Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10396 ⋅ Poprawnie: 268/501 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Zapisz połowę sumy 4^{34}+4^{34}+4^{34}+4^{34} w postaci potęgi p^k, gdzie p,k\in\mathbb{Z} i p jest liczbą pierwszą.

Podaj wykładnik k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10348 ⋅ Poprawnie: 163/183 [89%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Zapisz wyrażenie \left(\sqrt{6}+1\right)^4-\left(\sqrt{6}-1\right)^4 w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pr-10481 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Po wyznaczeniu liczby n ze wzoru I=\frac{nE}{nR+r} otrzymamy:
Odpowiedzi:
A. \frac{IE}{IR-r} B. \frac{IR-r}{IE}
C. \frac{E-IR}{IR} D. \frac{Ir}{E-IR}
Zadanie 4.  1 pkt ⋅ Numer: pp-10393 ⋅ Poprawnie: 138/351 [39%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Zapisz odwrotność liczby 7\sqrt{7}\cdot \left(\frac{1}{343}\right)^{-\frac{4}{3}} w postaci potęgi p^k, gdzie k\in\mathbb{W} i p jest liczbą pierwszą.

Podaj wykładnik k tej potęgi.

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10315 ⋅ Poprawnie: 434/523 [82%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\log_{\sqrt{3}}{\frac{3^2}{\sqrt{3}}}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20146 ⋅ Poprawnie: 180/279 [64%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{3^{-2}-3\cdot \left(1\right)^{-2}} {5-\left(\frac{1}{3}\right)^{-1}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20859 ⋅ Poprawnie: 50/394 [12%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Wykaż, że dla każdych liczb całkowitych x i y, wyrażenie 18x^2+25y^2+30xy+24x+16 można zapisać w postaci (a_1x+b_1y+c_1)^2+(a_2x+b_2y+c_2)^2, gdzie współczynniki a_1\text{, }b_1\text{, } c_1\text{, } a_2\text{, } b_2\text{ i } c_2 są liczbami całkowitymi (niektóre z nich mogą być równe zero).

Podaj mniejszą z liczb a_1 i a_2.

Odpowiedź:
min(a_1,a_2)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 (1 pkt) Podaj większą z liczb b_1 i b_2.
Odpowiedź:
max(b_1,b_2)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20955 ⋅ Poprawnie: 98/132 [74%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Średni wiek zawodnika n osobowej drużyny piłkarskiej jest równy 24 lat. Trener tej drużyny ma 58 lat, a średni wiek zawodników drużyny wraz z trenerem jest równy 26 lat.

Wyznacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20437 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz wartość wyrażenia w= \log_{3}{\sqrt[4]{27}}-\log_{3}{\log_{3}{\sqrt[3]{\sqrt[3]{3}}}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30002 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wyznacz te wartości całkowite x, dla których liczba \frac{(9x^2-6)(x+1)}{3x^3+6x^2-3x-6} jest całkowita.

Podaj najmniejsze z rozwiązań.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe z rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm