« Dla argumentu x=\frac{1}{\sqrt{14}-1} oblicz wartość
funkcji określonej wzorem f(x)=-2x+4 i zapisz wynik
w najprostszej postaci \frac{m+n\sqrt{k}}{p}, gdzie
m,n,k,p\in\mathbb{Z}.
Podaj liczby m, n,
k i p.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}=
+\cdot√
(wpisz cztery liczby całkowite)
Zadanie 7.1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 126/234 [53%]
« Dana jest funkcja określona wzorem g(x)=-\frac{24-2x}{x}.
Połowę liczby g\left(\sqrt{2}\right) zapisz
w postaci \frac{m+n\sqrt{k}}{p},
gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}=
+\cdot√
(wpisz cztery liczby całkowite)
Zadanie 8.1 pkt ⋅ Numer: pp-10728 ⋅ Poprawnie: 470/595 [78%]
Zbiorem wartości funkcji f jest przedział
\langle -24,-4\rangle.
Wyznacz zbiór tych wartości parametru q, dla których
funkcja określona wzorem g(x)=f(x)+q nie ma miejsc zerowych.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych
przedziałów.
Odpowiedź:
min=(wpisz liczbę całkowitą)
Podpunkt 10.2 (0.5 pkt)
Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max=(wpisz liczbę całkowitą)
Zadanie 11.1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 34/53 [64%]