Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 520/756 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 12 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=3(x^3+12) T/N : f(x)=x^3+12
Zadanie 2.  1 pkt ⋅ Numer: pp-10701 ⋅ Poprawnie: 197/472 [41%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f, przy czym f(0)=-2 i f(1)=0.

Wykres funkcji g jest symetryczny do wykresu funkcji f względem osi Ox.

Funkcja g jest określona wzorem:

Odpowiedzi:
A. g(x)=2x+2 B. g(x)=-2x+2
C. g(x)=2x-2 D. g(x)=-2x-2
Zadanie 3.  1 pkt ⋅ Numer: pp-10739 ⋅ Poprawnie: 321/424 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt B=(-5,y) należy do wykresu funkcji f(x)=\frac{-4-x^2}{x+2}.

Wyznacz y.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10694 ⋅ Poprawnie: 485/766 [63%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiór liczb rzeczywistych jest dziedziną funkcji:
Odpowiedzi:
T/N : f(x)=\frac{1}{x+1} T/N : f(x)=\frac{x-1}{x^2}
Zadanie 5.  1 pkt ⋅ Numer: pp-10683 ⋅ Poprawnie: 998/1112 [89%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Dziedziną funkcji f jest przedział:
Odpowiedzi:
A. (-3, 8\rangle B. \langle 0, 3\rangle
C. (0, 8\rangle D. \langle -3, 3\rangle
Zadanie 6.  1 pkt ⋅ Numer: pp-10707 ⋅ Poprawnie: 557/762 [73%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Liczby f_{min} i f_{max} sa odpowiednio najmniejszą i największą wartością funkcji, której wykres pokazano na rysunku:

Podaj liczby f_{min} i f_{max}.

Odpowiedzi:
f_{min}= (wpisz liczbę całkowitą)
f_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10719 ⋅ Poprawnie: 120/160 [75%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 resztę z dzielenia tej liczby przez 23.

Spośród liczb: f(81), f(93), f(99), f(109) największą jest:

Odpowiedzi:
A. f(109) B. f(99)
C. f(93) D. f(81)
Zadanie 8.  1 pkt ⋅ Numer: pp-10714 ⋅ Poprawnie: 295/393 [75%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja f każdej liczbie naturalnej ze zbioru \{ 15,20,22,26\} przyporządkowuje resztę z dzielenia tej liczby przez 4.

Zbiorem wartości tej funkcji jest zbiór:

Odpowiedzi:
A. \{0,1,2\} B. \{1,2,3\}
C. \{0,1,3\} D. \{0,2,3\}
Zadanie 9.  1 pkt ⋅ Numer: pp-10743 ⋅ Poprawnie: 58/100 [58%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dziedziną funkcji g(x)=\frac{5x-40}{|8-x|} jest zbiór (8,+\infty).

Zatem:

Odpowiedzi:
A. ZW_{g}=\{5\} B. ZW_{g}=\mathbb{R}-\{5\}
C. ZW_{g}=\{-5,5\} D. ZW_{g}=\{-5\}
Zadanie 10.  1 pkt ⋅ Numer: pp-10703 ⋅ Poprawnie: 170/244 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dana jest funkcja h(x)=\left(-\frac{1}{3}m+2\right)x+\frac{3}{2}m-1. Funkcja ta dla argumentu 1 przyjmuje wartość -6.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 37/58 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{5}{2}x^2-2, w przedziale \langle 1,5\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11391 ⋅ Poprawnie: 159/227 [70%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Wyznacz najmniejsze miejsce zerowe funkcji określonej wzorem f(x)=\frac{x^2+6x}{|x+6|}.
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10706 ⋅ Poprawnie: 750/958 [78%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Liczba 1 jest miejscem zerowym funkcji f(x)=(2m-1)x+3.

Wyznacz wartość parametru m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 91/468 [19%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. D_{f}=\langle -5, 4\rangle B. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle
C. funkcja f ma ujemne miejsce zerowe D. ZW_{f}=\langle -2, 3\rangle
E. funkcja f nie jest różnowartościowa F. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm