Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 367/948 [38%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 14.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=\frac{1}{2}x^6-14 T/N : f(x)=0,5\frac{x^4}{x}-14
Zadanie 2.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 260/431 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt M o rzędnej równej 20 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10723 ⋅ Poprawnie: 204/342 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji f(x)=(m-1)x+m^2-17 należy punkt P=(0,-1).

Wyznacz wartość parametru m wiedząc, że jest ona dodatnia.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10691 ⋅ Poprawnie: 386/763 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\frac{x+3}{\sqrt{10-x}} i rozwiązanie zapisz w postaci sumy przedziałów. Liczba x_1 jest najmniejszm z końców liczbowych tych przedziałów, a liczba x_2 jest największą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10684 ⋅ Poprawnie: 163/245 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Dla którego z podanych zbiorów liczb naturalnych wyrażenie \frac{\sqrt{x-10}}{x-12} ma sens liczbowy:
Odpowiedzi:
A. \{10,13\} B. \{9,10,13\}
C. \{0,10,15\} D. \{11,12,16\}
Zadanie 6.  1 pkt ⋅ Numer: pp-10704 ⋅ Poprawnie: 278/414 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{8x}{x+1} dla x\neq -1.

Oblicz wartość funkcji f dla argumentu x=\sqrt{10}. Wynik zapisz w najprostszej nieskracalnej postaci \frac{a+b\sqrt{c}}{d}, gdzie a,b\in\mathbb{Z}, c,d\in\mathbb{N}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 127/237 [53%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja określona wzorem g(x)=-\frac{22-2x}{x}. Połowę liczby g\left(\sqrt{2}\right) zapisz w postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10717 ⋅ Poprawnie: 187/246 [76%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej resztę z dzielenia tej liczby przez 9.

Oblicz wartość wyrażenia \frac{f(28)}{f(38)}.

Odpowiedź:
\frac{f(m)}{f(n)}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10759 ⋅ Poprawnie: 142/220 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Funkcja f przyporządkowuje dowolnej liczbie całkowitej n ostatnią cyfrę 4-ej potęgi liczby n.

Ile elementów należy do zbioru wartości tej funkcji?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10760 ⋅ Poprawnie: 60/113 [53%] Rozwiąż 
Podpunkt 10.1 (0.5 pkt)
 Zbiorem wartości funkcji f jest przedział \langle -22,5\rangle. Wyznacz zbiór tych wartości parametru q, dla których funkcja określona wzorem g(x)=f(x)+q nie ma miejsc zerowych.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (0.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 37/56 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{5}{4}x^2-2, w przedziale \langle 3,6\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10742 ⋅ Poprawnie: 409/674 [60%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja f(x)= \begin{cases} x+5\text{, dla } x\in(-\infty, 0\rangle \\ 1-3x^2\text{, dla } x\in(0,+\infty) \end{cases} ?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10713 ⋅ Poprawnie: 132/197 [67%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja określona wzorem f(x)=|x^2+12|-12?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 92/471 [19%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna B. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach
C. funkcja f ma ujemne miejsce zerowe D. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle
E. D_{f}=\langle -5, 4\rangle F. funkcja f nie jest różnowartościowa


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm