Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10419 ⋅ Poprawnie: 543/598 [90%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Zapisz iloczyn 1024^{23}\cdot 2048^{17} w postaci potęgi a^p o naturalnym wykładniku, której podstawa jest liczbą pierwszą.

Podaj podstawę i wykładnik tej potęgi.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
p= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10371 ⋅ Poprawnie: 399/480 [83%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyrażenie w=2\sqrt{12}-\sqrt{27} zapisz w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{Z}.
Odpowiedź:
w= \cdot
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10472 ⋅ Poprawnie: 444/604 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dla a=2\sqrt{13} i b=\sqrt{208} oblicz wartość wyrażenia w=(b-a)^2.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10376 ⋅ Poprawnie: 326/387 [84%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Potęgę 11^{\frac{23}{11}} zapisz w najprostszej postaci b\sqrt[k]{p}, gdzie b,k,p\in\mathbb{Z} i p jest liczbą pierwszą.

Podaj liczby b, k i p.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
p= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10235 ⋅ Poprawnie: 546/571 [95%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba \frac{\log_{5}{3125}} {\log_{3}{243}} jest równa:
Odpowiedzi:
A. \frac{1}{2} B. 1
C. \log_{486}{3125} D. \frac{3}{2}
Zadanie 6.  2 pkt ⋅ Numer: pr-20440 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dane sa liczby: x=\frac{5,2\cdot 10^{-6}\cdot 5,1\cdot 10^8} {15\cdot 1,7\cdot 10^4\cdot 1,3\cdot 10^{-3}} oraz y=\left(\left(1\frac{2}{3}\right)^{-9}:\left(8\frac{1}{3}\right)^{-4}\right)\cdot \left(5\frac{2}{5}\right)^{-2} .

Oblicz x\cdot y^{-1}.

Odpowiedź:
x\cdot y^{-1}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20020 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Wyrażenie w=\sqrt{125-36\sqrt{11}}+\sqrt{125+36\sqrt{11}} ma wartość wymierną.

Podaj w.

Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20956 ⋅ Poprawnie: 47/72 [65%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Autobus pokonał trasę z miasta A do miasta B ze średnią prędkością 108 km/h, po czym natychmiast zawrócił i pokonał trasę powrotną ze średnią prędkością x km/h. Średnia prędkość tego autobusu na całej trasie była równa 120 km/h.

Jaka była średnia prędkość autobusu w drodze powrotnej?

Odpowiedź:
v_{sr}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20015 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem R=\log\frac{A}{A_{0}}, gdzie A oznacza amplitudę trzęsienia wyrażoną w centymetrach, A_{0}=100^{-4} cm jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile 9,2 w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii.

Wynik zapisz w postaci 10^a. Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30002 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Wyznacz te wartości całkowite x, dla których liczba \frac{(9x^2-11)(x+1)}{3x^3+11x^2-3x-11} jest całkowita.

Podaj najmniejsze z rozwiązań.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe z rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm