste równoległe, które są interpretacją geometryczną jednego z poniższych układów równań A–D.

Układem równań, którego interpretację geometryczną przedstawiono na rysunku, jest:

Odpowiedzi:
A. \begin{cases}y=-\frac{3}{5}x+8\\y=-\frac{3}{5}x+1\end{cases} B. \begin{cases}y=-\frac{3}{5}x+8\\y=\frac{5}{3}x+1\end{cases}
C. \begin{cases}y=\frac{3}{5}x+8\\y=\frac{3}{5}x-1\end{cases} D. \begin{cases}y=-\frac{3}{5}x+8\\y=-\frac{3}{5}x-1\end{cases}
Zadanie 11.  1 pkt ⋅ Numer: pp-11989 ⋅ Poprawnie: 499/716 [69%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja liniowa f jest określona wzorem f(x)=(-7k-3)x+k-1, gdzie k\in\mathbb{R}.

Funkcja f jest malejąca dla każdej liczby k należącej do przedziału:

Odpowiedzi:
A. \left(-\frac{9}{14},+\infty\right) B. \left(-\frac{3}{14},+\infty\right)
C. \left(-\frac{3}{7},+\infty\right) D. \left(-\infty,-\frac{2}{7}\right)
E. \left(-\infty,\frac{9}{14}\right) F. \left(\frac{3}{7},+\infty\right)
Zadanie 12.  1 pkt ⋅ Numer: pp-11990 ⋅ Poprawnie: 469/610 [76%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcje liniowe f oraz g, określone wzorami f(x)=-5x-2 oraz g(x)=ax-5, mają to samo miejsce zerowe.

Współczynnik a we wzorze funkcji g jest równy:

Odpowiedzi:
A. -25 B. -\frac{50}{3}
C. \frac{25}{4} D. \frac{50}{3}
E. -\frac{25}{2} F. -\frac{75}{8}
G. \frac{75}{4} H. -\frac{75}{4}
Zadanie 13.  5 pkt ⋅ Numer: pp-30412 ⋅ Poprawnie: 144/697 [20%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Parabola w kartezjańskim układzie współrzędnych (x, y), która jest wykresem funkcji kwadratowej y=f(x) przechodzi przez punkt (-2,0) i ma wierzchołek w punkcie (2,2).

Zbiorem wszystkich rozwiązań nierówności f(x)\geqslant 0 jest przedział [x_1,x_2]. Wówczas:

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Podpunkt 13.2 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem:
Odpowiedzi:
A. f(x)=-(x-2)^2+2 B. f(x)=-(x-2)^2-2
C. f(x)=(x+2)^2+2 D. f(x)=-(x+2)^2+2
E. f(x)=(x-2)^2+2 F. f(x)=-(x+2)^2-2
Podpunkt 13.3 (1 pkt)
 Dla funkcji f prawdziwa jest równość:
Odpowiedzi:
A. f(3)=f(3) B. f(2)=f(3)
C. f(4)=f(6) D. f(2)=f(2)
E. f(1)=f(1) F. f(1)=f(2)
Podpunkt 13.4 (2 pkt)
 Funkcje kwadratowe g i h są określone za pomocą funkcji f następująco: g(x)=f(x-1) oraz h(x)=f(-x).

Oceń poprawność poniższych zdań:

Odpowiedzi:
T/N : wykres funkcji h jest symetryczny do wykresu funkcji f względem osi Oy T/N : wykres funkcji g jest przesunięty w stosunku do wykresu funkcji f o 1 jednostek w prawo
Zadanie 14.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 424/632 [67%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-2) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : różnica a_{4}-a_3 jest równa 3 T/N : ciąg (a_n) jest monotoniczny
Zadanie 15.  1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 496/640 [77%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m-7) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. malejący B. rosnący
Podpunkt 15.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. 5 B. 6
C. 4 D. 7
E. 2 F. 9
Zadanie 16.  2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 385/621 [61%] Rozwiąż 
Podpunkt 16.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy -9, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa -285.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 17.  2 pkt ⋅ Numer: pp-21103 ⋅ Poprawnie: 200/543 [36%] Rozwiąż 
Podpunkt 17.1 (2 pkt)
 W kartezjańskim układzie współrzędnych (x,y) zaznaczono kąt skierowany w standardowym położeniu o mierze \alpha taki, że \tan\alpha=-4 oraz 90^{\circ}\lessdot \alpha\lessdot 180^{\circ}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : \sin\alpha\lessdot 0 T/N : \sin\alpha\lessdot \cos\alpha
T/N : \sin\alpha=-\frac{1}{4}\cos\alpha T/N : \sin\alpha=-4\cos\alpha
Zadanie 18.  1 pkt ⋅ Numer: pp-11993 ⋅ Poprawnie: 332/588 [56%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Liczba \sin^333^{\circ}+\cos^233^{\circ}\cdot\sin33^{\circ} jest równa:
Odpowiedzi:
A. \sin33^{\circ} \cdot \cos33^{\circ} B. \tan33^{\circ}
C. \sin57^{\circ} D. \sin^233^{\circ}
E. \cos33^{\circ} F. \sin33^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-11994 ⋅ Poprawnie: 348/547 [63%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Dany jest trójkąt KLM, w którym |KM|=a, |LM|=b oraz a\neq b. Dwusieczna kąta KML przecina bok KL w punkcie N takim, że |KN|=c, |NL|=d oraz |MN|=e (zobacz rysunek).

W trójkącie KLM prawdziwa jest równość:

Odpowiedzi:
A. a\cdot b=e\cdot e B. a\cdot c=b\cdot d
C. a\cdot d=b\cdot c D. a\cdot b=c\cdot d
Zadanie 20.  1 pkt ⋅ Numer: pp-11995 ⋅ Poprawnie: 434/607 [71%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Dany jest równoległobok o bokach długości 2 i 4 oraz o kącie między nimi o mierze 135^{\circ}.

Pole powierzchni tego równoległoboku jest równe:

Odpowiedzi:
A. 5\sqrt{2} B. 2\sqrt{2}
C. 4\sqrt{2} D. \frac{12\sqrt{2}}{5}
E. \frac{16\sqrt{2}}{3} F. \frac{8\sqrt{2}}{3}
Zadanie 21.  1 pkt ⋅ Numer: pp-11996 ⋅ Poprawnie: 344/581 [59%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 W trójkącie ABC, wpisanym w okrąg o środku w punkcie S, kąt ACB ma miarę 35^{\circ} (zobacz rysunek).

Miara kąta ostrego BAS jest równa:

Odpowiedzi:
A. 55^{\circ} B. 59^{\circ}
C. 51^{\circ} D. 58^{\circ}
E. 60^{\circ} F. 53^{\circ}
Zadanie 22.  1 pkt ⋅ Numer: pp-11997 ⋅ Poprawnie: 381/574 [66%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x,y) proste k oraz l są określone równaniami k:y=(m-2)x+7 i l:y=-2x+7

Proste k oraz l są prostopadłe, gdy liczba m jest równa:

Odpowiedzi:
A. \frac{7}{2} B. 5
C. \frac{1}{2} D. \frac{11}{2}
E. \frac{5}{2} F. -1
Zadanie 23.  2 pkt ⋅ Numer: pp-21104 ⋅ Poprawnie: 289/686 [42%] Rozwiąż 
Podpunkt 23.1 (2 pkt)
 W kartezjańskim układzie współrzędnych (x,y) dany jest równoległobok ABCD, w którym A=(-2,-1) oraz B=(-5,-5). Przekątne AC oraz BD tego równoległoboku przecinają się w punkcie P=\left(-\frac{1}{2},\frac{5}{2}\right).

Oblicz długość boku BC tego równoległoboku.

Odpowiedź:
|BC|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 24.  2 pkt ⋅ Numer: pp-21105 ⋅ Poprawnie: 204/514 [39%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Wysokość graniastosłupa prawidłowego sześciokątnego jest równa 6 (zobacz rysunek). Pole podstawy tego graniastosłupa jest równe \frac{27\sqrt{3}}{2}.

3Pole powierzchni jednej ściany bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. 24 B. 12\sqrt{3}
C. 12 D. 18\sqrt{3}
E. 18 F. 36
Podpunkt 24.2 (1 pkt)
 Kąt nachylenia najdłuższej przekątnej graniastosłupa prawidłowego sześciokątnego do płaszczyzny jego podstawy jest zaznaczony na rysunku:
Odpowiedzi:
A. D B. B
C. C D. A
Zadanie 25.  1 pkt ⋅ Numer: pp-11998 ⋅ Poprawnie: 173/510 [33%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Ostrosłup F_1 jest podobny do ostrosłupa F_2. Objętość ostrosłupa F_1 jest równa 8. Objętość ostrosłupa F_2 jest równa 512.

Stosunek pola powierzchni całkowitej ostrosłupa F_2 do pola powierzchni całkowitej ostrosłupa F_1 jest równy:

Odpowiedź:
P_{F_2}:P_{F_1}= (wpisz liczbę całkowitą)
Zadanie 26.  1 pkt ⋅ Numer: pp-11999 ⋅ Poprawnie: 644/748 [86%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Rozważamy wszystkie kody n=4cyfrowe utworzone tylko z cyfr 1, 4, 5, 9, przy czym w każdym kodzie każda z tych cyfr występuje dokładnie jeden raz.

Liczba wszystkich takich kodów jest równa:

Odpowiedzi:
A. 48 B. 24
C. 36 D. 72
E. 6 F. 120
Zadanie 27.  1 pkt ⋅ Numer: pp-12000 ⋅ Poprawnie: 577/708 [81%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Średnia arytmetyczna trzech liczb: a, b c jest równa 12.

Średnia arytmetyczna sześciu liczb: a, a, b, b, c, c jest równa:

Odpowiedzi:
A. 27 B. 24
C. 38 D. 36
E. 14 F. 12
Zadanie 28.  1 pkt ⋅ Numer: pp-12001 ⋅ Poprawnie: 509/714 [71%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Na diagramie przedstawiono wyniki sprawdzianu z matematyki w pewnej klasie maturalnej. Na osi poziomej podano oceny, które uzyskali uczniowie tej klasy, a na osi pionowej podano liczbę uczniów, którzy otrzymali daną ocenę.

Mediana ocen uzyskanych z tego sprawdzianu przez uczniów tej klasy jest równa:

Odpowiedzi:
A. 3,5 B. 3
C. 3,25 D. 4,25
E. 4 F. 3,75
Zadanie 29.  1 pkt ⋅ Numer: pp-21106 ⋅ Poprawnie: 451/680 [66%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Dany jest n=5 cyfrowy zbiór K=\{1,2,4,5,9\}. Wylosowanie każdej liczby z tego zbioru jest jednakowo prawdopodobne. Ze zbioru K losujemy ze zwracaniem kolejno dwa razy po jednej liczbie i zapisujemy je w kolejności losowania.

Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że suma wylosowanych liczb jest liczbą parzystą.

Odpowiedzi:
A. \frac{13}{25} B. \frac{5}{4}
C. \frac{17}{25} D. \frac{1}{5}
E. \frac{9}{25} F. \frac{23}{25}
Zadanie 30.  4 pkt ⋅ Numer: pp-30413 ⋅ Poprawnie: 126/560 [22%] Rozwiąż 
Podpunkt 30.1 (4 pkt)
 W schronisku dla zwierząt, na płaskiej powierzchni, należy zbudować ogrodzenie z siatki wydzielające trzy identyczne wybiegi o wspólnych ścianach wewnętrznych. Podstawą każdego z tych trzech wybiegów jest prostokąt (jak pokazano na rysunku).
Do wykonania tego ogrodzenia należy zużyć 52 metrów bieżących siatki.
Oblicz wymiary x oraz y jednego wybiegu, przy których suma pól podstaw tych trzech wybiegów będzie największa. W obliczeniach pomiń szerokość wejścia na każdy z wybiegów.

Podaj liczby x i y.

Odpowiedzi:
x= (dwie liczby całkowite)

y= (dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm