Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10431 ⋅ Poprawnie: 524/558 [93%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia \frac{2^{9}\cdot 3^{4}\cdot 7^{5}}{21^{4}\cdot 2^{8}} .
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10352 ⋅ Poprawnie: 314/466 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Która z podanych liczb jest niewymierna:
Odpowiedzi:
A. \left(5+\sqrt{3}\right)^2 B. \sqrt[3]{2}\cdot\sqrt[3]{864}
C. 8^{\frac{2}{3}} D. \frac{\sqrt{242}}{\sqrt{2}}
Zadanie 3.  1 pkt ⋅ Numer: pp-10446 ⋅ Poprawnie: 428/741 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie \frac{\sqrt{8}+10}{\sqrt{8}-10} w najprostszej postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.

Podaj liczby m, n, k i p.

Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10418 ⋅ Poprawnie: 130/174 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczbę (-7)^3\cdot (\sqrt{7})^{-4} pomnożono przez 3.

Wartość tak otrzymanego wyrażenia:

Odpowiedzi:
A. zwiększyła się o 7 B. zmniejszyła sie o 7
C. zmniejszyła sie o 14 D. zmniejszyła sie o 0
Zadanie 5.  1 pkt ⋅ Numer: pp-10304 ⋅ Poprawnie: 404/586 [68%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że \log_{4}{3}=x. Zapisz liczbę \log_{4}{432} w postaci mx+n.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba m+n\sqrt{2}, gdzie m,n\in\mathbb{Z}, spełnia równanie 2x-25=\sqrt{2}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20193 ⋅ Poprawnie: 135/274 [49%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Wiedząc, że x+y=2\sqrt{2} i x^2+y^2=12 oblicz xy.
Odpowiedź:
x\cdot y=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 63 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością x km/h. Średnia prędkość tego autobusu na całej trasie była równa 72 km/h.

Jaka była średnia prędkość autobusu w drodze powrotnej?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20015 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem R=\log\frac{A}{A_{0}}, gdzie A oznacza amplitudę trzęsienia wyrażoną w centymetrach, A_{0}=100^{-2} cm jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile 9,2 w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii.

Wynik zapisz w postaci 10^a. Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30007 ⋅ Poprawnie: 105/148 [70%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « Wiedząc, że \frac{1}{\log_{a}{4}}=5, 3\log_{2}{\frac{1}{2}}=b oraz 2\log_{c}{4}=4 oblicz \frac{\sqrt{b^2\cdot a}}{c}.
Odpowiedź:
\frac{\sqrt{b^2\cdot a}}{c}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm