Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10739 ⋅ Poprawnie: 318/421 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt B=(1,y) należy do wykresu funkcji f(x)=\frac{-2-x^2}{x-5}.

Wyznacz y.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 272/400 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m+1)x-3 należy punkt S=(-5,-33).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10689 ⋅ Poprawnie: 335/506 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dziedziną funkcji f(x)=\frac{x}{\sqrt{25+x^2}}+(2-x)^2 jest:
Odpowiedzi:
A. \mathbb{R} B. \mathbb{R}-\{5\}
C. (-\infty;-5)\cup(5;+\infty) D. \mathbb{R}-\{-5,5\}
Zadanie 4.  1 pkt ⋅ Numer: pp-10681 ⋅ Poprawnie: 637/893 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę D_f funkcji określonej wzorem f(x)=\sqrt{-x-11} .

Podaj największą liczbę całkowitą, która należy do zbioru D_f.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10721 ⋅ Poprawnie: 218/399 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wykres funkcji f pokazano na rysunku:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : \left[f(-4)\right]^2 < f(4) T/N : f(3) > \left[f(3)\right]^2
Zadanie 6.  1 pkt ⋅ Numer: pp-10729 ⋅ Poprawnie: 852/1360 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Zbiorem wartości funkcji, której wykres pokazano na rysunku jest:
Odpowiedzi:
A. \langle -1,2)\cup(2,4\rangle B. \langle -1,4\rangle
C. (-1,4)-\{2\} D. \langle -1,4)
Zadanie 7.  1 pkt ⋅ Numer: pp-10756 ⋅ Poprawnie: 46/86 [53%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja f określona dla wszystkich liczb całkowitych dodatnich, przyporządkowuje liczbie n ostatnią cyfrę jej czwartej potęgi.

Ile liczb zawiera zbiór wartości funkcji f?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x)^3 & \text{dla } -4\leqslant x \lessdot 2\\ -x^2+0x+4 & \text{dla } 2\leqslant x \leqslant 6 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(2)-f(1) \lessdot 0 T/N : f(3)-f(-2) \lessdot 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 52/86 [60%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{3}{5}x+\frac{1}{6} w przedziale \langle -2,5\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10738 ⋅ Poprawnie: 109/236 [46%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=\sqrt{-x}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f nie ma miejsc zerowych T/N : funkcja przyjmuje wartość \frac{18}{\sqrt{18}}
T/N : funkcja f przyjmuje tylko wartości ujemne  
Zadanie 11.  1 pkt ⋅ Numer: pr-10093 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} x^3 & \text{dla }x \in(-1,0\rangle\\ x^5-30 & \text{dla }x > 2\\ x^3+4x^2 & \text{dla }x\in(0,2) \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10084 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} x-7 & \text{dla }x\leqslant 5\\ -x+3 & \text{dla }x > 5 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10700 ⋅ Poprawnie: 500/888 [56%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji h:

Jaką długość ma najdłuższy przedział, w którym funkcja h jest monotoniczna?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pr-10279 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Które z wzorów opisują funkcję parzystą?
Odpowiedzi:
T/N : f(x)=\frac{x-5}{2x^2} T/N : f(x)=\frac{2x}{x^2+1}
T/N : f(x)=|x|-4  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm