Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 520/756 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 19 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=(x+19)^3 T/N : f(x)=19x^3
Zadanie 2.  1 pkt ⋅ Numer: pp-10734 ⋅ Poprawnie: 676/971 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Do wykresu funkcji f(x)=\frac{a}{x+4} należy punkt A=\left(-3,7\right).

Wyznacz wartość parametru a.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10739 ⋅ Poprawnie: 322/425 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Punkt B=(-4,y) należy do wykresu funkcji f(x)=\frac{4-x^2}{x-4}.

Wyznacz y.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10682 ⋅ Poprawnie: 674/827 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dziedziną funkcji f określonej wzorem f(x)=\frac{x-4}{x^2-10x} może być zbiór:
Odpowiedzi:
A. \mathbb{R}-\{-10,0\} B. \mathbb{R}-\{-10,10\}
C. \mathbb{R}-\{0,10\} D. \mathbb{R}
Zadanie 5.  1 pkt ⋅ Numer: pp-10681 ⋅ Poprawnie: 638/894 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz dziedzinę D_f funkcji określonej wzorem f(x)=\sqrt{-x-16} .

Podaj największą liczbę całkowitą, która należy do zbioru D_f.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10720 ⋅ Poprawnie: 215/295 [72%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{-4x+15}{x} dla każdej liczby rzeczywistej x\neq 0. Oblicz wartość funkcji f\left(\sqrt{3}\right). Wynik zapisz w najprostszej postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Z}, c\in\mathbb{N} i jest najmniejsze możliwe.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10718 ⋅ Poprawnie: 35/89 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem y=f(x) jest przedział \langle -2,5). Natomiast zbiorem wartości funkcji y=-2\cdot f(x) jest pewien inny przedział, w którym min jest najmniejszą liczbą całkowitą, a max największą liczbą całkowitą.

Podaj liczby min i max.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10724 ⋅ Poprawnie: 544/838 [64%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Na rysunku przedstawiony jest wykres funkcji y=f(x). Rozwiązaniem nierówności f(x)\geqslant 3 jest przedział:
Odpowiedzi:
A. \left( -\frac{5}{2},0\right\rangle B. \left\langle -\frac{5}{2},2\right\rangle
C. \left\langle -\frac{5}{2},0\right\rangle D. \left\langle -\frac{5}{2},6\right\rangle
Zadanie 9.  1 pkt ⋅ Numer: pp-10753 ⋅ Poprawnie: 57/82 [69%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Wartością funkcji dla argumentu naturalnego n jest ostatnia cyfra kwadratu liczby n zwiększona o 2. Wynika stąd, że zbiór wartości funkcji zawiera liczbę:
Odpowiedzi:
A. 7 B. 4
C. 9 D. 5
Zadanie 10.  1 pkt ⋅ Numer: pp-10756 ⋅ Poprawnie: 47/87 [54%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f określona dla wszystkich liczb całkowitych dodatnich, przyporządkowuje liczbie n ostatnią cyfrę jej czwartej potęgi.

Ile liczb zawiera zbiór wartości funkcji f?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 39/60 [65%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{1}{5}x^2-6, w przedziale \langle -6,-1\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-11391 ⋅ Poprawnie: 159/227 [70%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Wyznacz najmniejsze miejsce zerowe funkcji określonej wzorem f(x)=\frac{x^2+9x}{|x+9|}.
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10751 ⋅ Poprawnie: 205/370 [55%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji f(x)=\sqrt{28}(x+6)+3.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 14.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 92/471 [19%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. D_{f}=\langle -5, 4\rangle B. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach
C. funkcja f ma ujemne miejsce zerowe D. funkcja f nie jest różnowartościowa
E. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna F. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm