Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10432 ⋅ Poprawnie: 222/371 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie 3^{20}+9^{9}-3^{18}+9^{7}-3^{14}+9^{10}+3^{20} w postaci potęgi o podstawie 3.

Podaj wykładnik tej potęgi.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10350 ⋅ Poprawnie: 147/170 [86%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{(\sqrt{8}-\sqrt{2})^2}{(\sqrt{8}+\sqrt{2})^2} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11500 ⋅ Poprawnie: 791/1026 [77%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wartość wyrażenia: \left(\sqrt{18}-5\sqrt{2}\right)^2 w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
a\sqrt{b}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10429 ⋅ Poprawnie: 147/199 [73%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Najmniejszą z liczb a=4^{-\frac{1}{2}}, b=0.0016^{\frac{1}{4}}, c=0.0001^{\frac{1}{2}}, d=100^{-\frac{3}{2}} jest:
Odpowiedzi:
A. a B. c
C. b D. d
Zadanie 5.  1 pkt ⋅ Numer: pp-10287 ⋅ Poprawnie: 299/331 [90%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=2\log_{4}{8}-\log_{4}{4}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20440 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dane sa liczby: x=\frac{5,2\cdot 10^{-6}\cdot 5,1\cdot 10^8} {10\cdot 1,7\cdot 10^4\cdot 1,3\cdot 10^{-3}} oraz y=\left(\left(1\frac{2}{3}\right)^{-9}:\left(8\frac{1}{3}\right)^{-4}\right)\cdot \left(5\frac{2}{5}\right)^{-2} .

Oblicz x\cdot y^{-1}.

Odpowiedź:
x\cdot y^{-1}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20835 ⋅ Poprawnie: 63/227 [27%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Doprowadź wyrażenie \left(x-2y\right)^2-\left(2x+y\right)\left(y-2x\right)-\left(3x-2y\right)^2-4xy do najprostszej postaci, a następnie oblicz jego wartość dla x=3\sqrt{5} i y=1-2\sqrt{5}.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20144 ⋅ Poprawnie: 145/204 [71%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Oblicz wartośc wyrażenia w=\log_{2}{2\sqrt{70}}+\log_{2}{\sqrt{70}}-\log_{2}{35} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20014 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dana jest nierówność \log_{3x}{3x^3}+\log_{3x}{27x} \lessdot 3 .

Ile liczb naturalnych spełnia tę nierówność?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « « Autobus jechał ze średnią prędkością 60 km/h przez \frac{2}{9} całej trasy. Pozostałą część trasy pokonał ze średnią prędkością 80 km/h.

Oblicz średnią prędkość tego autobusu na całej trasie.

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm