Podgląd testu : lo2@sp-04-funkcje-pp-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10696 ⋅ Poprawnie: 517/751 [68%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja
f liczbie rzeczywistej
x przypisuje
sześcian zwiększonej o
18 liczby
x .
Funkcja f może być opisana wzorem:
Odpowiedzi:
T/N : f(x)=18x^3
T/N : f(x)=x^3+18
Zadanie 2. 1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 252/426 [59%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Punkt
M o rzędnej równej
20
należy do wykresu funkcji
f(x)=2+\frac{4}{1-x} .
Wyznacz odciętą punktu M .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 396/915 [43%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Na rysunku przedstawiono wykres funkcji
y=f(x) .
W którym z przedziałów, funkcja przyjmuje wartość 1 :
Odpowiedzi:
A. (2,3)
B. \left(-2,-\frac{3}{2}\right)
C. \langle 1,2)
D. (-1,2)
Zadanie 4. 1 pkt ⋅ Numer: pp-10691 ⋅ Poprawnie: 385/756 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę funkcji
f(x)=\frac{x+3}{\sqrt{10-x}}
i rozwiązanie zapisz w postaci sumy przedziałów. Liczba
x_1
jest najmniejszm z końców liczbowych tych przedziałów, a liczba
x_2 jest największą liczbą całkowitą z dziedziny tej funkcji.
Podaj liczby x_1 i x_2 .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10687 ⋅ Poprawnie: 303/497 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wyznacz dziedzinę
D_f funkcji określonej wzorem
f(x)=\sqrt{15-x}-\sqrt{16-x}
.
Podaj największą liczbę całkowitą, która należy do zbioru D_f .
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10721 ⋅ Poprawnie: 218/399 [54%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Wykres funkcji
f pokazano na rysunku:
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : \left[f(-3)\right]^2 < f(4)
T/N : f(2) > \left[f(3)\right]^2
Zadanie 7. 1 pkt ⋅ Numer: pp-10718 ⋅ Poprawnie: 35/88 [39%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Zbiorem wartości funkcji określonej wzorem
y=f(x) jest przedział
\langle -2,6) .
Natomiast zbiorem wartości funkcji
y=-2\cdot f(x) jest pewien inny przedział,
w którym
min jest najmniejszą liczbą całkowitą, a
max największą liczbą całkowitą.
Podaj liczby min i max .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-10724 ⋅ Poprawnie: 542/836 [64%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji
y=f(x) . Rozwiązaniem nierówności
f(x)\geqslant 3 jest przedział:
Odpowiedzi:
A. \left( -\frac{5}{2},0\right\rangle
B. \left\langle -\frac{5}{2},2\right\rangle
C. \left\langle -\frac{5}{2},0\right\rangle
D. \left\langle -\frac{5}{2},6\right\rangle
Zadanie 9. 1 pkt ⋅ Numer: pp-10715 ⋅ Poprawnie: 72/94 [76%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Funkcja
f przyporządkowuje każdej liczbie naturalnej
n większej od
1 ilość
liczb pierwszych mniejszych od
n .
Oblicz f(37)-f(20) .
Odpowiedź:
f(x_1)-f(x_2)=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11390 ⋅ Poprawnie: 167/211 [79%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Do zbioru wartości funkcji
f(x)=6-|x| , gdzie
x\in\mathbb{N} należy liczba:
Odpowiedzi:
A. 1
B. 11
C. \frac{1}{4}
D. 8
Zadanie 11. 1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 34/53 [64%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Wyznacz najmniejszą wartość funkcji określonej wzorem
f(x)=\frac{2}{3}x^2+6 ,
w przedziale
\langle 4,6\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10738 ⋅ Poprawnie: 131/255 [51%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Funkcja
f opisana jest wzorem
f(x)=\sqrt{x} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : funkcja f nie ma miejsc zerowych
T/N : D_f=\mathbb{R}
T/N : funkcja przyjmuje wartość \frac{27}{\sqrt{27}}
Zadanie 13. 1 pkt ⋅ Numer: pp-10706 ⋅ Poprawnie: 749/957 [78%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Liczba
1 jest miejscem zerowym
funkcji
f(x)=(2m-1)x+9 .
Wyznacz wartość parametru m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pp-10699 ⋅ Poprawnie: 702/1313 [53%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
f .
Jaką długośc ma najdłuższy przedział, w którym funkcja f jest niemalejąca?
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Rozwiąż