Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-02-zbio-licz-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10027 ⋅ Poprawnie: 194/349 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Dane są zbiory A i B takie, że B-A=\emptyset.

Wówczas:

Odpowiedzi:
A. A\cup B=B B. B\subset A
C. A\subset B D. A\cap B=A\cup B
Zadanie 2.  1 pkt ⋅ Numer: pp-10042 ⋅ Poprawnie: 126/178 [70%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Znajdź najmniejszą liczbę w zbiorze A=\{k: k \in \mathbb{Z} \wedge k\lessdot 15 \wedge \text{ (k - liczba pierwsza)}\} .
Odpowiedź:
min= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10212 ⋅ Poprawnie: 118/137 [86%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Oblicz sumę wszystkich liczb naturalnych dwucyfrowych podzielnych przez 9.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-10206 ⋅ Poprawnie: 65/143 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Przedział \langle 1, 2^{2032}\rangle zawiera m liczb całkowitych, a przedział \langle 2^{2032},2^{2033}\rangle zawiera n liczb całkowitych.

Oblicz m-n.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-10226 ⋅ Poprawnie: 118/235 [50%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Nierówność 0,(12)\leqslant x \lessdot 0,(3) spełnia:
Odpowiedzi:
A. \frac{1}{11} B. 0,34
C. \frac{1}{3} D. \frac{7}{33}
Zadanie 6.  1 pkt ⋅ Numer: pp-10064 ⋅ Poprawnie: 198/386 [51%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Oblicz wartość wyrażenia:
w= \frac {3:1\frac{1}{2}+16} {\left(6\frac{1}{2}-5\frac{3}{5}\right):\frac{3}{5}}-\frac{8}{3} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10056 ⋅ Poprawnie: 156/203 [76%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Oblicz wartość wyrażenia:
w= \frac { 1\frac{2}{3}\cdot 10\cdot \left( 7\frac{1}{4}+4\frac{1}{6}-5\frac{5}{12} \right) } { -6\frac{2}{3}\cdot 5\frac{1}{2}-6\frac{2}{3}\cdot 4\frac{1}{2} } .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10010 ⋅ Poprawnie: 336/504 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Przedział liczbowy \langle 8,10) można zapisać jako zbiór:
Odpowiedzi:
A. \{x\in\mathbb{C}: x \lessdot 10\} B. \{x\in\mathbb{R}: 8\leqslant x \lessdot 10\}
C. \{x\in\mathbb{N}: 8\leqslant x \lessdot 10\} D. \{x\in\mathbb{R}: 8 \lessdot x \leqslant 10\}
Zadanie 9.  1 pkt ⋅ Numer: pp-10015 ⋅ Poprawnie: 173/302 [57%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Dane są zbiory: A=\langle -7,6) oraz B=(-11,-3\rangle \cup \langle 2,10).

Ustal ile liczb całkowitych należy do zbioru B-A.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10023 ⋅ Poprawnie: 228/307 [74%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Oblicz sumę wszystkich rozwiązań równania \frac{x^2-16}{x+4}=0.
Odpowiedź:
suma= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10179 ⋅ Poprawnie: 88/169 [52%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Równanie -12-5x=4(x-a) z niewiadomą x ma ujemne rozwiązanie, gdy a\in(-\infty,p).

Podaj p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10163 ⋅ Poprawnie: 294/368 [79%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Średnia wieku rodziców Ani to 38 lat, przy czym ojciec jest o 6 lat starszy od matki. Średnia wieku Ani i jej ojca wynosi 33 lat.

Ile lat ma Ania?

Odpowiedź:
Ania= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10083 ⋅ Poprawnie: 241/352 [68%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wyznacz najmniejszą liczbę spełniajacą nierówność \frac{x-1}{2}\leqslant \frac{2x-2}{3}+\frac{1}{4}.
Odpowiedź:
x_{min}=
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10077 ⋅ Poprawnie: 94/136 [69%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Liczba x spełnia nierówność \frac{11}{x} > 11. Wynika z tego, że:
Odpowiedzi:
A. x\in(-\infty,0)\cup (1,+\infty) B. x\in(1,+\infty)
C. x\in(0,1) D. x\in(-\infty,0)\cup (0,1)
Zadanie 15.  1 pkt ⋅ Numer: pp-11426 ⋅ Poprawnie: 268/386 [69%] Rozwiąż 
Podpunkt 15.1 (0.2 pkt)
 Zbiorem wszystkich rozwiązań nierówności \frac{5-2x}{2} > \frac{1}{3} jest pewien przedział liczbowy.

Przedział ten ma postać:

Odpowiedzi:
A. (p, q) B. (-\infty, p)
C. (-\infty, p\rangle D. \langle p, +\infty)
E. (p, +\infty) F. \langle p, q\rangle
Podpunkt 15.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 16.  1 pkt ⋅ Numer: pp-10113 ⋅ Poprawnie: 190/262 [72%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 Promień koła zwiększono o 80\%. Pole powierzchni tego koła wzrosło o ........\%.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10137 ⋅ Poprawnie: 139/147 [94%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Czterech przyjaciół zarejestrowało spółkę. Wysokość udziałów poszczególnych wspólników w kapitale zakładowym spółki wyraża stosunek 14:2:1:3. Udział największego inwestora stanowi ........\% wszystkich udziałów.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 18.  1 pkt ⋅ Numer: pp-11529 ⋅ Poprawnie: 46/91 [50%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Pensja pana Adama jest o 21\% niższa od średniej krajowej, a pensja pani Ewy jest o 58\% wyższa od średniej krajowej. Wynika z tego, że pensja pani Ewy jest wyższa od pensji pana Adama o ........\%.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 19.  1 pkt ⋅ Numer: pp-10129 ⋅ Poprawnie: 151/186 [81%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Wyznacz liczbę, której 8\% równa się 14.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10158 ⋅ Poprawnie: 154/182 [84%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Liczba b to 155\% liczby a.

Wskaż zdanie prawdziwe:

Odpowiedzi:
A. b=a+55\% B. b=155\cdot a
C. b=a+1,55\cdot a D. b=1,55\cdot a


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm