Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10415 ⋅ Poprawnie: 191/241 [79%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Zapisz wartość wyrażenia
64^{30}+64^{30}+64^{30}+64^{30}
w postaci potęgi
p^k , gdzie
p,k\in\mathbb{N} i
p jest kwadratem liczby pierwszej.
Podaj wykładnik tej potęgi.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10326 ⋅ Poprawnie: 210/262 [80%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Zapisz wyrażenie
\frac{\sqrt{125}}{\sqrt[3]{625}}
w najprostszej postaci
\sqrt[m]{p} , gdzie
m,p\in\mathbb{N} .
Podaj liczby m i p .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11555 ⋅ Poprawnie: 96/128 [75%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Dane jest wyrażenie
W(x)=\frac{1}{18}\left(\frac{x+9}{x-9}-\frac{x-9}{x+9}\right) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : wartość W(x) jest określona dla każdej liczby x\in\mathbb{R}-\{-9\}
T/N : wyrażenie W(x) można przekształcić do postaci równoważnej \frac{2x}{x^2-81}
Zadanie 4. 1 pkt ⋅ Numer: pp-11404 ⋅ Poprawnie: 268/395 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zapisz wartość wyrażenia
\left(\frac{27^{-5}\cdot 8^{-9}}{4^{-9}\cdot 9^{-3}}\right)^{-2}
w postaci potęgi o podstawie
6 .
Podaj wykładnik tej potęgi.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11720 ⋅ Poprawnie: 11/15 [73%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
pH roztworu zmalało o
6 .
Ile razy zwiększyło się lub zmiejszyło się stężenie jonów wodorowych w tym roztworze?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pr-20440 ⋅ Poprawnie: 1/2 [50%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Dane sa liczby:
x=\frac{5,2\cdot 10^{-6}\cdot 5,1\cdot 10^8}
{20\cdot 1,7\cdot 10^4\cdot 1,3\cdot 10^{-3}}
oraz
y=\left(\left(1\frac{2}{3}\right)^{-9}:\left(8\frac{1}{3}\right)^{-4}\right)\cdot \left(5\frac{2}{5}\right)^{-2}
.
Oblicz x\cdot y^{-1} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20196 ⋅ Poprawnie: 45/72 [62%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Wykaż, że różnica liczby trzycyfrowej i liczby o takich samych cyfrach
zapisanych w odwrotnej kolejności jest podzielna przez
3 .
Podaj największą liczbę całkowitą, która zawsze dzieli taką różnicę.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Autobus pokonał trasę z miasta
A do miasta
B ze średnią
prędkością
132 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną
ze średnią prędkością
x km/h. Średnia prędkość tego autobusu
na całej trasie była równa
120 km/h.
Jaka była średnia prędkość autobusu w drodze powrotnej?
Odpowiedź:
v_{sr}=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20019 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wiadomo, że
x=\frac{19}{2}\log_{21}{49} .
Oblicz
3\log_{7}{3} .
Wynik zapisz w postaci \frac{ax+b}{x+d} , gdzie
a,b,d\in\mathbb{Z} .
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
Odpowiedź:
b+d=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%]
Rozwiąż
Podpunkt 10.1 (4 pkt)
« « Autobus jechał ze średnią prędkością
60 km/h przez
\frac{1}{2} całej trasy. Pozostałą część trasy pokonał ze
średnią prędkością
80 km/h.
Oblicz średnią prędkość tego autobusu na całej trasie.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż