Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 520/756 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 18 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=x^3+18 T/N : f(x)=3(x^3+18)
Zadanie 2.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 260/431 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt M o rzędnej równej 20 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 402/921 [43%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. (-3,-2) B. \left(-2,-\frac{3}{2}\right)
C. (2,3) D. \langle 1,2)
Zadanie 4.  1 pkt ⋅ Numer: pp-10689 ⋅ Poprawnie: 337/510 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dziedziną funkcji f(x)=\frac{x}{\sqrt{49+x^2}}+(2-x)^2 jest:
Odpowiedzi:
A. (-\infty;-7)\cup(7;+\infty) B. \mathbb{R}-\{-7\}
C. \mathbb{R}-\{7\} D. \mathbb{R}
Zadanie 5.  1 pkt ⋅ Numer: pp-10686 ⋅ Poprawnie: 325/515 [63%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Dziedziną funkcji g(x)=\sqrt{10-\frac{10x-8}{2}} jest pewien przedział.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 13
C. -1 D. -\infty
E. 8 F. 4
Zadanie 6.  1 pkt ⋅ Numer: pp-10704 ⋅ Poprawnie: 278/414 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{8x}{x+1} dla x\neq -1.

Oblicz wartość funkcji f dla argumentu x=\sqrt{8}. Wynik zapisz w najprostszej nieskracalnej postaci \frac{a+b\sqrt{c}}{d}, gdzie a,b\in\mathbb{Z}, c,d\in\mathbb{N}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10719 ⋅ Poprawnie: 122/163 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 resztę z dzielenia tej liczby przez 23.

Spośród liczb: f(86), f(94), f(100), f(107) największą jest:

Odpowiedzi:
A. f(100) B. f(94)
C. f(86) D. f(107)
Zadanie 8.  1 pkt ⋅ Numer: pp-10717 ⋅ Poprawnie: 187/246 [76%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej resztę z dzielenia tej liczby przez 5.

Oblicz wartość wyrażenia \frac{f(23)}{f(34)}.

Odpowiedź:
\frac{f(m)}{f(n)}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10740 ⋅ Poprawnie: 99/127 [77%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja f opisana jest wzorem f(x)=\frac{1+18x}{x-1} dla pewnego argumentu przyjmuje wartość \sqrt{325}.

Argumentem tym jest:

Odpowiedzi:
A. \sqrt{325}-1 B. 325+\sqrt{325}
C. \left(\sqrt{325}+1\right)^2 D. \frac{\sqrt{325}+1}{\sqrt{325}-18}
Zadanie 10.  1 pkt ⋅ Numer: pp-11390 ⋅ Poprawnie: 168/213 [78%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Do zbioru wartości funkcji f(x)=6-|x|, gdzie x\in\mathbb{N} należy liczba:
Odpowiedzi:
A. 8 B. \frac{1}{6}
C. 2 D. 11
Zadanie 11.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 37/56 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{5}{4}x^2+1, w przedziale \langle -6,-1\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10742 ⋅ Poprawnie: 409/674 [60%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja f(x)= \begin{cases} x+3\text{, dla } x\in(-\infty, 0\rangle \\ 1+x^2\text{, dla } x\in(0,+\infty) \end{cases} ?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10751 ⋅ Poprawnie: 205/370 [55%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji f(x)=\sqrt{32}(x+6)+3.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 92/471 [19%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. ZW_{f}=\langle -2, 3\rangle B. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna
C. funkcja f ma ujemne miejsce zerowe D. funkcja f nie jest różnowartościowa
E. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle F. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm