Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd arkusza : lo2@cke-2024-05-pp

Zadanie 1.  1 pkt ⋅ Numer: pp-11980 ⋅ Poprawnie: 338/546 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest nierówność |x-1|\leqslant 3.

Na którym rysunku poprawnie zaznaczono na osi liczbowej zbiór wszystkich liczb rzeczywistych spełniających powyższą nierówność?

Odpowiedzi:
A. C B. B
C. D D. A
Zadanie 2.  1 pkt ⋅ Numer: pp-11981 ⋅ Poprawnie: 788/868 [90%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba \left(\frac{1}{9}\right)^{2}\cdot 27^{7} jest równa:
Odpowiedzi:
A. 3^{13} B. 3^{17}
C. 3^{15} D. 3^{14}
E. 3^{18} F. 3^{20}
Zadanie 3.  1 pkt ⋅ Numer: pp-11982 ⋅ Poprawnie: 627/702 [89%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Liczba \log_{\sqrt{3}}{9} jest równa:
Odpowiedzi:
A. 5 B. 8
C. 3 D. 4
E. 6 F. 7
Zadanie 4.  1 pkt ⋅ Numer: pp-11983 ⋅ Poprawnie: 571/653 [87%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla każdej liczby rzeczywistej a i dla każdej liczby rzeczywistej b wartość wyrażenia (2a+b)^2-(2a-b)^2 jest równa wartości wyrażenia:
Odpowiedzi:
A. 2b^2 B. 16ab
C. -8ab D. 8ab
Zadanie 5.  1 pkt ⋅ Numer: pp-11984 ⋅ Poprawnie: 295/567 [52%] Rozwiąż 
Podpunkt 5.1 (0.2 pkt)
 Zbiorem wszystkich rozwiązań nierówności -4-\frac{3}{2}x\lessdot \frac{2}{3}-x jest przedział postaci:
Odpowiedzi:
A. (a, +\infty) B. (-\infty, a\rangle
C. (-\infty, a) D. \langle a, +\infty)
Podpunkt 5.2 (0.8 pkt)
 Liczba a jest równa:
Odpowiedzi:
A. -\frac{56}{3} B. -\frac{140}{9}
C. -7 D. -\frac{28}{3}
E. -\frac{112}{9} F. -\frac{28}{5}
Zadanie 6.  1 pkt ⋅ Numer: pp-11985 ⋅ Poprawnie: 393/551 [71%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Równanie \frac{x-5}{(x-6)(x+3)}=0 ma w zbiorze liczb rzeczywistych dokładnie:
Odpowiedzi:
A. jedno rozwiązanie B. trzy rozwiązania
C. zero rozwiązań D. dwa rozwiązania
Zadanie 7.  1 pkt ⋅ Numer: pp-11986 ⋅ Poprawnie: 352/578 [60%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dany jest wielomian W(x)=2x^3+22x^2+60x.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba -5 jest pierwiastkiem wielomianu W(x) T/N : liczba -6 jest pierwiastkiem wielomianu W(x)
Zadanie 8.  3 pkt ⋅ Numer: pp-21101 ⋅ Poprawnie: 284/523 [54%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Rozwiąż równanie x^3+3x^2-3x-9=0.

Podaj rozwiązanie całkowite tego równania.

Odpowiedź:
x_{\in\mathbb{Z}}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj ujemne nie całkowite rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.3 (1 pkt)
 Podaj dodatnie niecałkowite rozwiązanie tego równania.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11987 ⋅ Poprawnie: 226/572 [39%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W październiku 2022 roku założono dwa sady, w których posadzono łącznie 1640 drzew. Po roku stwierdzono, że uschło 5\% drzew w pierwszym sadzie i 22\% drzew w drugim sadzie. Uschnięte drzewa usunięto, a nowych nie dosadzano. Liczba drzew, które pozostały w drugim sadzie, stanowiła 70\% liczby drzew, które pozostały w pierwszym sadzie.
Niech x oraz y oznaczają liczby drzew posadzonych – odpowiednio – w pierwszym i drugim sadzie.

Układem równań, którego poprawne rozwiązanie prowadzi do obliczenia liczby x drzew posadzonych w pierwszym sadzie oraz liczby y drzew posadzonych w drugim sadzie, jest:

Odpowiedzi:
A. \begin{cases}x=1640-y\\0.70x=70\cdot0.78y\end{cases} B. \begin{cases}x+y=1640\\0.78x=70\cdot0.95y\end{cases}
C. \begin{cases}y=1640-x\\0.95x=70\cdot0.78y\end{cases} D. \begin{cases}x+y=1640\\0.30x=70\cdot0.22y\end{cases}
Zadanie 10.  1 pkt ⋅ Numer: pp-11988 ⋅ Poprawnie: 508/738 [68%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Na rysunku, w kartezjańskim układzie współrzędnych (x, y), przedstawiono dwie proste równoległe, które są interpretacją geometryczną jednego z poniższych układów równań A–D.

Układem równań, którego interpretację geometryczną przedstawiono na rysunku, jest:

Odpowiedzi:
A. \begin{cases}y=-\frac{1}{3}x+7\\y=3x+1\end{cases} B. \begin{cases}y=-\frac{1}{3}x+7\\y=-\frac{1}{3}x+1\end{cases}
C. \begin{cases}y=-\frac{1}{3}x+7\\y=-\frac{1}{3}x-1\end{cases} D. \begin{cases}y=\frac{1}{3}x+7\\y=\frac{1}{3}x-1\end{cases}
Zadanie 11.  1 pkt ⋅ Numer: pp-11989 ⋅ Poprawnie: 449/654 [68%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja liniowa f jest określona wzorem f(x)=(-3k-6)x+k-4, gdzie k\in\mathbb{R}.

Funkcja f jest malejąca dla każdej liczby k należącej do przedziału:

Odpowiedzi:
A. \left(-1,+\infty\right) B. \left(-2,+\infty\right)
C. \left(-\infty,3\right) D. \left(-3,+\infty\right)
E. \left(-\infty,-\frac{4}{3}\right) F. \left(2,+\infty\right)
Zadanie 12.  1 pkt ⋅ Numer: pp-11990 ⋅ Poprawnie: 451/585 [77%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcje liniowe f oraz g, określone wzorami f(x)=-2x-5 oraz g(x)=ax+3, mają to samo miejsce zerowe.

Współczynnik a we wzorze funkcji g jest równy:

Odpowiedzi:
A. \frac{8}{5} B. -\frac{3}{5}
C. \frac{12}{5} D. \frac{9}{10}
E. \frac{6}{5} F. -\frac{8}{5}
G. -\frac{9}{10} H. \frac{9}{5}
Zadanie 13.  5 pkt ⋅ Numer: pp-30412 ⋅ Poprawnie: 110/587 [18%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Parabola w kartezjańskim układzie współrzędnych (x, y), która jest wykresem funkcji kwadratowej y=f(x) przechodzi przez punkt (-4,0) i ma wierzchołek w punkcie (-1,5).

Zbiorem wszystkich rozwiązań nierówności f(x)\geqslant 0 jest przedział [x_1,x_2]. Wówczas:

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Podpunkt 13.2 (1 pkt)
 Funkcja kwadratowa f jest określona wzorem:
Odpowiedzi:
A. f(x)=-(x+1)^2-5 B. f(x)=-(x+1)^2+5
C. f(x)=(x+1)^2+5 D. f(x)=-(x-1)^2+5
E. f(x)=-(x-1)^2-5 F. f(x)=(x-1)^2+5
Podpunkt 13.3 (1 pkt)
 Dla funkcji f prawdziwa jest równość:
Odpowiedzi:
A. f(4)=f(-8) B. f(5)=f(-6)
C. f(5)=f(-7) D. f(6)=f(-6)
E. f(4)=f(-7) F. f(7)=f(-3)
Podpunkt 13.4 (2 pkt)
 Funkcje kwadratowe g i h są określone za pomocą funkcji f następująco: g(x)=f(x+2) oraz h(x)=f(-x).

Oceń poprawność poniższych zdań:

Odpowiedzi:
T/N : wykres funkcji g jest przesunięty w stosunku do wykresu funkcji f o 2 jednostek w lewo T/N : wykres funkcji h jest symetryczny do wykresu funkcji f względem osi Oy
Zadanie 14.  1 pkt ⋅ Numer: pp-11991 ⋅ Poprawnie: 370/571 [64%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Ciąg (a_n) jest określony wzorem a_n=(-1)^n\cdot (n-5) dla każdej liczby naturalnej n\geqslant 1.

Oceń prawdziwość poniższych stwierdzeń:

Odpowiedzi:
T/N : wyraz a_2 jest mniejszy od wyrazu a_{3} T/N : ciąg (a_n) zawiera wyraz dodatni i wyraz ujemny
Zadanie 15.  1 pkt ⋅ Numer: pp-11992 ⋅ Poprawnie: 459/599 [76%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 Trzywyrazowy ciąg (12, 6, 2m-13) jest geometryczny.

Ten ciąg jest:

Odpowiedzi:
A. rosnący B. malejący
Podpunkt 15.2 (0.8 pkt)
 Liczba m jest równa:
Odpowiedzi:
A. 6 B. 10
C. 4 D. 7
E. 5 F. 8
Zadanie 16.  2 pkt ⋅ Numer: pp-21102 ⋅ Poprawnie: 368/596 [61%] Rozwiąż 
Podpunkt 16.1 (2 pkt)
 Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej n\geqslant 1. Trzeci wyraz tego ciągu jest równy -12, a suma piętnastu początkowych kolejnych wyrazów tego ciągu jest równa -555.

Oblicz różnicę tego ciągu.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 17.  2 pkt ⋅ Numer: pp-21103 ⋅ Poprawnie: 188/503 [37%] Rozwiąż 
Podpunkt 17.1 (2 pkt)
 W kartezjańskim układzie współrzędnych (x,y) zaznaczono kąt skierowany w standardowym położeniu o mierze \alpha taki, że \tan\alpha=-3 oraz 90^{\circ}\lessdot \alpha\lessdot 180^{\circ}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : \sin\alpha\lessdot \cos\alpha T/N : \sin\alpha\cdot\cos\alpha\lessdot 0
T/N : \sin\alpha=-\frac{1}{3}\cos\alpha T/N : \sin\alpha\lessdot 0
Zadanie 18.  1 pkt ⋅ Numer: pp-11993 ⋅ Poprawnie: 318/548 [58%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Liczba \sin^325^{\circ}+\cos^225^{\circ}\cdot\sin25^{\circ} jest równa:
Odpowiedzi:
A. \sin^225^{\circ} B. \sin25^{\circ}
C. \tan25^{\circ} D. \sin65^{\circ}
E. \sin25^{\circ} \cdot \cos25^{\circ} F. \cos25^{\circ}
Zadanie 19.  1 pkt ⋅ Numer: pp-11994 ⋅ Poprawnie: 332/522 [63%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Dany jest trójkąt KLM, w którym |KM|=a, |LM|=b oraz a\neq b. Dwusieczna kąta KML przecina bok KL w punkcie N takim, że |KN|=c, |NL|=d oraz |MN|=e (zobacz rysunek).

W trójkącie KLM prawdziwa jest równość:

Odpowiedzi:
A. a\cdot b=c\cdot d B. a\cdot c=b\cdot d
C. a\cdot b=e\cdot e D. a\cdot d=b\cdot c
Zadanie 20.  1 pkt ⋅ Numer: pp-11995 ⋅ Poprawnie: 410/567 [72%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Dany jest równoległobok o bokach długości 2 i 4 oraz o kącie między nimi o mierze 120^{\circ}.

Pole powierzchni tego równoległoboku jest równe:

Odpowiedzi:
A. 5\sqrt{3} B. 4\sqrt{3}
C. \frac{12\sqrt{3}}{5} D. \frac{8\sqrt{3}}{3}
E. 2\sqrt{3} F. \frac{16\sqrt{3}}{3}
Zadanie 21.  1 pkt ⋅ Numer: pp-11996 ⋅ Poprawnie: 331/555 [59%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 W trójkącie ABC, wpisanym w okrąg o środku w punkcie S, kąt ACB ma miarę 41^{\circ} (zobacz rysunek).

Miara kąta ostrego BAS jest równa:

Odpowiedzi:
A. 45^{\circ} B. 52^{\circ}
C. 53^{\circ} D. 49^{\circ}
E. 54^{\circ} F. 47^{\circ}
Zadanie 22.  1 pkt ⋅ Numer: pp-11997 ⋅ Poprawnie: 368/549 [67%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 W kartezjańskim układzie współrzędnych (x,y) proste k oraz l są określone równaniami k:y=(m-5)x+7 i l:y=-2x+7

Proste k oraz l są prostopadłe, gdy liczba m jest równa:

Odpowiedzi:
A. \frac{13}{2} B. \frac{11}{2}
C. 8 D. \frac{17}{2}
E. -4 F. \frac{7}{2}
Zadanie 23.  2 pkt ⋅ Numer: pp-21104 ⋅ Poprawnie: 280/661 [42%] Rozwiąż 
Podpunkt 23.1 (2 pkt)
 W kartezjańskim układzie współrzędnych (x,y) dany jest równoległobok ABCD, w którym A=(-5,-6) oraz B=(3,4). Przekątne AC oraz BD tego równoległoboku przecinają się w punkcie P=\left(-\frac{5}{2},-3\right).

Oblicz długość boku BC tego równoległoboku.

Odpowiedź:
|BC|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 24.  2 pkt ⋅ Numer: pp-21105 ⋅ Poprawnie: 198/488 [40%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Wysokość graniastosłupa prawidłowego sześciokątnego jest równa 6 (zobacz rysunek). Pole podstawy tego graniastosłupa jest równe 54\sqrt{3}.

6Pole powierzchni jednej ściany bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. 72 B. 24\sqrt{3}
C. 36\sqrt{3} D. 48
E. 36 F. 24
Podpunkt 24.2 (1 pkt)
 Kąt nachylenia najdłuższej przekątnej graniastosłupa prawidłowego sześciokątnego do płaszczyzny jego podstawy jest zaznaczony na rysunku:
Odpowiedzi:
A. A B. C
C. D D. B
Zadanie 25.  1 pkt ⋅ Numer: pp-11998 ⋅ Poprawnie: 164/485 [33%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Ostrosłup F_1 jest podobny do ostrosłupa F_2. Objętość ostrosłupa F_1 jest równa 4. Objętość ostrosłupa F_2 jest równa 32.

Stosunek pola powierzchni całkowitej ostrosłupa F_2 do pola powierzchni całkowitej ostrosłupa F_1 jest równy:

Odpowiedź:
P_{F_2}:P_{F_1}= (wpisz liczbę całkowitą)
Zadanie 26.  1 pkt ⋅ Numer: pp-11999 ⋅ Poprawnie: 521/650 [80%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Rozważamy wszystkie kody n=3cyfrowe utworzone tylko z cyfr 0, 4, 7, przy czym w każdym kodzie każda z tych cyfr występuje dokładnie jeden raz.

Liczba wszystkich takich kodów jest równa:

Odpowiedzi:
A. 18 B. 24
C. 2 D. 54
E. 6 F. 30
Zadanie 27.  1 pkt ⋅ Numer: pp-12000 ⋅ Poprawnie: 468/599 [78%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Średnia arytmetyczna trzech liczb: a, b c jest równa 16.

Średnia arytmetyczna sześciu liczb: a, a, b, b, c, c jest równa:

Odpowiedzi:
A. 48 B. 16
C. 32 D. 35
E. 50 F. 18
Zadanie 28.  1 pkt ⋅ Numer: pp-12001 ⋅ Poprawnie: 415/604 [68%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Na diagramie przedstawiono wyniki sprawdzianu z matematyki w pewnej klasie maturalnej. Na osi poziomej podano oceny, które uzyskali uczniowie tej klasy, a na osi pionowej podano liczbę uczniów, którzy otrzymali daną ocenę.

Mediana ocen uzyskanych z tego sprawdzianu przez uczniów tej klasy jest równa:

Odpowiedzi:
A. 4,25 B. 3,75
C. 4 D. 3,5
E. 3 F. 3,25
Zadanie 29.  1 pkt ⋅ Numer: pp-21106 ⋅ Poprawnie: 348/569 [61%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Dany jest n=5 cyfrowy zbiór K=\{0,1,4,5,7\}. Wylosowanie każdej liczby z tego zbioru jest jednakowo prawdopodobne. Ze zbioru K losujemy ze zwracaniem kolejno dwa razy po jednej liczbie i zapisujemy je w kolejności losowania.

Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że suma wylosowanych liczb jest liczbą parzystą.

Odpowiedzi:
A. \frac{5}{4} B. \frac{1}{5}
C. \frac{13}{25} D. \frac{21}{20}
E. \frac{17}{25} F. \frac{9}{25}
Zadanie 30.  4 pkt ⋅ Numer: pp-30413 ⋅ Poprawnie: 122/534 [22%] Rozwiąż 
Podpunkt 30.1 (4 pkt)
 W schronisku dla zwierząt, na płaskiej powierzchni, należy zbudować ogrodzenie z siatki wydzielające trzy identyczne wybiegi o wspólnych ścianach wewnętrznych. Podstawą każdego z tych trzech wybiegów jest prostokąt (jak pokazano na rysunku).
Do wykonania tego ogrodzenia należy zużyć 76 metrów bieżących siatki.
Oblicz wymiary x oraz y jednego wybiegu, przy których suma pól podstaw tych trzech wybiegów będzie największa. W obliczeniach pomiń szerokość wejścia na każdy z wybiegów.

Podaj liczby x i y.

Odpowiedzi:
x= (dwie liczby całkowite)

y= (dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm