Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10422 ⋅ Poprawnie: 191/207 [92%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Liczbę 16^{54} otrzymamy podnosząc liczbę 4^4 do potęgi k.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11588 ⋅ Poprawnie: 99/137 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartośc wyrażenia w=\frac{4}{\sqrt{5}-1}-\frac{4}{\sqrt{5}+1} .
Odpowiedź:
w= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10334 ⋅ Poprawnie: 130/232 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zapisz wyrażenie w=4\sqrt{2}-\frac{\sqrt{2}+1}{\sqrt{2}-1} w najprostszej postaci a+b\sqrt{c}, gdzie a,b,c\in\mathbb{Z}.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10387 ⋅ Poprawnie: 464/579 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz wyrażenie \frac{3^{4}\cdot 3^{5}\cdot \frac{1}{9}}{\left(\sqrt{3}\right)^{4}} w postaci potęgi p^k o całkowitym wykładniku i podstawie, która jest liczbą pierwszą.

Podaj podstawę i wykładnik tej potęgi.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10296 ⋅ Poprawnie: 82/109 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dla n=4 oblicz wartość wyrażenia w= \log_{6}{(8n+4)}+\log_{7}{7^4} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 77/177 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest liczba p=5^{13}+4\cdot 5^{12}-3\cdot 5^{11} .

Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę p.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą nieparzystą liczbę pierwszą, która dzieli p.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20193 ⋅ Poprawnie: 135/274 [49%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Wiedząc, że x+y=2\sqrt{2} i x^2+y^2=13 oblicz xy.
Odpowiedź:
x\cdot y=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20141 ⋅ Poprawnie: 140/253 [55%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Podaj największą z liczb a, b, c jeśli \log_{a}{\frac{1}{4}}=-1, \log_{2,5}{b}=2 i c=\log_{\sqrt{2}}{2}.
Odpowiedź:
max(a,b,c)=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20018 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Liczby x i y spełniają warunek \log_{xy}{x}=3 oraz \log_{\frac{x}{y}}{x}=k.

Oblicz k.

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 115/181 [63%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
Dane są liczby: a=2+\left(-\frac{2}{3}\right)^{-2}, b=4\cdot 2^{-2}+9\cdot 3^{-1}, c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1} oraz dwie nierówności: (1-x)^2\leqslant (x-1)(x+1)-2 oraz \frac{1}{4}x+3\geqslant \frac{3}{2}x-2.

Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych dwóch liczb.

Odpowiedź:
x_1+x_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm