Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10403 ⋅ Poprawnie: 205/285 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Na tablicy zapisano liczby (2^2)^{2^2}, 2^{2^{2^2}}, \left(2^{2^2}\right)^2, 2^{(2^2)^2}. Ile różnych liczb reprezentują te zapisy:
Odpowiedzi:
A. 2 B. 3
C. 1 D. 4
Zadanie 2.  1 pkt ⋅ Numer: pp-10324 ⋅ Poprawnie: 164/199 [82%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz wyrażenie \frac{\sqrt[3]{4}\cdot \sqrt[3]{-16}} {-8} w postaci potęgi o podstawie, która jest liczbą pierwszą.

Podaj wykładnik k tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10447 ⋅ Poprawnie: 193/253 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie \frac{x-25y}{\sqrt{x}+5\sqrt{y}} jest równe:
Odpowiedzi:
A. \sqrt{x}-5\sqrt{y} B. \sqrt{x-5y}
C. \sqrt{x}+5\sqrt{y} D. \sqrt{x+5y}
Zadanie 4.  1 pkt ⋅ Numer: pp-10418 ⋅ Poprawnie: 130/174 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Liczbę (-11)^3\cdot (\sqrt{11})^{-4} pomnożono przez 6.

Wartość tak otrzymanego wyrażenia:

Odpowiedzi:
A. zmniejszyła sie o 44 B. zwiększyła się o 44
C. zmniejszyła sie o 55 D. zmniejszyła sie o 33
Zadanie 5.  1 pkt ⋅ Numer: pp-10286 ⋅ Poprawnie: 276/300 [92%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba \log_{6}{108}+\log_{6}{2} jest równa:
Odpowiedzi:
A. \log_{6}{2} B. \log_{36}{2}
C. 4 D. 3
Zadanie 6.  2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 367/500 [73%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Oblicz wartość wyrażenia w=\frac{\frac{1}{17^2}\cdot \sqrt[3]{17^3}\cdot 17^{\frac{1}{2}}}{\sqrt{17}\cdot 17^{-2}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20196 ⋅ Poprawnie: 45/72 [62%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Wykaż, że różnica liczby trzycyfrowej i liczby o takich samych cyfrach zapisanych w odwrotnej kolejności jest podzielna przez 3.

Podaj największą liczbę całkowitą, która zawsze dzieli taką różnicę.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 84 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością x km/h. Średnia prędkość tego autobusu na całej trasie była równa 96 km/h.

Jaka była średnia prędkość autobusu w drodze powrotnej?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20438 ⋅ Poprawnie: 18/27 [66%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Oblicz wartość wyrażenia w= \log_{16}{2\sqrt{2}}-3^{\frac{3}{\log_{5}{3}}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30002 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wyznacz te wartości całkowite x, dla których liczba \frac{(9x^2-8)(x+1)}{3x^3+8x^2-3x-8} jest całkowita.

Podaj najmniejsze z rozwiązań.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe z rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm