Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 367/948 [38%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 1.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=\frac{1}{2}x^6-1 T/N : f(x)=\frac{1}{2}\left(x^3-2\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 277/402 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-8)x+4 należy punkt S=(-4,44).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10692 ⋅ Poprawnie: 126/168 [75%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dziedziną funkcji f określonej wzorem f(x)=\log{(x^2+4)} jest zbiór:
Odpowiedzi:
A. (-2;2) B. (-\infty;-2)\cup(2;+\infty)
C. \mathbb{R}-\{-2;2\} D. \mathbb{R}
Zadanie 4.  1 pkt ⋅ Numer: pp-10686 ⋅ Poprawnie: 325/515 [63%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Dziedziną funkcji g(x)=\sqrt{2-\frac{2x-9}{2}} jest pewien przedział.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -\infty
C. -3 D. 6
E. -5 F. -9
Zadanie 5.  1 pkt ⋅ Numer: pp-10720 ⋅ Poprawnie: 215/295 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{-9x+6}{x} dla każdej liczby rzeczywistej x\neq 0. Oblicz wartość funkcji f\left(\sqrt{3}\right). Wynik zapisz w najprostszej postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Z}, c\in\mathbb{N} i jest najmniejsze możliwe.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10715 ⋅ Poprawnie: 73/95 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej n większej od 1 ilość liczb pierwszych mniejszych od n.

Oblicz f(25)-f(18).

Odpowiedź:
f(x_1)-f(x_2)= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10755 ⋅ Poprawnie: 103/124 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 » Zbiór wartości funkcji f(x)=3-\frac{7}{x+2} nie zawiera liczby:
Odpowiedzi:
A. 1 B. 3
C. 2 D. 8
E. 5 F. 6
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x+4)^3 & \text{dla } -4\leqslant x \lessdot -2\\ -x^2-8x-12 & \text{dla } -2\leqslant x \leqslant 2 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-6)-f(-2) > 0 T/N : f(-1)-f(-6) \lessdot 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 55/90 [61%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=-\frac{3}{5}x+\frac{1}{2} w przedziale \langle -5,1\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10736 ⋅ Poprawnie: 370/601 [61%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=2x+b ma takie samo miejsce zerowe, jakie ma funkcja g(x)=-3x-\frac{5}{8}.

Wyznacz wartość parametru b.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pr-10093 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} x^3-1 & \text{dla }x \in(-1,0\rangle\\ x^5-34 & \text{dla }x > 2\\ x^3-2x^2 & \text{dla }x\in(0,2) \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10090 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} 2x-2 & \text{dla }x \lessdot 0\\ -3x+3 & \text{dla }0\leqslant x \lessdot 2\\ -\frac{1}{2}x-4 &\text{dla }x\geqslant 2 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 92/471 [19%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. ZW_{f}=\langle -2, 3\rangle B. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna
C. funkcja f ma ujemne miejsce zerowe D. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle
E. funkcja f nie jest różnowartościowa F. D_{f}=\langle -5, 4\rangle
Zadanie 14.  1 pkt ⋅ Numer: pr-10280 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=\frac{x^4-1}{x^2+1} T/N : f(x)=\frac{x^8-x^2}{x^4-4x^2}
T/N : f(x)=x^2+6  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm