Podgląd testu : lo2@sp-04-funkcje-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 361/942 [38%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Funkcja
f każdej liczbie rzeczywistej
przypisuje połowę sześcianu tej liczby, pomniejszoną o 3.
Funkcję f opisuje wzór:
Odpowiedzi:
T/N : f(x)=\frac{x^3-3}{2}
T/N : f(x)=0,5\frac{x^4}{x}-3
Zadanie 2. 1 pkt ⋅ Numer: pp-10734 ⋅ Poprawnie: 672/968 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
» Do wykresu funkcji
f(x)=\frac{a}{x+5} należy punkt
A=\left(-2,-\frac{7}{3}\right) .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10723 ⋅ Poprawnie: 200/338 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu funkcji
f(x)=(m-1)x+m^2-8 należy punkt
P=(0,17) .
Wyznacz wartość parametru m wiedząc, że jest ona dodatnia.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10682 ⋅ Poprawnie: 672/826 [81%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dziedziną funkcji
f określonej wzorem
f(x)=\frac{x-4}{x^2-3x} może być zbiór:
Odpowiedzi:
A. \mathbb{R}
B. \mathbb{R}-\{-3,3\}
C. \mathbb{R}-\{-3,0\}
D. \mathbb{R}-\{0,3\}
Zadanie 5. 1 pkt ⋅ Numer: pp-10681 ⋅ Poprawnie: 637/893 [71%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę
D_f funkcji określonej wzorem
f(x)=\sqrt{-x-5}
.
Podaj największą liczbę całkowitą, która należy do zbioru D_f .
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10758 ⋅ Poprawnie: 176/288 [61%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dla argumentu
x=\frac{1}{\sqrt{11}-1} oblicz wartość
funkcji określonej wzorem
f(x)=-2x+4 i zapisz wynik
w najprostszej postaci
\frac{m+n\sqrt{k}}{p} , gdzie
m,n,k,p\in\mathbb{Z} .
Podaj liczby m , n ,
k i p .
Odpowiedź:
Zadanie 7. 1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 127/235 [54%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Dana jest funkcja określona wzorem
g(x)=-\frac{8-2x}{x} .
Połowę liczby
g\left(\sqrt{2}\right) zapisz
w postaci
\frac{m+n\sqrt{k}}{p} ,
gdzie
m,n,k,p\in\mathbb{Z} .
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10747 ⋅ Poprawnie: 141/210 [67%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Funkcja
f opisana jest wzorem:
f(x)=2019(3x+2)^{2019}+1 .
Oblicz f(-1) .
Odpowiedź:
f(x)=
(wpisz liczbę całkowitą)
Zadanie 9. 1 pkt ⋅ Numer: pp-10764 ⋅ Poprawnie: 541/714 [75%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Rysunek przedstawia wykres pewnej funkcji
y=f(x) ,
określonej dla
x\in\langle -4, 4\rangle .
Zbiór wszystkich argumentów, dla których funkcja f
przyjmuje wartości niedodatnie, to zbiór:
Odpowiedzi:
A. (-2,1)\cup(3,4)
B. \langle 0,3) \cup (3,4\rangle
C. \langle -4,-3\rangle \cup \langle 0,4\rangle
D. (-4,-3)\cup(0,3)\cup(3,4)
Zadanie 10. 1 pkt ⋅ Numer: pp-10763 ⋅ Poprawnie: 115/161 [71%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Do wykresu funkcji
f(x)=ax+\frac{1}{2} określonej dla
x\neq -1 należy punkt
A=(-2,3) .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 36/57 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Wyznacz największą wartość funkcji określonej wzorem
f(x)=\frac{3}{4}x^2+4 ,
w przedziale
\langle 1,6\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10738 ⋅ Poprawnie: 132/255 [51%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Funkcja
f opisana jest wzorem
f(x)=\sqrt{x} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : funkcja f nie ma miejsc zerowych
T/N : funkcja przyjmuje wartość \frac{6}{\sqrt{6}}
T/N : funkcja f przyjmuje tylko wartości ujemne
Zadanie 13. 1 pkt ⋅ Numer: pp-10713 ⋅ Poprawnie: 128/192 [66%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
« Ile miejsc zerowych ma funkcja określona wzorem
f(x)=|x^2-12|-12 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 182/387 [47%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
« Funkcja
f opisana jest wzorem:
f(x)=x^2 .
Wówczas:
Odpowiedzi:
T/N : f\left(-4\sqrt{3}\right)=-48
T/N : D_f=\left\langle 0,+\infty\right)
T/N : iloczyn x\cdot f(x) jest liczba dodatnią
T/N : ZW_f=\left(0,+\infty\right)
Rozwiąż