Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10412 ⋅ Poprawnie: 100/123 [81%] Rozwiąż 
Podpunkt 1.1 (0.5 pkt)
 Zapisz wartość wyrażenia 4.9\cdot 10^{13}-2.8\cdot 10^{12} w postaci m\cdot 10^c, gdzie m\in\langle 1,10) i c\in\mathbb{Z}.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 1.2 (0.5 pkt)
 Podaj c.
Odpowiedź:
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10358 ⋅ Poprawnie: 237/277 [85%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia w= \left[2^{-2}+\left(\frac{1}{30}\right)^{-1}\right]^{\frac{1}{2}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10334 ⋅ Poprawnie: 118/217 [54%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie w=4\sqrt{2}-\frac{\sqrt{2}+1}{\sqrt{2}-1} w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10430 ⋅ Poprawnie: 716/811 [88%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz wartość wyrażenia w=\left( \frac{2^{-3}\cdot 3^{-9}} {2^{-9}\cdot 3^{-3}} \right)^0 .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10286 ⋅ Poprawnie: 274/298 [91%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba \log_{6}{3}+\log_{6}{72} jest równa:
Odpowiedzi:
A. 4 B. 3
C. \log_{6}{72} D. \log_{36}{3}
Zadanie 6.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 77/177 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba m+n\sqrt{3}, gdzie m,n\in\mathbb{Z}, spełnia równanie 2x-5=\sqrt{3}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20835 ⋅ Poprawnie: 60/227 [26%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Doprowadź wyrażenie \left(x-2y\right)^2-\left(2x+y\right)\left(y-2x\right)-\left(3x-2y\right)^2-4xy do najprostszej postaci, a następnie oblicz jego wartość dla x=2\sqrt{5} i y=1-8\sqrt{5}.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 78 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością x km/h. Średnia prędkość tego autobusu na całej trasie była równa 84 km/h.

Jaka była średnia prędkość autobusu w drodze powrotnej?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20014 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Dana jest nierówność \log_{3x}{3x^2}+\log_{3x}{9x} \lessdot 3 .

Ile liczb naturalnych spełnia tę nierówność?

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pr-30002 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wyznacz te wartości całkowite x, dla których liczba \frac{(9x^2-5)(x+1)}{3x^3+5x^2-3x-5} jest całkowita.

Podaj najmniejsze z rozwiązań.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe z rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm