Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10410 ⋅ Poprawnie: 276/320 [86%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie 25^{11}+3\cdot 25^4-5^9+2\cdot 5^8 w postaci potęgi o podstawie 5.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10367 ⋅ Poprawnie: 397/505 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oceń prawdziwość poniższych równości:
Odpowiedzi:
T/N : -\sqrt[3]{4}=\sqrt[3]{-4} T/N : \sqrt{(-4)^2}=-4
Zadanie 3.  1 pkt ⋅ Numer: pp-10338 ⋅ Poprawnie: 316/445 [71%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie \left(\frac{10-\sqrt{10}}{\sqrt{10}}\right)^2 w najprostszej postaci m+n\sqrt{k}, gdzie m,n,k\in\mathbb{Z}.
Odpowiedź:
m+n\sqrt{k}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10408 ⋅ Poprawnie: 975/1545 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przedstaw wyrażenie \frac{\left(\frac{1}{3}\right)^{-6}\cdot 3^3\cdot \sqrt{3}} {3^{13}} w postaci potęgi o podstawie 3.

Podaj wykładnik tej potęgi.

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11584 ⋅ Poprawnie: 89/111 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\log_{2} \left[ \log_{2}{\left(\log_{4}{16}\right)} \right] .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba m+n\sqrt{6}, gdzie m,n\in\mathbb{Z}, spełnia równanie 3x-31=\sqrt{6}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20862 ⋅ Poprawnie: 12/152 [7%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 (2 pkt) O liczbie n wiadomo, że jest podzielna przez 3. Wykaż, że liczba dodatnia m=n^3-9n jest podzielna przez 6.

Podaj największą potęgę liczby 3, która dzieli liczbę dodatnią m.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 367/500 [73%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Oblicz wartość wyrażenia w=\frac{\frac{1}{5^2}\cdot \sqrt[3]{5^3}\cdot 5^{\frac{1}{2}}}{\sqrt{5}\cdot 5^{-2}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20131 ⋅ Poprawnie: 43/121 [35%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dane są liczby x=\log{5}, y=\log{3}. Logarytm dziesiętny z liczby 675 jest równy m\cdot x+n\cdot y.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj liczbę n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 67/111 [60%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 120 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością 72 km/h.

Jaka była średnia prędkość autobusu na całej trasie?

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm