Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 361/942 [38%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 3.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=\frac{x^3-3}{2} T/N : f(x)=0,5\frac{x^4}{x}-3
Zadanie 2.  1 pkt ⋅ Numer: pp-10734 ⋅ Poprawnie: 672/968 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Do wykresu funkcji f(x)=\frac{a}{x+5} należy punkt A=\left(-2,-\frac{7}{3}\right).

Wyznacz wartość parametru a.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10723 ⋅ Poprawnie: 200/338 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji f(x)=(m-1)x+m^2-8 należy punkt P=(0,17).

Wyznacz wartość parametru m wiedząc, że jest ona dodatnia.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10682 ⋅ Poprawnie: 672/826 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dziedziną funkcji f określonej wzorem f(x)=\frac{x-4}{x^2-3x} może być zbiór:
Odpowiedzi:
A. \mathbb{R} B. \mathbb{R}-\{-3,3\}
C. \mathbb{R}-\{-3,0\} D. \mathbb{R}-\{0,3\}
Zadanie 5.  1 pkt ⋅ Numer: pp-10681 ⋅ Poprawnie: 637/893 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz dziedzinę D_f funkcji określonej wzorem f(x)=\sqrt{-x-5} .

Podaj największą liczbę całkowitą, która należy do zbioru D_f.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10758 ⋅ Poprawnie: 176/288 [61%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dla argumentu x=\frac{1}{\sqrt{11}-1} oblicz wartość funkcji określonej wzorem f(x)=-2x+4 i zapisz wynik w najprostszej postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.

Podaj liczby m, n, k i p.

Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 127/235 [54%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja określona wzorem g(x)=-\frac{8-2x}{x}. Połowę liczby g\left(\sqrt{2}\right) zapisz w postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10747 ⋅ Poprawnie: 141/210 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=2019(3x+2)^{2019}+1.

Oblicz f(-1).

Odpowiedź:
f(x)= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10764 ⋅ Poprawnie: 541/714 [75%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Rysunek przedstawia wykres pewnej funkcji y=f(x), określonej dla x\in\langle -4, 4\rangle.

Zbiór wszystkich argumentów, dla których funkcja f przyjmuje wartości niedodatnie, to zbiór:

Odpowiedzi:
A. (-2,1)\cup(3,4) B. \langle 0,3) \cup (3,4\rangle
C. \langle -4,-3\rangle \cup \langle 0,4\rangle D. (-4,-3)\cup(0,3)\cup(3,4)
Zadanie 10.  1 pkt ⋅ Numer: pp-10763 ⋅ Poprawnie: 115/161 [71%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Do wykresu funkcji f(x)=ax+\frac{1}{2} określonej dla x\neq -1 należy punkt A=(-2,3).

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 36/57 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=\frac{3}{4}x^2+4, w przedziale \langle 1,6\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10738 ⋅ Poprawnie: 132/255 [51%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=\sqrt{x}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f nie ma miejsc zerowych T/N : funkcja przyjmuje wartość \frac{6}{\sqrt{6}}
T/N : funkcja f przyjmuje tylko wartości ujemne  
Zadanie 13.  1 pkt ⋅ Numer: pp-10713 ⋅ Poprawnie: 128/192 [66%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja określona wzorem f(x)=|x^2-12|-12?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 182/387 [47%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=x^2.

Wówczas:

Odpowiedzi:
T/N : f\left(-4\sqrt{3}\right)=-48 T/N : D_f=\left\langle 0,+\infty\right)
T/N : iloczyn x\cdot f(x) jest liczba dodatnią T/N : ZW_f=\left(0,+\infty\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm