Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10739 ⋅ Poprawnie: 322/425 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt B=(6,y) należy do wykresu funkcji f(x)=\frac{4-x^2}{x-1}.

Wyznacz y.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 402/921 [43%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. \langle 1,2) B. (-3,-2)
C. \left(-2,-\frac{3}{2}\right) D. (2,3)
Zadanie 3.  1 pkt ⋅ Numer: pp-10690 ⋅ Poprawnie: 105/208 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x+6}\sqrt{x-9} i zapisz rozwiązanie w postaci sumy przedziałów.
Liczba x_0 jest największym z końców liczbowych tych przedziałów.
Liczba m jest najmniejszą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_0 i m.

Odpowiedzi:
x_0= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10687 ⋅ Poprawnie: 304/499 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę D_f funkcji określonej wzorem f(x)=\sqrt{15-x}-\sqrt{16-x} .

Podaj największą liczbę całkowitą, która należy do zbioru D_f.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10721 ⋅ Poprawnie: 218/401 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wykres funkcji f pokazano na rysunku:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : \frac{1}{f(3)} > f(4) T/N : f(3) > \left[f(3)\right]^2
Zadanie 6.  1 pkt ⋅ Numer: pp-10715 ⋅ Poprawnie: 73/95 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej n większej od 1 ilość liczb pierwszych mniejszych od n.

Oblicz f(37)-f(20).

Odpowiedź:
f(x_1)-f(x_2)= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10710 ⋅ Poprawnie: 92/137 [67%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=\sqrt[3]{x}-\frac{1}{\sqrt[3]{x^2}}.

Wtedy liczba f(-14) jest równa:

Odpowiedzi:
A. -\frac{14}{15}\sqrt[3]{196} B. -\frac{15}{14}\sqrt[3]{14}
C. -\frac{14}{15}\sqrt[3]{14} D. -\frac{15}{14}\sqrt[3]{196}
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x-3)^3 & \text{dla } -4\leqslant x \lessdot 5\\ -x^2+6x-5 & \text{dla } 5\leqslant x \leqslant 9 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(2)+f(3) > 0 T/N : f(6)-f(1) \lessdot 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 55/90 [61%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{4}{5}x-\frac{1}{3} w przedziale \langle -3,2\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10713 ⋅ Poprawnie: 132/197 [67%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja określona wzorem f(x)=|x^2+11|-11?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pr-10094 ⋅ Poprawnie: 19/20 [95%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Funkcja określona wzorem f(x)=\left\lbrace \begin{array}{ll} x+4 & \text{dla }x \in(-\infty,-2)\\ x^2+5 & \text{dla }x\in\langle -2,2)\\ 2x-1 & \text{dla }x\in\langle 2,+\infty) \end{array} ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10090 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} 2x+2 & \text{dla }x \lessdot 0\\ -3x+5 & \text{dla }0\leqslant x \lessdot 2\\ -\frac{1}{2}x-1 &\text{dla }x\geqslant 2 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 205/563 [36%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział \langle -5,4\rangle:

Jaką długość ma najdłuższy przedział, w którym funkcja f jest niemalejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pr-10280 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=\frac{x-5}{2x^2} T/N : f(x)=x^3-3x
T/N : f(x)=-x^4-1  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm