Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-03-wyrazenia-algebraiczne-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10420 ⋅ Poprawnie: 131/161 [81%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Zapisz wartość wyrażenia 32^{26}-8^{43} w postaci potęgi p^k, gdzie p,k\in\mathbb{Z} i p jest liczbą pierwszą.

Podaj wykładnik k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10345 ⋅ Poprawnie: 192/218 [88%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Oblicz wartość wyrażenia w= \frac{7}{\sqrt{5}-1}-\frac{7}{1+\sqrt{5}} .
Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pr-10055 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 3.1 (1 pkt)
» Dla x\in\mathbb{R}-\{-3,-2,3\} wyrażenie \frac{1}{(x-3)(x+2)}-\frac{2}{x^2-9} jest równe \frac{ax+b}{(x^2-9)(x+2)}.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10408 ⋅ Poprawnie: 934/1500 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Przedstaw wyrażenie \frac{\left(\frac{1}{3}\right)^{-8}\cdot 3^3\cdot \sqrt{3}} {3^{17}} w postaci potęgi o podstawie 3.

Podaj wykładnik tej potęgi.

Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10264 ⋅ Poprawnie: 87/124 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Oblicz wartość wyrażenia w=\log_{\sqrt{2}}{\left(16\sqrt{2}\right)}.
Odpowiedź:
w= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20440 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Dane sa liczby: x=\frac{5,2\cdot 10^{-6}\cdot 5,1\cdot 10^8} {4\cdot 1,7\cdot 10^4\cdot 1,3\cdot 10^{-3}} oraz y=\left(\left(1\frac{2}{3}\right)^{-9}:\left(8\frac{1}{3}\right)^{-4}\right)\cdot \left(5\frac{2}{5}\right)^{-2} .

Oblicz x\cdot y^{-1}.

Odpowiedź:
x\cdot y^{-1}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20197 ⋅ Poprawnie: 94/210 [44%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Liczba n przy dzieleniu przez 5 daje resztę 2.

Oblicz resztę z dzielenia podwojonego kwadratu liczby n przez 10.

Odpowiedź:
r= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20143 ⋅ Poprawnie: 107/161 [66%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Oblicz wartośc wyrażenia w=\frac{\log_{2}{16}+\log_{2}{1}}{\sqrt{2}}\cdot \left(\frac{1}{2^2}\right)^{-2}} .
Odpowiedź:
w= \cdot
(wpisz trzy liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20015 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Skala Richtera służy do określania siły trzęsień ziemi. Siła ta opisana jest wzorem R=\log\frac{A}{A_{0}}, gdzie A oznacza amplitudę trzęsienia wyrażoną w centymetrach, A_{0}=100^{-2} cm jest stałą, nazywaną amplitudą wzorcową. 5 maja 2014 roku w Tajlandii miało miejsce trzęsienie ziemi o sile 9,2 w skali Richtera. Oblicz amplitudę trzęsienia ziemi w Tajlandii.

Wynik zapisz w postaci 10^a. Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pr-30001 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Wyznacz te wartości całkowite x, dla których liczba \frac{x^4-4x^2+x+27}{x+2} jest całkowita.

Podaj najmniejsze z rozwiązań.

Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największe z rozwiązań.
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm