Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 360/940 [38%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 16.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=\frac{x^3-16}{2} T/N : f(x)=\frac{1}{2}\left(x^3-32\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-10752 ⋅ Poprawnie: 353/576 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji y=\frac{6}{x} zawiera punkt o współrzędnych:
Odpowiedzi:
A. \left(-3,2\right) B. \left(-\sqrt{3}, -2\sqrt{2}\right)
C. \left(-3\sqrt{2}, -\sqrt{2}\right) D. \left(\sqrt{6},-\sqrt{6}\right)
Zadanie 3.  1 pkt ⋅ Numer: pp-10723 ⋅ Poprawnie: 200/338 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji f(x)=(m-1)x+m^2-9 należy punkt P=(0,16).

Wyznacz wartość parametru m wiedząc, że jest ona dodatnia.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10689 ⋅ Poprawnie: 335/506 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dziedziną funkcji f(x)=\frac{x}{\sqrt{64+x^2}}+(2-x)^2 jest:
Odpowiedzi:
A. \mathbb{R}-\{-8,8\} B. \mathbb{R}
C. \mathbb{R}-\{8\} D. \mathbb{R}-\{-8\}
Zadanie 5.  1 pkt ⋅ Numer: pp-10687 ⋅ Poprawnie: 303/497 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz dziedzinę D_f funkcji określonej wzorem f(x)=\sqrt{17-x}-\sqrt{6-x} .

Podaj największą liczbę całkowitą, która należy do zbioru D_f.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10758 ⋅ Poprawnie: 176/288 [61%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dla argumentu x=\frac{1}{\sqrt{14}-1} oblicz wartość funkcji określonej wzorem f(x)=-2x+4 i zapisz wynik w najprostszej postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.

Podaj liczby m, n, k i p.

Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 126/234 [53%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dana jest funkcja określona wzorem g(x)=-\frac{24-2x}{x}. Połowę liczby g\left(\sqrt{2}\right) zapisz w postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10728 ⋅ Poprawnie: 470/595 [78%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji y=f(x).

Podaj największą wartość tej funkcji.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10743 ⋅ Poprawnie: 56/97 [57%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dziedziną funkcji g(x)=\frac{3x-39}{|13-x|} jest zbiór (13,+\infty).

Zatem:

Odpowiedzi:
A. ZW_{g}=\{-3\} B. ZW_{g}=\{-3,3\}
C. ZW_{g}=\{3\} D. ZW_{g}=\mathbb{R}-\{-3\}
Zadanie 10.  1 pkt ⋅ Numer: pp-10760 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 10.1 (0.5 pkt)
 Zbiorem wartości funkcji f jest przedział \langle -24,-4\rangle. Wyznacz zbiór tych wartości parametru q, dla których funkcja określona wzorem g(x)=f(x)+q nie ma miejsc zerowych.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (0.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 34/53 [64%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{1}{6}x^2+3, w przedziale \langle -4,-2\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10741 ⋅ Poprawnie: 570/900 [63%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Liczby -15 i 15 są miejscami zerowymi funkcji:
Odpowiedzi:
A. f(x)=x(x+15) B. f(x)=x^2-30x+225
C. f(x)=\frac{1}{450}x^2-\frac{1}{2} D. f(x)=\frac{(x-15)(x+15)}{x^2-225}
Zadanie 13.  1 pkt ⋅ Numer: pp-10736 ⋅ Poprawnie: 344/576 [59%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=2x+b ma takie samo miejsce zerowe, jakie ma funkcja g(x)=-3x+\frac{1}{10}.

Wyznacz wartość parametru b.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-10699 ⋅ Poprawnie: 690/1292 [53%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f.

Jaką długośc ma najdłuższy przedział, w którym funkcja f jest niemalejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm