Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 217/391 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt M o rzędnej równej 20 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10732 ⋅ Poprawnie: 621/1581 [39%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
« Na rysunku przedstawiono wykres funkcji f:

Zbiorem wartości funkcji f jest:

Odpowiedzi:
A. \left(-2, 2\right) B. \left(-2,2\rangle
C. \langle -2, 2\rangle D. \left\langle -2, 2\right)
Zadanie 3.  1 pkt ⋅ Numer: pp-10692 ⋅ Poprawnie: 118/160 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dziedziną funkcji f określonej wzorem f(x)=\log{(x^2+100)} jest zbiór:
Odpowiedzi:
A. \mathbb{R} B. \mathbb{R}-\{-10;10\}
C. (-\infty;-10)\cup(10;+\infty) D. (-10;10)
Zadanie 4.  1 pkt ⋅ Numer: pp-10687 ⋅ Poprawnie: 283/475 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę D_f funkcji określonej wzorem f(x)=\sqrt{15-x}-\sqrt{12-x} .

Podaj największą liczbę całkowitą, która należy do zbioru D_f.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 124/232 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja określona wzorem g(x)=-\frac{22-2x}{x}. Połowę liczby g\left(\sqrt{2}\right) zapisz w postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10714 ⋅ Poprawnie: 292/390 [74%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f każdej liczbie naturalnej ze zbioru \{ 18,23,29,35\} przyporządkowuje resztę z dzielenia tej liczby przez 4.

Zbiorem wartości tej funkcji jest zbiór:

Odpowiedzi:
A. \{0,1,3\} B. \{1,2,3\}
C. \{0,2,3\} D. \{0,1,2\}
Zadanie 7.  1 pkt ⋅ Numer: pp-10716 ⋅ Poprawnie: 70/131 [53%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja f, określona dla wszystkich liczb całkowitych dodatnich, przyporządkowuje liczbie n ostatnią cyfrę jej sześcianu, a zbiór wartości funkcji f zawiera k elementów.

Wyznacz k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x-3)^3 & \text{dla } -4\leqslant x \lessdot 5\\ -x^2+6x-5 & \text{dla } 5\leqslant x \leqslant 9 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(1)-f(5) > 0 T/N : f(5)-f(4) \lessdot 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 34/53 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{3}{4}x^2+2, w przedziale \langle 4,6\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10746 ⋅ Poprawnie: 166/364 [45%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=|x|-17, dla x\in\mathbb{C}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wykres tej funkcji nie ma punktów wspólnych z osią Oy T/N : wartości tej funkcji są liczbami naturalnymi
T/N : dla pewnego argumentu funkcja ta przyjmuje wartość -5  
Zadanie 11.  1 pkt ⋅ Numer: pr-10092 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} -(x-1)(x+6) & \text{dla }x \leqslant -1\\ x^2+4 & \text{dla }x > -1 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10091 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Wyznacz największe miejsce zerowe funkcji określonej wzorem f(x)=\left\lbrace \begin{array}{ll} x-6 & \text{dla }x \geqslant 8\\ x^2-64 & \text{dla }x \lessdot 8 \end{array} .
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 85/439 [19%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. ZW_{f}=\langle -2, 3\rangle B. funkcja f ma ujemne miejsce zerowe
C. funkcja f nie jest różnowartościowa D. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach
E. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle F. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna
Zadanie 14.  1 pkt ⋅ Numer: pr-10281 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=x^3-x T/N : f(x)=\frac{x^2+3x}{x^2+4}
T/N : f(x)=\frac{x^2-4}{|x-2|}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm