Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@cke-2024-05-pp

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11980  
Podpunkt 1.1 (1 pkt)
 Dana jest nierówność |x-1| > 3.

Na którym rysunku poprawnie zaznaczono na osi liczbowej zbiór wszystkich liczb rzeczywistych spełniających powyższą nierówność?

Odpowiedzi:
A. C B. A
C. B D. D
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11981  
Podpunkt 2.1 (1 pkt)
 Liczba \left(\frac{1}{125}\right)^{6}\cdot 25^{15} jest równa:
Odpowiedzi:
A. 5^{8} B. 5^{9}
C. 5^{12} D. 5^{15}
E. 5^{10} F. 5^{14}
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11982  
Podpunkt 3.1 (1 pkt)
 Liczba \log_{\sqrt{2}}{16} jest równa:
Odpowiedzi:
A. 2\sqrt{2} B. 12
C. 6 D. 7
E. 11 F. 8
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11983  
Podpunkt 4.1 (1 pkt)
 Dla każdej liczby rzeczywistej a i dla każdej liczby rzeczywistej b wartość wyrażenia (7a-b)^2-(7a+b)^2 jest równa wartości wyrażenia:
Odpowiedzi:
A. 196ab B. 7b^2
C. 28a^2 D. -28ab
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11984  
Podpunkt 5.1 (0.2 pkt)
 Zbiorem wszystkich rozwiązań nierówności 4-\frac{3}{2}x\lessdot \frac{2}{3}-x jest przedział postaci:
Odpowiedzi:
A. (-\infty, a\rangle B. (a, +\infty)
C. (-\infty, a) D. \langle a, +\infty)
Podpunkt 5.2 (0.8 pkt)
 Liczba a jest równa:
Odpowiedzi:
A. \frac{40}{3} B. 5
C. 4 D. \frac{10}{3}
E. \frac{100}{9} F. \frac{20}{3}
Zadanie 6.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11985  
Podpunkt 6.1 (1 pkt)
 Równanie \frac{x+6}{(x-6)(x+6)}=0 ma w zbiorze liczb rzeczywistych dokładnie:
Odpowiedzi:
A. jedno rozwiązanie B. trzy rozwiązania
C. zero rozwiązań D. dwa rozwiązania
Zadanie 7.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11986  
Podpunkt 7.1 (1 pkt)
 Dany jest wielomian W(x)=3x^3+0x^2-108x.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wielomian W(x) ma dokładnie dwa pierwiastki T/N : liczba 6 jest pierwiastkiem wielomianu W(x)
Zadanie 8.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-21101  
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie x^3+8x^2-12x-96=0.

Podaj rozwiązanie całkowite tego równania.

Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj ujemne nie całkowite rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj dodatnie niecałkowite rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11987  
Podpunkt 9.1 (1 pkt)
 W październiku 2022 roku założono dwa sady, w których posadzono łącznie 1980 drzew. Po roku stwierdzono, że uschło 5\% drzew w pierwszym sadzie i 21\% drzew w drugim sadzie. Uschnięte drzewa usunięto, a nowych nie dosadzano. Liczba drzew, które pozostały w drugim sadzie, stanowiła 40\% liczby drzew, które pozostały w pierwszym sadzie.
Niech x oraz y oznaczają liczby drzew posadzonych – odpowiednio – w pierwszym i drugim sadzie.

Układem równań, którego poprawne rozwiązanie prowadzi do obliczenia liczby x drzew posadzonych w pierwszym sadzie oraz liczby y drzew posadzonych w drugim sadzie, jest:

Odpowiedzi:
A. \begin{cases}y=1980-x\\0.95x=40\cdot0.79y\end{cases} B. \begin{cases}x=1980-y\\0.40x=40\cdot0.79y\end{cases}
C. \begin{cases}x+y=1980\\0.79x=40\cdot0.95y\end{cases} D. \begin{cases}x+y=1980\\0.60x=40\cdot0.21y\end{cases}
Zadanie 10.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11988  
Podpunkt 10.1 (1 pkt)
 Na rysunku, w kartezjańskim układzie współrzędnych (x, y), przedstawiono dwie proste równoległe, które są interpretacją geometryczną jednego z poniższych układów równań A–D.

Układem równań, którego interpretację geometryczną przedstawiono na rysunku, jest:

Odpowiedzi:
A. \begin{cases}y=-\frac{1}{4}x+8\\y=-\frac{1}{4}x+5\end{cases} B. \begin{cases}y=-\frac{1}{4}x+8\\y=-\frac{1}{4}x-5\end{cases}
C. \begin{cases}y=-\frac{1}{4}x+8\\y=4x+5\end{cases} D. \begin{cases}y=\frac{1}{4}x+8\\y=\frac{1}{4}x-5\end{cases}
Zadanie 11.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11989  
Podpunkt 11.1 (1 pkt)
 Funkcja liniowa f jest określona wzorem f(x)=(3k+8)x+k-4, gdzie k\in\mathbb{R}.

Funkcja f jest malejąca dla każdej liczby k należącej do przedziału:

Odpowiedzi:
A. \left(-\infty,\frac{4}{3}\right) B. \left(-\infty,\frac{16}{3}\right)
C. \left(-\infty,-\frac{8}{3}\right) D. \left(-\infty,\frac{8}{3}\right)
E. \left(-\frac{16}{3},+\infty\right) F. \left(\frac{16}{3},+\infty\right)
Zadanie 12.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11990  
Podpunkt 12.1 (1 pkt)
 Funkcje liniowe f oraz g, określone wzorami f(x)=2x+6 oraz g(x)=ax+3, mają to samo miejsce zerowe.

Współczynnik a we wzorze funkcji g jest równy:

Odpowiedzi:
A. -\frac{4}{3} B. 1
C. -\frac{3}{2} D. -\frac{3}{4}
E. \frac{4}{3} F. -\frac{1}{2}
G. \frac{3}{4} H. \frac{3}{2}
Zadanie 13.  (5 pkt) [ Dodaj do testu ]  Numer zadania: pp-30412  
Podpunkt 13.1 (1 pkt)
 Parabola w kartezjańskim układzie współrzędnych (x, y), która jest wykresem funkcji kwadratowej y=f(x) przechodzi przez punkt (5,0) i ma wierzchołek w punkcie (8,5).

Zbiorem wszystkich rozwiązań nierówności f(x)\geqslant 0 jest przedział [x_1,x_2]. Wówczas:

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Podpunkt 13.2 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem:
Odpowiedzi:
A. f(x)=-(x-8)^2+5 B. f(x)=(x+8)^2+5
C. f(x)=-(x-8)^2-5 D. f(x)=(x-8)^2+5
E. f(x)=-(x+8)^2+5 F. f(x)=-(x+8)^2-5
Podpunkt 13.3 (1 pkt)
 Dla funkcji f prawdziwa jest równość:
Odpowiedzi:
A. f(3)=f(15) B. f(4)=f(18)
C. f(1)=f(13) D. f(1)=f(14)
E. f(2)=f(15) F. f(2)=f(14)
Podpunkt 13.4 (2 pkt)
 Funkcje kwadratowe g i h są określone za pomocą funkcji f następująco: g(x)=f(x+3) oraz h(x)=f(-x).

Oceń poprawność poniższych zdań:

Odpowiedzi:
T/N : wykres funkcji h jest symetryczny do wykresu funkcji f względem osi Oy T/N : wykres funkcji g jest przesunięty w stosunku do wykresu funkcji f o 3 jednostek w lewo
Zadanie 14.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11991  
Podpunkt 14.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n+6) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : ciąg (a_n) jest monotoniczny T/N : różnica a_{3}-a_2 jest równa -17
Zadanie 15.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11992  
Podpunkt 15.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m+15) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. malejący B. rosnący
Podpunkt 15.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. -10 B. -8
C. -2 D. -9
E. -6 F. -3
Zadanie 16.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21102  
Podpunkt 16.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy 14, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa 660.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 17.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21103  
Podpunkt 17.1 (2 pkt)
 W kartezjańskim układzie współrzędnych (x,y) zaznaczono kąt skierowany w standardowym położeniu o mierze \alpha taki, że \tan\alpha=-9 oraz 90^{\circ}\lessdot \alpha\lessdot 180^{\circ}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : \sin\alpha=-9\cos\alpha T/N : \sin\alpha=\frac{1}{9}\cos\alpha
T/N : \sin\alpha\cdot\cos\alpha\lessdot 0 T/N : \sin\alpha > \cos\alpha
Zadanie 18.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11993  
Podpunkt 18.1 (1 pkt)
 Liczba \sin^359^{\circ}+\cos^259^{\circ}\cdot\cos31^{\circ} jest równa:
Odpowiedzi:
A. \tan59^{\circ} B. \sin^259^{\circ}
C. \cos59^{\circ} D. \sin31^{\circ}
E. \sin59^{\circ} F. \sin59^{\circ} \cdot \cos59^{\circ}
Zadanie 19.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11994  
Podpunkt 19.1 (1 pkt)
 Dany jest trójkąt KLM, w którym |KM|=a, |LM|=b oraz a\neq b. Dwusieczna kąta KML przecina bok KL w punkcie N takim, że |KN|=c, |NL|=d oraz |MN|=e (zobacz rysunek).

W trójkącie KLM prawdziwa jest równość:

Odpowiedzi:
A. a\cdot c=b\cdot d B. a\cdot b=e\cdot e
C. a\cdot d=b\cdot c D. a\cdot b=c\cdot d
Zadanie 20.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11995  
Podpunkt 20.1 (1 pkt)
 Dany jest równoległobok o bokach długości 6 i 8 oraz o kącie między nimi o mierze 120^{\circ}.

Pole powierzchni tego równoległoboku jest równe:

Odpowiedzi:
A. 16\sqrt{3} B. \frac{72\sqrt{3}}{5}
C. 12\sqrt{3} D. 24\sqrt{3}
E. 32\sqrt{3} F. 30\sqrt{3}
Zadanie 21.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11996  
Podpunkt 21.1 (1 pkt)
 W trójkącie ABC, wpisanym w okrąg o środku w punkcie S, kąt ACB ma miarę 51^{\circ} (zobacz rysunek).

Miara kąta ostrego BAS jest równa:

Odpowiedzi:
A. 44^{\circ} B. 43^{\circ}
C. 39^{\circ} D. 37^{\circ}
E. 35^{\circ} F. 42^{\circ}
Zadanie 22.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11997  
Podpunkt 22.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x,y) proste k oraz l są określone równaniami k:y=(m+9)x+7 i l:y=-2x+7

Proste k oraz l są prostopadłe, gdy liczba m jest równa:

Odpowiedzi:
A. -\frac{15}{2} B. 10
C. -\frac{17}{2} D. -\frac{21}{2}
E. -\frac{11}{2} F. -6
Zadanie 23.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21104  
Podpunkt 23.1 (2 pkt)
 W kartezjańskim układzie współrzędnych (x,y) dany jest równoległobok ABCD, w którym A=(6,-6) oraz B=(3,-4). Przekątne AC oraz BD tego równoległoboku przecinają się w punkcie P=\left(1,-\frac{7}{2}\right).

Oblicz długość boku BC tego równoległoboku.

Odpowiedź:
|BC|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 24.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-21105  
Podpunkt 24.1 (1 pkt)
 Wysokość graniastosłupa prawidłowego sześciokątnego jest równa 6 (zobacz rysunek). Pole podstawy tego graniastosłupa jest równe \frac{363\sqrt{3}}{2}.

11Pole powierzchni jednej ściany bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. 44\sqrt{3} B. 66
C. 44 D. 88
E. 66\sqrt{3} F. 132
Podpunkt 24.2 (1 pkt)
 Kąt nachylenia najdłuższej przekątnej graniastosłupa prawidłowego sześciokątnego do płaszczyzny jego podstawy jest zaznaczony na rysunku:
Odpowiedzi:
A. B B. A
C. D D. C
Zadanie 25.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11998  
Podpunkt 25.1 (1 pkt)
 Ostrosłup F_1 jest podobny do ostrosłupa F_2. Objętość ostrosłupa F_1 jest równa 20. Objętość ostrosłupa F_2 jest równa 160.

Stosunek pola powierzchni całkowitej ostrosłupa F_2 do pola powierzchni całkowitej ostrosłupa F_1 jest równy:

Odpowiedź:
P_{F_2}:P_{F_1}= (wpisz liczbę całkowitą)
Zadanie 26.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11999  
Podpunkt 26.1 (1 pkt)
 Rozważamy wszystkie kody n=6cyfrowe utworzone tylko z cyfr 0, 1, 2, 4, 7, 8, przy czym w każdym kodzie każda z tych cyfr występuje dokładnie jeden raz.

Liczba wszystkich takich kodów jest równa:

Odpowiedzi:
A. 768 B. 744
C. 120 D. 720
E. 5040 F. 732
Zadanie 27.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12000  
Podpunkt 27.1 (1 pkt)
 Średnia arytmetyczna trzech liczb: a, b c jest równa 23.

Średnia arytmetyczna sześciu liczb: a, a, b, b, c, c jest równa:

Odpowiedzi:
A. 49 B. 23
C. 69 D. 71
E. 25 F. 46
Zadanie 28.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-12001  
Podpunkt 28.1 (1 pkt)
 Na diagramie przedstawiono wyniki sprawdzianu z matematyki w pewnej klasie maturalnej. Na osi poziomej podano oceny, które uzyskali uczniowie tej klasy, a na osi pionowej podano liczbę uczniów, którzy otrzymali daną ocenę.

Mediana ocen uzyskanych z tego sprawdzianu przez uczniów tej klasy jest równa:

Odpowiedzi:
A. 4 B. 3,5
C. 4,25 D. 3
E. 3,75 F. 3,25
Zadanie 29.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-21106  
Podpunkt 29.1 (1 pkt)
 Dany jest n=7 cyfrowy zbiór K=\{0,1,2,3,4,7,8\}. Wylosowanie każdej liczby z tego zbioru jest jednakowo prawdopodobne. Ze zbioru K losujemy ze zwracaniem kolejno dwa razy po jednej liczbie i zapisujemy je w kolejności losowania.

Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że suma wylosowanych liczb jest liczbą parzystą.

Odpowiedzi:
A. \frac{37}{42} B. \frac{29}{49}
C. \frac{17}{49} D. \frac{5}{7}
E. \frac{11}{14} F. \frac{25}{49}
Zadanie 30.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30413  
Podpunkt 30.1 (4 pkt)
 W schronisku dla zwierząt, na płaskiej powierzchni, należy zbudować ogrodzenie z siatki wydzielające trzy identyczne wybiegi o wspólnych ścianach wewnętrznych. Podstawą każdego z tych trzech wybiegów jest prostokąt (jak pokazano na rysunku).
Do wykonania tego ogrodzenia należy zużyć 116 metrów bieżących siatki.
Oblicz wymiary x oraz y jednego wybiegu, przy których suma pól podstaw tych trzech wybiegów będzie największa. W obliczeniach pomiń szerokość wejścia na każdy z wybiegów.

Podaj liczby x i y.

Odpowiedzi:
x= (dwie liczby całkowite)

y= (dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm