Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10734 ⋅ Poprawnie: 676/971 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Do wykresu funkcji f(x)=\frac{a}{x-8} należy punkt A=\left(-3,-\frac{9}{11}\right).

Wyznacz wartość parametru a.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 402/921 [43%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. \left(-2,-\frac{3}{2}\right) B. (-1,2)
C. \langle 1,2) D. (-3,-2)
Zadanie 3.  1 pkt ⋅ Numer: pp-10691 ⋅ Poprawnie: 386/763 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\frac{x+3}{\sqrt{11-x}} i rozwiązanie zapisz w postaci sumy przedziałów. Liczba x_1 jest najmniejszm z końców liczbowych tych przedziałów, a liczba x_2 jest największą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10693 ⋅ Poprawnie: 124/152 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Do dziedziny funkcji f(x)=\log(169-x^2) należy liczba:
Odpowiedzi:
A. -\sqrt{170} B. -\sqrt{168}
C. 15 D. \sqrt{171}
Zadanie 5.  1 pkt ⋅ Numer: pp-10718 ⋅ Poprawnie: 35/89 [39%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem y=f(x) jest przedział \langle -4,5). Natomiast zbiorem wartości funkcji y=-2\cdot f(x) jest pewien inny przedział, w którym min jest najmniejszą liczbą całkowitą, a max największą liczbą całkowitą.

Podaj liczby min i max.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10715 ⋅ Poprawnie: 73/95 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej n większej od 1 ilość liczb pierwszych mniejszych od n.

Oblicz f(39)-f(11).

Odpowiedź:
f(x_1)-f(x_2)= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10705 ⋅ Poprawnie: 498/586 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x).

Wyznacz największą wartość funkcji f w przedziale \langle -2, 3\rangle.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x-4)^3 & \text{dla } -4\leqslant x \lessdot 6\\ -x^2+8x-12 & \text{dla } 6\leqslant x \leqslant 10 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(3)+f(4) > 0 T/N : f(7)-f(2) \lessdot 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 39/60 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{5}{6}x^2+6, w przedziale \langle -4,-2\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10726 ⋅ Poprawnie: 326/865 [37%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rysunek przedstawia wykres funkcji f:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(x) \lessdot 0 dla x > 0 T/N : funkcja ta ma dwa miejsca zerowe
Zadanie 11.  1 pkt ⋅ Numer: pr-10092 ⋅ Poprawnie: 19/20 [95%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} -(x-1)(x+8) & \text{dla }x \leqslant -1\\ x^2+25 & \text{dla }x > -1 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10084 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} x-12 & \text{dla }x\leqslant 7\\ -x+2 & \text{dla }x > 7 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 92/471 [19%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. ZW_{f}=\langle -2, 3\rangle B. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach
C. funkcja f ma ujemne miejsce zerowe D. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna
E. funkcja f nie jest różnowartościowa F. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle
Zadanie 14.  1 pkt ⋅ Numer: pr-10280 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=-x^4-1 T/N : f(x)=\frac{x-5}{2x^2}
T/N : f(x)=x^3-3x  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm