Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 367/948 [38%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 13.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=0,5\frac{x^4}{x}-13 T/N : f(x)=\frac{x^3-13}{2}
Zadanie 2.  1 pkt ⋅ Numer: pp-10734 ⋅ Poprawnie: 676/971 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Do wykresu funkcji f(x)=\frac{a}{x-9} należy punkt A=\left(-1,-\frac{3}{5}\right).

Wyznacz wartość parametru a.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10723 ⋅ Poprawnie: 204/342 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji f(x)=(m-1)x+m^2-9 należy punkt P=(0,7).

Wyznacz wartość parametru m wiedząc, że jest ona dodatnia.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10690 ⋅ Poprawnie: 105/208 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x+10}\sqrt{x-2} i zapisz rozwiązanie w postaci sumy przedziałów.
Liczba x_0 jest największym z końców liczbowych tych przedziałów.
Liczba m jest najmniejszą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_0 i m.

Odpowiedzi:
x_0= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10686 ⋅ Poprawnie: 325/515 [63%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Dziedziną funkcji g(x)=\sqrt{10-\frac{10x-2}{2}} jest pewien przedział.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -1 B. -\infty
C. +\infty D. 12
E. 6 F. 13
Zadanie 6.  1 pkt ⋅ Numer: pp-10704 ⋅ Poprawnie: 278/414 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{8x}{x+1} dla x\neq -1.

Oblicz wartość funkcji f dla argumentu x=\sqrt{2}. Wynik zapisz w najprostszej nieskracalnej postaci \frac{a+b\sqrt{c}}{d}, gdzie a,b\in\mathbb{Z}, c,d\in\mathbb{N}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10719 ⋅ Poprawnie: 122/163 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 resztę z dzielenia tej liczby przez 23.

Spośród liczb: f(92), f(98), f(113), f(128) największą jest:

Odpowiedzi:
A. f(92) B. f(128)
C. f(98) D. f(113)
Zadanie 8.  1 pkt ⋅ Numer: pp-10728 ⋅ Poprawnie: 471/596 [79%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji y=f(x).

Podaj największą wartość tej funkcji.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10759 ⋅ Poprawnie: 142/220 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Funkcja f przyporządkowuje dowolnej liczbie całkowitej n ostatnią cyfrę 4-ej potęgi liczby n.

Ile elementów należy do zbioru wartości tej funkcji?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10760 ⋅ Poprawnie: 60/113 [53%] Rozwiąż 
Podpunkt 10.1 (0.5 pkt)
 Zbiorem wartości funkcji f jest przedział \langle -21,-8\rangle. Wyznacz zbiór tych wartości parametru q, dla których funkcja określona wzorem g(x)=f(x)+q nie ma miejsc zerowych.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (0.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 39/60 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{6}{5}x^2-4, w przedziale \langle 3,4\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10742 ⋅ Poprawnie: 409/674 [60%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja f(x)= \begin{cases} x-8\text{, dla } x\in(-\infty, 0\rangle \\ 1+8x^2\text{, dla } x\in(0,+\infty) \end{cases} ?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10751 ⋅ Poprawnie: 205/370 [55%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji f(x)=\sqrt{52}(x+5)-8.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10699 ⋅ Poprawnie: 709/1322 [53%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f.

Jaką długośc ma najdłuższy przedział, w którym funkcja f jest niemalejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm