Podgląd testu : lo2@sp-04-funkcje-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 520/756 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja
f liczbie rzeczywistej
x przypisuje
sześcian zwiększonej o
9 liczby
x .
Funkcja f może być opisana wzorem:
Odpowiedzi:
T/N : f(x)=(x+9)^3
T/N : f(x)=x^3+9
Zadanie 2. 1 pkt ⋅ Numer: pp-10734 ⋅ Poprawnie: 676/971 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Do wykresu funkcji
f(x)=\frac{a}{x-3} należy punkt
A=\left(-2,\frac{2}{5}\right) .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10723 ⋅ Poprawnie: 204/342 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu funkcji
f(x)=(m-1)x+m^2-7 należy punkt
P=(0,9) .
Wyznacz wartość parametru m wiedząc, że jest ona dodatnia.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10692 ⋅ Poprawnie: 126/168 [75%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dziedziną funkcji
f określonej wzorem
f(x)=\log{(x^2+25)}
jest zbiór:
Odpowiedzi:
A. (-5;5)
B. \mathbb{R}
C. \mathbb{R}-\{-5;5\}
D. (-\infty;-5)\cup(5;+\infty)
Zadanie 5. 1 pkt ⋅ Numer: pp-10686 ⋅ Poprawnie: 325/515 [63%]
Rozwiąż
Podpunkt 5.1 (0.8 pkt)
Dziedziną funkcji
g(x)=\sqrt{8-\frac{8x-9}{2}}
jest pewien przedział.
Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty
B. 1
C. 12
D. 10
E. -\infty
F. 5
Zadanie 6. 1 pkt ⋅ Numer: pp-10704 ⋅ Poprawnie: 278/414 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja
f jest określona wzorem
f(x)=\frac{5x}{x+1} dla
x\neq -1 .
Oblicz wartość funkcji f dla argumentu
x=\sqrt{5} .
Wynik zapisz w najprostszej nieskracalnej postaci \frac{a+b\sqrt{c}}{d} , gdzie
a,b\in\mathbb{Z} , c,d\in\mathbb{N} .
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-10719 ⋅ Poprawnie: 122/163 [74%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Funkcja
f przyporządkowuje każdej liczbie naturalnej
większej od
1 resztę z dzielenia tej liczby przez
23 .
Spośród liczb:
f(75) , f(84) ,
f(96) , f(109) największą
jest:
Odpowiedzi:
A. f(84)
B. f(96)
C. f(109)
D. f(75)
Zadanie 8. 1 pkt ⋅ Numer: pp-10728 ⋅ Poprawnie: 471/596 [79%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x) .
Podaj największą wartość tej funkcji.
Odpowiedź:
f_{max}(x)=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10764 ⋅ Poprawnie: 543/716 [75%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rysunek przedstawia wykres pewnej funkcji
y=f(x) ,
określonej dla
x\in\langle -4, 4\rangle .
Zbiór wszystkich argumentów, dla których funkcja f
przyjmuje wartości niedodatnie, to zbiór:
Odpowiedzi:
A. \langle 0,3) \cup (3,4\rangle
B. \langle -4,-3\rangle \cup \langle 0,4\rangle
C. (-4,-3)\cup(0,3)\cup(3,4)
D. (-2,1)\cup(3,4)
Zadanie 10. 1 pkt ⋅ Numer: pp-10711 ⋅ Poprawnie: 214/281 [76%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=2\sqrt{x} dla
x\in\{1,4,9,16,25,36\} .
Do zbioru wartości tej funkcji nie należy liczba:
Odpowiedzi:
A. 3
B. 10
C. 4
D. 12
E. 8
F. 6
Zadanie 11. 1 pkt ⋅ Numer: pp-11689 ⋅ Poprawnie: 46/68 [67%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wyznacz największą wartość funkcji określonej wzorem
f(x)=-\frac{2}{5}x-\frac{6}{5}
w przedziale
\langle -2,4\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10741 ⋅ Poprawnie: 603/941 [64%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Liczby
-6 i
6 są miejscami
zerowymi funkcji:
Odpowiedzi:
A. f(x)=x^2-12x+36
B. f(x)=x(x+6)
C. f(x)=\frac{1}{72}x^2-\frac{1}{2}
D. f(x)=\frac{(x-6)(x+6)}{x^2-36}
Zadanie 13. 1 pkt ⋅ Numer: pp-10726 ⋅ Poprawnie: 326/865 [37%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Rysunek przedstawia wykres funkcji
f :
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(x) \lessdot 0 dla x > 0
T/N : zbiór wartości funkcji jest zawarty w \langle -4,4)
Zadanie 14. 1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 205/563 [36%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
«« Dziedziną funkcji
f jest przedział
\langle -5,4\rangle :
Jaką długość ma najdłuższy przedział, w którym funkcja f jest monotoniczna?
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Rozwiąż