Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10411 ⋅ Poprawnie: 99/126 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Oblicz wartość wyrażenia w=\frac{100^{n-3}}{2^{2n-1}\cdot 5^{2n}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10347 ⋅ Poprawnie: 253/482 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Zapisz liczbę odwrotną do wartości wyrażenia \frac{\sqrt[3]{8^2}:4^{\frac{1}{2}}} {32\sqrt[3]{4}} w postaci 2^p.

Podaj p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10465 ⋅ Poprawnie: 148/175 [84%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wartość wyrażenia (m+3)^2 jest większa od wartości wyrażenia m^2+9 o:
Odpowiedzi:
A. 6m B. 6
C. 12m^2 D. 12m
Zadanie 4.  1 pkt ⋅ Numer: pp-11590 ⋅ Poprawnie: 25/32 [78%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Oblicz wartość wyrażenia \sqrt[3]{8^{-1}}\cdot \frac{1}{8}^0 .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10239 ⋅ Poprawnie: 518/626 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w= \log_{2} \left[ \log_{2}{\left(\log_{6}{36}\right)} \right] .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20149 ⋅ Poprawnie: 275/383 [71%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\frac{1}{3^3}\cdot \sqrt[3]{11^3}\cdot 11^{\frac{1}{2}}} {(11^3)^{\frac{1}{3}}\cdot 3^{-3}\cdot \sqrt{11}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20862 ⋅ Poprawnie: 12/152 [7%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 (2 pkt) O liczbie n wiadomo, że jest podzielna przez 2. Wykaż, że liczba dodatnia m=n^3-4n jest podzielna przez 6.

Podaj największą potęgę liczby 2, która dzieli liczbę dodatnią m.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20954 ⋅ Poprawnie: 66/110 [60%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 70 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością 105 km/h.

Jaka była średnia prędkość autobusu na całej trasie?

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20019 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wiadomo, że x=\frac{3}{2}\log_{21}{49}. Oblicz 3\log_{7}{3}.

Wynik zapisz w postaci \frac{ax+b}{x+d}, gdzie a,b,d\in\mathbb{Z}. Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj b+d.
Odpowiedź:
b+d= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30008 ⋅ Poprawnie: 88/129 [68%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 Liczby x i y spełniają układ równań: \begin{cases} -\log_{2}{\frac{1}{9}}=2x \\ y+\log_{2}{\frac{4}{3}}=2 \end{cases} .

Oblicz x-y.

Odpowiedź:
x-y= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm