Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10421 ⋅ Poprawnie: 151/179 [84%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wiadomo, że 4^n+4^n=2^{2143}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10355 ⋅ Poprawnie: 175/217 [80%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia w= \sqrt{14\cdot 324+22\cdot 324}-\sqrt{365^2-364^2} .
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pr-10071 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Jeśli x\neq 0, to suma wyrażeń; \frac{1}{x},\ \frac{1}{2x},\ \frac{1}{5x},\ \frac{1}{7x} jest równa \frac{m}{nx}, gdzie m,n\in\mathbb{N} i NWD(m,n)=1.

Podaj wartość ułamka \frac{m}{n}.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11403 ⋅ Poprawnie: 237/339 [69%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla każdej dodatniej liczby a wyrażenie \frac{a^{-1,7}}{a^{-3,4}}:\frac{a^{3,4}}{a^{1,7}}\cdot a^{-8,5} mozna zapisać w postaci potęgi o podstawie a.

Podaj wykładnik tej potęgi.

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10277 ⋅ Poprawnie: 438/442 [99%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wiadomo, że c=\log_{6}{7}. Wtedy:
Odpowiedzi:
A. 6^7=c B. c^6=7
C. 6^c=7 D. c^7=6
Zadanie 6.  2 pkt ⋅ Numer: pr-20439 ⋅ Poprawnie: 0/3 [0%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Oblicz wartość wyrażenia w=\frac{\sqrt{6}+16\sqrt{2}}{\sqrt{6}+\sqrt{8}}.
Odpowiedź:
w= + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20862 ⋅ Poprawnie: 12/152 [7%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 (2 pkt) O liczbie n wiadomo, że jest podzielna przez 7. Wykaż, że liczba dodatnia m=n^3-49n jest podzielna przez 6.

Podaj największą potęgę liczby 7, która dzieli liczbę dodatnią m.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20136 ⋅ Poprawnie: 190/234 [81%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartość wyrażenia w=\frac{\log{2}+\log{3}}{\log{18}-\log{3}}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20436 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Oblicz wartość wyrażenia w= 70\log_{2}{125}\cdot \log_{5}{2}+2^{\log{7}}\cdot 5^{1+\log{7}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30010 ⋅ Poprawnie: 116/183 [63%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
Dane są liczby: a=2+\left(-\frac{2}{3}\right)^{-2}, b=4\cdot 2^{-2}+9\cdot 3^{-1}, c=20^{-1}\cdot \left(\frac{1}{5}\right)^{-2}-\frac{8}{3}\cdot \left(-\frac{4}{3}\right)^{-1} oraz dwie nierówności: (1-x)^2\leqslant (x-1)(x+1)-2 oraz \frac{1}{4}x+3\geqslant \frac{3}{2}x-2.

Dwie z tych liczb spełniają obie z tych nierówności. Podaj sumę tych dwóch liczb.

Odpowiedź:
x_1+x_2=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm