Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10414 ⋅ Poprawnie: 287/400 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Liczbę 4^{10}\cdot 32^{20} można zapiać w postaci:
Odpowiedzi:
A. 64^{10} B. 16^{30}
C. 2^{100} D. 8^{30}
Zadanie 2.  1 pkt ⋅ Numer: pp-10372 ⋅ Poprawnie: 332/381 [87%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia w= \frac{\sqrt[5]{-2^5}\cdot 2^{-1}} {4}\cdot 2^2 .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pr-10081 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie x^6-x^3-6 jest równe:
Odpowiedzi:
A. (x^4+2)(x^2-3) B. (x^3-2)(x^3-3)
C. (x^3+2)(x^3+3) D. (x^3+2)(x^3-3)
Zadanie 4.  1 pkt ⋅ Numer: pp-10427 ⋅ Poprawnie: 89/130 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Największą z liczb a=-16^{-\frac{1}{4}}, b=\left(-\sqrt[4]{\frac{1}{16}}\right)^{-1}, c=-\sqrt[5]{4^{10}}, d=-\frac{3^{\frac{1}{5}}}{3^{-\frac{4}{5}}} jest:
Odpowiedzi:
A. b B. c
C. a D. d
Zadanie 5.  1 pkt ⋅ Numer: pp-10253 ⋅ Poprawnie: 94/116 [81%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Zapisz wyrażenie 2\log{6}+\log{9} w postaci 2\log{m}.

Podaj liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba m+n\sqrt{10}, gdzie m,n\in\mathbb{Z}, spełnia równanie 3x-22=\sqrt{10}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20194 ⋅ Poprawnie: 83/145 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Rozłóż na czynniki wyrażenie 9-a^2+2ab-b^2 .

Podaj iloczyn największych liczb występujących w obu czynnikach.
Na przykład, dla wyrażenia (4-a)(6a+13) odpowiedzią jest 4\cdot 13=52.

Odpowiedź:
m\cdot n= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20141 ⋅ Poprawnie: 140/253 [55%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Podaj największą z liczb a, b, c jeśli \log_{a}{\frac{1}{4}}=-1, \log_{2,5}{b}=2 i c=\log_{\sqrt{2}}{2}.
Odpowiedź:
max(a,b,c)=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20015 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem R=\log\frac{A}{A_{0}}, gdzie A oznacza amplitudę trzęsienia wyrażoną w centymetrach, A_{0}=100^{-1} cm jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile 9,2 w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii.

Wynik zapisz w postaci 10^a. Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 116/183 [63%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
Dane są liczby: a=2+\left(-\frac{2}{3}\right)^{-2}, b=4\cdot 2^{-2}+9\cdot 3^{-1}, c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1} oraz dwie nierówności: (1-x)^2\leqslant (x-1)(x+1)-2 oraz \frac{1}{4}x+3\geqslant \frac{3}{2}x-2.

Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych dwóch liczb.

Odpowiedź:
x_1+x_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm