Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11459 ⋅ Poprawnie: 504/599 [84%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wyznacz wartość wyrażenia w= \frac{11^{12}\cdot 8+3\cdot (11^2)^6} {\left(11^{12}:11^7\right)^3} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10357 ⋅ Poprawnie: 198/307 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Zapisz wyrażenie 5^{11}\sqrt[3]{625} w postaci 25^p.

Podaj p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pr-10078 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wiadomo, że \frac{8a+6b}{5a+2b}=2.

Oblicz \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10435 ⋅ Poprawnie: 561/727 [77%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Oblicz wartość wyrażenia w=\left[ 2^{-2}+\left(\frac{1}{42}\right)^{-1} \right]^{\frac{1}{2}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10306 ⋅ Poprawnie: 99/132 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Liczba \frac{\log_{4}{320}+\log_{4}{5}} {\log_{4}{80}-\log_{4}{5}} jest równa:
Odpowiedzi:
A. \frac{1+\log_{4}{5}}{2} B. \frac{3+\log_{4}{25}}{2}
C. \frac{3+\log_{4}{5}}{2} D. \frac{2+\log_{4}{25}}{4}
Zadanie 6.  2 pkt ⋅ Numer: pr-20440 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dane sa liczby: x=\frac{5,2\cdot 10^{-6}\cdot 5,1\cdot 10^8} {4\cdot 1,7\cdot 10^4\cdot 1,3\cdot 10^{-3}} oraz y=\left(\left(1\frac{2}{3}\right)^{-9}:\left(8\frac{1}{3}\right)^{-4}\right)\cdot \left(5\frac{2}{5}\right)^{-2} .

Oblicz x\cdot y^{-1}.

Odpowiedź:
x\cdot y^{-1}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20197 ⋅ Poprawnie: 94/210 [44%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Liczba n przy dzieleniu przez 5 daje resztę 4.

Oblicz resztę z dzielenia podwojonego kwadratu liczby n przez 10.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20137 ⋅ Poprawnie: 59/159 [37%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Dane są liczby: a=\log_{3}{16}-3\log_{3}{2} oraz b=6\log_{3}{6}-\log_{3}{18}.

Zapisz wyrażenie b-a w postaci y+\log_{3}{x}. Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20018 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Liczby x i y spełniają warunek \log_{xy}{x}=7 oraz \log_{\frac{x}{y}}{x}=k.

Oblicz k.

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30001 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Wyznacz te wartości całkowite x, dla których liczba \frac{x^4-4x^2+x+44}{x+2} jest całkowita.

Podaj najmniejsze z rozwiązań.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe z rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm