Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10398 ⋅ Poprawnie: 668/826 [80%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wyrażenie \frac{\left(\left(25^2\right)^3\right)^2} {5} jest równe:
Odpowiedzi:
A. 5\cdot 5^{22} B. 5^{9}
C. 5^{9} D. 5^{11}
Zadanie 2.  1 pkt ⋅ Numer: pp-10359 ⋅ Poprawnie: 377/452 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz wyrażenie \sqrt{180}-\sqrt{20} w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10366 ⋅ Poprawnie: 178/272 [65%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 «« Zapisz iloczyn odwrotności liczby \sqrt{5-\sqrt{24}} i liczby \sqrt{5+\sqrt{24}} w najprostszej postaci m+n\sqrt{k}, gdzie m,n,k\in\mathbb{Z}.
Odpowiedź:
m+n\sqrt{k}= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10392 ⋅ Poprawnie: 140/203 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz wyrażenie 5^{28}\cdot 25^{56} w postaci potęgi p^k, gdzie p,k\in\mathbb{Z} i p jest kwadratem liczby pierwszej.

Podaj wykładnik k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10284 ⋅ Poprawnie: 121/155 [78%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że x=4+\log_{6}{2}. Wówczas x=\log_{6}{m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba m+n\sqrt{8}, gdzie m,n\in\mathbb{Z}, spełnia równanie 3x-24=\sqrt{8}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20196 ⋅ Poprawnie: 45/72 [62%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Wykaż, że różnica liczby trzycyfrowej i liczby o takich samych cyfrach zapisanych w odwrotnej kolejności jest podzielna przez 3.

Podaj największą liczbę całkowitą, która zawsze dzieli taką różnicę.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20143 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartośc wyrażenia w=\frac{\log_{3}{81}+\log_{3}{1}}{\sqrt{3}}\cdot \left(\frac{1}{3^2}\right)^{-2}} .
Odpowiedź:
w= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20438 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Oblicz wartość wyrażenia w= \log_{16}{2\sqrt{2}}-3^{\frac{4}{\log_{5}{3}}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30008 ⋅ Poprawnie: 88/129 [68%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 Liczby x i y spełniają układ równań: \begin{cases} -\log_{2}{\frac{1}{169}}=2x \\ y+\log_{2}{\frac{4}{13}}=2 \end{cases} .

Oblicz x-y.

Odpowiedź:
x-y= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm