Podgląd testu : lo2@sp-04-funkcje-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 361/941 [38%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Funkcja
f każdej liczbie rzeczywistej
przypisuje połowę sześcianu tej liczby, pomniejszoną o 6.
Funkcję f opisuje wzór:
Odpowiedzi:
T/N : f(x)=\frac{1}{2}x^6-6
T/N : f(x)=0,5\frac{x^4}{x}-6
Zadanie 2. 1 pkt ⋅ Numer: pp-10757 ⋅ Poprawnie: 488/768 [63%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Do wykresu funkcji
f należy punkt o współrzędnych
(3,0) oraz
f(-1)=2 .
Funkcja f opisana jest wzorem:
Odpowiedzi:
A. f(x)=\sqrt{-x+3}
B. f(x)=2x^2
C. f(x)=4x-2
D. f(x)=\frac{-7}{x}
Zadanie 3. 1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 396/915 [43%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Na rysunku przedstawiono wykres funkcji
y=f(x) .
W którym z przedziałów, funkcja przyjmuje wartość 1 :
Odpowiedzi:
A. (0;1,(9)\rangle
B. (-1,2)
C. (2,3)
D. (-3,-2)
Zadanie 4. 1 pkt ⋅ Numer: pp-10689 ⋅ Poprawnie: 335/506 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dziedziną funkcji
f(x)=\frac{x}{\sqrt{16+x^2}}+(2-x)^2
jest:
Odpowiedzi:
A. \mathbb{R}-\{4\}
B. \mathbb{R}-\{-4,4\}
C. (-\infty;-4)\cup(4;+\infty)
D. \mathbb{R}
Zadanie 5. 1 pkt ⋅ Numer: pp-10681 ⋅ Poprawnie: 637/893 [71%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę
D_f funkcji określonej wzorem
f(x)=\sqrt{-x-8}
.
Podaj największą liczbę całkowitą, która należy do zbioru D_f .
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10720 ⋅ Poprawnie: 215/295 [72%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja
f jest określona wzorem
f(x)=\frac{-8x+15}{x} dla każdej liczby rzeczywistej
x\neq 0 . Oblicz wartość funkcji
f\left(\sqrt{3}\right) .
Wynik zapisz w najprostszej postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{Z} ,
c\in\mathbb{N}
i jest najmniejsze możliwe.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-10719 ⋅ Poprawnie: 120/160 [75%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Funkcja
f przyporządkowuje każdej liczbie naturalnej
większej od
1 resztę z dzielenia tej liczby przez
23 .
Spośród liczb:
f(74) , f(87) ,
f(93) , f(100) największą
jest:
Odpowiedzi:
A. f(74)
B. f(93)
C. f(87)
D. f(100)
Zadanie 8. 1 pkt ⋅ Numer: pp-10729 ⋅ Poprawnie: 854/1363 [62%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Zbiorem wartości funkcji, której wykres pokazano na rysunku jest:
Odpowiedzi:
A. \langle -1,4\rangle
B. (-1,4)-\{2\}
C. \langle -1,2)\cup(2,4\rangle
D. \langle -1,4)
Zadanie 9. 1 pkt ⋅ Numer: pp-10715 ⋅ Poprawnie: 72/94 [76%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Funkcja
f przyporządkowuje każdej liczbie naturalnej
n większej od
1 ilość
liczb pierwszych mniejszych od
n .
Oblicz f(30)-f(19) .
Odpowiedź:
f(x_1)-f(x_2)=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10760 ⋅ Poprawnie: 57/110 [51%]
Rozwiąż
Podpunkt 10.1 (0.5 pkt)
Zbiorem wartości funkcji
f jest przedział
\langle -14,5\rangle .
Wyznacz zbiór tych wartości parametru
q , dla których
funkcja określona wzorem
g(x)=f(x)+q nie ma miejsc zerowych.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych
przedziałów.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (0.5 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 53/87 [60%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wyznacz najmniejszą wartość funkcji określonej wzorem
f(x)=\frac{5}{2}x+\frac{1}{6}
w przedziale
\langle -5,5\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-11391 ⋅ Poprawnie: 157/225 [69%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Wyznacz najmniejsze miejsce zerowe funkcji określonej wzorem
f(x)=\frac{x^2+5x}{|x+5|} .
Odpowiedź:
x_{min}=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10706 ⋅ Poprawnie: 749/957 [78%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Liczba
-1 jest miejscem zerowym
funkcji
f(x)=(2m-1)x-5 .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 182/387 [47%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
« Funkcja
f opisana jest wzorem:
f(x)=x^2 .
Wówczas:
Odpowiedzi:
T/N : f\left(-18\sqrt{2}\right)=-648
T/N : D_f=\left\langle 0,+\infty\right)
T/N : wartości dodatnie funkcja ta przyjmuje tylko dla argumentów rożnych od zera
T/N : ZW_f=\left(0,+\infty\right)
Rozwiąż