Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10396 ⋅ Poprawnie: 272/506 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Zapisz połowę sumy 4^{29}+4^{29}+4^{29}+4^{29} w postaci potęgi p^k, gdzie p,k\in\mathbb{Z} i p jest liczbą pierwszą.

Podaj wykładnik k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10333 ⋅ Poprawnie: 74/141 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Liczbą niewymierną nie jest długość przekątnej kwadratu, o boku długości:
Odpowiedzi:
A. \sqrt{12} B. \sqrt{8}-\frac{1}{\sqrt{8}}
C. 1+\sqrt{32} D. 121
Zadanie 3.  1 pkt ⋅ Numer: pr-10053 ⋅ Poprawnie: 3/3 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dla każdych liczb rzeczywistych x, y wyrażenie 16-xy-4y+4x jest równe:
Odpowiedzi:
A. (-4+x)(y-4) B. (-4-x)(y-4)
C. (4-x)(y-4) D. (-4-x)(y+4)
Zadanie 4.  1 pkt ⋅ Numer: pp-11590 ⋅ Poprawnie: 25/30 [83%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Oblicz wartość wyrażenia \sqrt[3]{8^{-1}}\cdot \frac{1}{8}^0 .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10248 ⋅ Poprawnie: 143/202 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\log_{2}{\frac{1}{8}}-\frac{1}{4}\log_{4}{1}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/280 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{2^{-2}-3\cdot \left(\frac{2}{3}\right)^{-2}} {5-\left(\frac{1}{2}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20194 ⋅ Poprawnie: 83/145 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Rozłóż na czynniki wyrażenie 4-a^2+2ab-b^2 .

Podaj iloczyn największych liczb występujących w obu czynnikach.
Na przykład, dla wyrażenia (4-a)(6a+13) odpowiedzią jest 4\cdot 13=52.

Odpowiedź:
m\cdot n= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20143 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartośc wyrażenia w=\frac{\log_{2}{16}+\log_{2}{1}}{\sqrt{2}}\cdot \left(\frac{1}{2^2}\right)^{-2}} .
Odpowiedź:
w= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20015 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem R=\log\frac{A}{A_{0}}, gdzie A oznacza amplitudę trzęsienia wyrażoną w centymetrach, A_{0}=100^{-1} cm jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile 9,2 w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii.

Wynik zapisz w postaci 10^a. Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30008 ⋅ Poprawnie: 88/129 [68%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 Liczby x i y spełniają układ równań: \begin{cases} -\log_{2}{\frac{1}{9}}=2x \\ y+\log_{2}{\frac{4}{3}}=2 \end{cases} .

Oblicz x-y.

Odpowiedź:
x-y= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm