Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10434 ⋅ Poprawnie: 577/721 [80%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wyrażenie \frac{5^{36}+5^{35}} {5^{35}+5^{34}} w postaci potęgi o podstawie 5^k.

Podaj wykładnik tej potęgi.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10352 ⋅ Poprawnie: 314/466 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Która z podanych liczb jest niewymierna:
Odpowiedzi:
A. 8^{\frac{2}{3}} B. \sqrt[3]{2}\cdot\sqrt[3]{864}
C. \frac{\sqrt{50}}{\sqrt{2}} D. \left(6+\sqrt{6}\right)^2
Zadanie 3.  1 pkt ⋅ Numer: pr-10058 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
Wyrażenie algebraiczne \frac{9x^2-16}{(3x-4)^2} można zapisać w postaci:
Odpowiedzi:
A. 3x-4 B. \frac{3x-4}{3x+4}
C. \frac{3x+4}{3x-4} D. 3x+4
Zadanie 4.  1 pkt ⋅ Numer: pp-10433 ⋅ Poprawnie: 607/826 [73%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz wyrażenie \frac{4^{11}\cdot 5^{9}} {20^{9}} w postaci potęgi p^k o całkowitym wykładniku i podstawie, która jest liczbą pierwszą.

Podaj podstawę i wykładnik tej potęgi.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10029 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba x spełnia równanie \log\left[\log\left( \log_{5}{x}\right)\right]=0. Zapisz liczbę x w postaci n^k, gdzie n,k\in\mathbb{N}.

Podaj liczby n i k.

Odpowiedzi:
n= (wpisz liczbę całkowitą)
k= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20147 ⋅ Poprawnie: 76/176 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest liczba p=7^{13}+4\cdot 7^{12}-3\cdot 7^{11} .

Podaj najmniejszą nieparzystą liczbę pierwszą, która dzieli liczbę p.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj największą nieparzystą liczbę pierwszą, która dzieli p.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20021 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Oblicz wartość wyrażenia w=\frac{\sqrt{9x^2+6x+1}}{3x+1}+\frac{\sqrt{36x^2+12x^3+x^4}}{x^2+6x} , wiedząc, że x\in\left(-\infty,-6\right).
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20139 ⋅ Poprawnie: 104/165 [63%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz xyz, jeśli wiadomo, że \log_{3}{x}=4, y=\log{\frac{1}{1000}} i z=\log_{0,05}{20}.
Odpowiedź:
x\cdot y\cdot z= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pr-20019 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wiadomo, że x=\frac{11}{2}\log_{21}{49}. Oblicz 3\log_{7}{3}.

Wynik zapisz w postaci \frac{ax+b}{x+d}, gdzie a,b,d\in\mathbb{Z}. Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 Podaj b+d.
Odpowiedź:
b+d= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30008 ⋅ Poprawnie: 88/129 [68%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 Liczby x i y spełniają układ równań: \begin{cases} -\log_{2}{\frac{1}{81}}=2x \\ y+\log_{2}{\frac{4}{9}}=2 \end{cases} .

Oblicz x-y.

Odpowiedź:
x-y= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm