Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10413 ⋅ Poprawnie: 120/140 [85%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że a=28^{27} oraz b=4^{28}\cdot 343^{9}.

Zatem:

Odpowiedzi:
A. b > a B. a > b
C. a=b D. a=2\cdot b
Zadanie 2.  1 pkt ⋅ Numer: pp-10345 ⋅ Poprawnie: 192/218 [88%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia w= \frac{7}{\sqrt{6}-1}-\frac{7}{1+\sqrt{6}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10464 ⋅ Poprawnie: 362/635 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyrażenie \left(x+4\right)^2-\left(2x+3\right)^2 jest równe:
Odpowiedzi:
A. \left(3x+\frac{7}{3}\right)\left(x-1\right) B. \left(-3x+7\right)\left(x-1\right)
C. -3\left(x+\frac{7}{3}\right)\left(x-7\right) D. -3\left(x+\frac{7}{3}\right)\left(x-1\right)
Zadanie 4.  1 pkt ⋅ Numer: pp-10377 ⋅ Poprawnie: 483/590 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz wyrażenie 7^{\frac{8}{3}}\cdot \sqrt[3]{49^2} w postaci potęgi o podstawie 7.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10029 ⋅ Poprawnie: 29/27 [107%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba x spełnia równanie \log\left[\log\left( \log_{7}{x}\right)\right]=0. Zapisz liczbę x w postaci n^k, gdzie n,k\in\mathbb{N}.

Podaj liczby n i k.

Odpowiedzi:
n= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20145 ⋅ Poprawnie: 79/179 [44%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Liczba m+n\sqrt{3}, gdzie m,n\in\mathbb{Z}, spełnia równanie 2x-9=\sqrt{3}x-1.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20859 ⋅ Poprawnie: 51/395 [12%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 (1 pkt) Wykaż, że dla każdych liczb całkowitych x i y, wyrażenie 25x^2+25y^2+30xy+24x+9 można zapisać w postaci (a_1x+b_1y+c_1)^2+(a_2x+b_2y+c_2)^2, gdzie współczynniki a_1\text{, }b_1\text{, } c_1\text{, } a_2\text{, } b_2\text{ i } c_2 są liczbami całkowitymi (niektóre z nich mogą być równe zero).

Podaj mniejszą z liczb a_1 i a_2.

Odpowiedź:
min(a_1,a_2)= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 (1 pkt) Podaj większą z liczb b_1 i b_2.
Odpowiedź:
max(b_1,b_2)= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20141 ⋅ Poprawnie: 140/253 [55%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 » Podaj największą z liczb a, b, c jeśli \log_{a}{\frac{1}{5}}=-1, \log_{2,5}{b}=2 i c=\log_{\sqrt{2}}{2}.
Odpowiedź:
max(a,b,c)=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20016 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « O liczbach dodatnich a, b, c wiadomo, że: \log_{5}{c}=\log_{8}{b}=\log_{6}{a}=2.

Oblicz \sqrt{\frac{ab}{c}}.

Odpowiedź:
\sqrt{\frac{ab}{c}}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30009 ⋅ Poprawnie: 12/98 [12%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « « Autobus jechał ze średnią prędkością 60 km/h przez \frac{4}{7} całej trasy. Pozostałą część trasy pokonał ze średnią prędkością 80 km/h.

Oblicz średnią prędkość tego autobusu na całej trasie.

Odpowiedź:
v_{sr}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm