Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 520/756 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 15 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=3(x^3+15) T/N : f(x)=15x^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10752 ⋅ Poprawnie: 357/577 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji y=\frac{77}{x} zawiera punkt o współrzędnych:
Odpowiedzi:
A. \left(-\sqrt{7}, -11\sqrt{11}\right) B. \left(-7,11\right)
C. \left(\sqrt{77},-\sqrt{77}\right) D. \left(-7\sqrt{11}, -\sqrt{11}\right)
Zadanie 3.  1 pkt ⋅ Numer: pp-10739 ⋅ Poprawnie: 322/425 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt B=(3,y) należy do wykresu funkcji f(x)=\frac{3-x^2}{x+6}.

Wyznacz y.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10691 ⋅ Poprawnie: 386/763 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\frac{x+3}{\sqrt{8-x}} i rozwiązanie zapisz w postaci sumy przedziałów. Liczba x_1 jest najmniejszm z końców liczbowych tych przedziałów, a liczba x_2 jest największą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10683 ⋅ Poprawnie: 998/1112 [89%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Dziedziną funkcji f jest przedział:
Odpowiedzi:
A. (-3, 8\rangle B. \langle 0, 3\rangle
C. (0, 8\rangle D. \langle -3, 3\rangle
Zadanie 6.  1 pkt ⋅ Numer: pp-10704 ⋅ Poprawnie: 278/414 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{7x}{x+1} dla x\neq -1.

Oblicz wartość funkcji f dla argumentu x=\sqrt{10}. Wynik zapisz w najprostszej nieskracalnej postaci \frac{a+b\sqrt{c}}{d}, gdzie a,b\in\mathbb{Z}, c,d\in\mathbb{N}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10712 ⋅ Poprawnie: 116/159 [72%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=\sqrt{x+2\sqrt{18}}. Wartość funkcji f dla argumentu x=\left(\sqrt{6}-\sqrt{3}\right)^2 jest równa:
Odpowiedzi:
A. \sqrt{16} B. \sqrt{20+12\sqrt{2}}
C. \sqrt{18+12\sqrt{2}} D. 3
Zadanie 8.  1 pkt ⋅ Numer: pp-10729 ⋅ Poprawnie: 855/1364 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
Zbiorem wartości funkcji, której wykres pokazano na rysunku jest:
Odpowiedzi:
A. (-1,4)-\{2\} B. \langle -1,4)
C. \langle -1,4\rangle D. \langle -1,2)\cup(2,4\rangle
Zadanie 9.  1 pkt ⋅ Numer: pp-10759 ⋅ Poprawnie: 142/220 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Funkcja f przyporządkowuje dowolnej liczbie całkowitej n ostatnią cyfrę 4-ej potęgi liczby n.

Ile elementów należy do zbioru wartości tej funkcji?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10763 ⋅ Poprawnie: 117/163 [71%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Do wykresu funkcji f(x)=ax+\frac{5}{7} określonej dla x\neq -1 należy punkt A=(-2,3).

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 37/56 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{1}{4}x^2+3, w przedziale \langle -5,-1\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10746 ⋅ Poprawnie: 169/368 [45%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=|x|-14, dla x\in\mathbb{C}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wykres tej funkcji nie ma punktów wspólnych z osią Oy T/N : dla pewnego argumentu funkcja ta przyjmuje wartość 2
T/N : wartości tej funkcji są liczbami naturalnymi  
Zadanie 13.  1 pkt ⋅ Numer: pp-10726 ⋅ Poprawnie: 326/865 [37%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Rysunek przedstawia wykres funkcji f:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja ta ma dwa miejsca zerowe T/N : f(x) \lessdot 0 dla x > 0
Zadanie 14.  1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 205/563 [36%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział \langle -5,4\rangle:

Jaką długość ma najdłuższy przedział, w którym funkcja f jest niemalejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm