Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10398 ⋅ Poprawnie: 701/858 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wyrażenie \frac{\left(\left(9^2\right)^3\right)^2} {3} jest równe:
Odpowiedzi:
A. 3\cdot 3^{22} B. 3^{11}
C. 3^{9} D. 3^{9}
Zadanie 2.  1 pkt ⋅ Numer: pp-10360 ⋅ Poprawnie: 393/461 [85%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Zapisz wyrażenie \sqrt{2\sqrt[3]{4\sqrt{256}}} w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10466 ⋅ Poprawnie: 199/213 [93%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Równość \left(2\sqrt{2}-a\right)^2=17-12\sqrt{2} zachodzi, gdy:
Odpowiedzi:
A. a=2 B. a=3
C. a=3\sqrt{2} D. a=4
Zadanie 4.  1 pkt ⋅ Numer: pp-10382 ⋅ Poprawnie: 189/212 [89%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz wyrażenie \frac{14^{30} \cdot 7^6} {2^{30}\cdot 7^{30}} \cdot \frac{1}{7} w postaci potęgi p^k o całkowitym wykładniku i podstawie, która jest liczbą pierwszą.

Podaj podstawę i wykładnik tej potęgi.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10306 ⋅ Poprawnie: 99/132 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Liczba \frac{\log_{2}{32}+\log_{2}{4}} {\log_{2}{16}-\log_{2}{4}} jest równa:
Odpowiedzi:
A. \frac{3+\log_{2}{16}}{2} B. \frac{3+\log_{2}{4}}{2}
C. \frac{1+\log_{2}{4}}{2} D. \frac{2+\log_{2}{16}}{4}
Zadanie 6.  2 pkt ⋅ Numer: pp-20148 ⋅ Poprawnie: 367/500 [73%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Oblicz wartość wyrażenia w=\frac{\frac{1}{7^2}\cdot \sqrt[3]{7^3}\cdot 7^{\frac{1}{2}}}{\sqrt{7}\cdot 7^{-2}} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20021 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Oblicz wartość wyrażenia w=\frac{\sqrt{9x^2+6x+1}}{3x+1}+\frac{\sqrt{49x^2+14x^3+x^4}}{x^2+7x} , wiedząc, że x\in\left(-\infty,-7\right).
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20834 ⋅ Poprawnie: 139/183 [75%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\log_{4}{144}+2\log_{4}{4\sqrt{6}}-3\log_{4}{6} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20437 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz wartość wyrażenia w= \log_{3}{\sqrt[4]{27}}-\log_{3}{\log_{3}{\sqrt[3]{\sqrt[3]{3}}}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30001 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Wyznacz te wartości całkowite x, dla których liczba \frac{x^4-4x^2+x+28}{x+2} jest całkowita.

Podaj najmniejsze z rozwiązań.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe z rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm