Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 520/756 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f liczbie rzeczywistej x przypisuje sześcian zwiększonej o 12 liczby x.

Funkcja f może być opisana wzorem:

Odpowiedzi:
T/N : f(x)=12x^3 T/N : f(x)=x^3+12
Zadanie 2.  1 pkt ⋅ Numer: pp-10752 ⋅ Poprawnie: 357/577 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji y=\frac{39}{x} zawiera punkt o współrzędnych:
Odpowiedzi:
A. \left(-3\sqrt{13}, -\sqrt{13}\right) B. \left(-3,13\right)
C. \left(-\sqrt{3}, -13\sqrt{13}\right) D. \left(\sqrt{39},-\sqrt{39}\right)
Zadanie 3.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 277/402 [68%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m+4)x-4 należy punkt S=(-4,-12).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10691 ⋅ Poprawnie: 386/763 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\frac{x+3}{\sqrt{7-x}} i rozwiązanie zapisz w postaci sumy przedziałów. Liczba x_1 jest najmniejszm z końców liczbowych tych przedziałów, a liczba x_2 jest największą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10683 ⋅ Poprawnie: 998/1112 [89%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Dziedziną funkcji f jest przedział:
Odpowiedzi:
A. \langle -3, 3\rangle B. (-3, 8\rangle
C. \langle 0, 3\rangle D. (0, 8\rangle
Zadanie 6.  1 pkt ⋅ Numer: pp-10721 ⋅ Poprawnie: 218/401 [54%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wykres funkcji f pokazano na rysunku:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : \frac{1}{f(1)} > f(4) T/N : \left[f(-4)\right]^2 < f(4)
Zadanie 7.  1 pkt ⋅ Numer: pp-10718 ⋅ Poprawnie: 35/89 [39%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem y=f(x) jest przedział \langle -4,3). Natomiast zbiorem wartości funkcji y=-3\cdot f(x) jest pewien inny przedział, w którym min jest najmniejszą liczbą całkowitą, a max największą liczbą całkowitą.

Podaj liczby min i max.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10727 ⋅ Poprawnie: 466/699 [66%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji f:

Zbiorem wartości funkcji g określonej wzorem g(x)=f(x)-1 jest zbiór:

Odpowiedzi:
A. \left\langle -7,\frac{1}{8}\right\rangle B. \left\langle -4,\frac{25}{8}\right\rangle
C. \left\langle -3,\frac{33}{8}\right\rangle D. \left\langle -5,\frac{17}{8}\right\rangle
Zadanie 9.  1 pkt ⋅ Numer: pp-10715 ⋅ Poprawnie: 73/95 [76%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej n większej od 1 ilość liczb pierwszych mniejszych od n.

Oblicz f(32)-f(13).

Odpowiedź:
f(x_1)-f(x_2)= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10710 ⋅ Poprawnie: 92/137 [67%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=\sqrt[3]{x}-\frac{1}{\sqrt[3]{x^2}}.

Wtedy liczba f(-9) jest równa:

Odpowiedzi:
A. -\frac{10}{9}\sqrt[3]{81} B. -\frac{10}{9}\sqrt[3]{9}
C. -\frac{9}{10}\sqrt[3]{81} D. -\frac{9}{10}\sqrt[3]{9}
Zadanie 11.  1 pkt ⋅ Numer: pp-11689 ⋅ Poprawnie: 46/68 [67%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{1}{3}x+\frac{3}{4} w przedziale \langle -2,6\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10746 ⋅ Poprawnie: 169/368 [45%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=|x|-11, dla x\in\mathbb{C}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : dla pewnego argumentu funkcja ta przyjmuje wartość -6 T/N : miejscem zerowym tej funkcji jest punkt (11,0)
T/N : wykres tej funkcji nie ma punktów wspólnych z osią Oy  
Zadanie 13.  1 pkt ⋅ Numer: pp-10713 ⋅ Poprawnie: 132/197 [67%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja określona wzorem f(x)=|x^2+1|-1?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 205/563 [36%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział \langle -5,4\rangle:

Jaką długość ma najdłuższy przedział, w którym funkcja f jest monotoniczna?

Odpowiedź:
d= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm