Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10695 ⋅ Poprawnie: 361/942 [38%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Funkcja f każdej liczbie rzeczywistej przypisuje połowę sześcianu tej liczby, pomniejszoną o 13.

Funkcję f opisuje wzór:

Odpowiedzi:
T/N : f(x)=\frac{1}{2}x^6-13 T/N : f(x)=0,5\frac{x^4}{x}-13
Zadanie 2.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 396/916 [43%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. \langle 1,2) B. (-1,2)
C. \left(-2,-\frac{3}{2}\right) D. (2,3)
Zadanie 3.  1 pkt ⋅ Numer: pp-10690 ⋅ Poprawnie: 102/204 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x+9}\sqrt{x-6} i zapisz rozwiązanie w postaci sumy przedziałów.
Liczba x_0 jest największym z końców liczbowych tych przedziałów.
Liczba m jest najmniejszą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_0 i m.

Odpowiedzi:
x_0= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10684 ⋅ Poprawnie: 161/243 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla którego z podanych zbiorów liczb naturalnych wyrażenie \frac{\sqrt{x-9}}{x-11} ma sens liczbowy:
Odpowiedzi:
A. \{10,11,15\} B. \{0,9,14\}
C. \{8,9,12\} D. \{9,12\}
Zadanie 5.  1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 127/236 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja określona wzorem g(x)=-\frac{20-2x}{x}. Połowę liczby g\left(\sqrt{2}\right) zapisz w postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10728 ⋅ Poprawnie: 471/596 [79%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji y=f(x).

Podaj największą wartość tej funkcji.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10762 ⋅ Poprawnie: 249/299 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Podaj największą wartość funkcji f, której wykres pokazano na rysunku:
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x-2)^3 & \text{dla } -4\leqslant x \lessdot 4\\ -x^2+4x & \text{dla } 4\leqslant x \leqslant 8 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(0)-f(4) > 0 T/N : f(5)-f(0) \lessdot 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 37/58 [63%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{1}{5}x^2-1, w przedziale \langle -6,-1\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10751 ⋅ Poprawnie: 205/370 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji f(x)=\sqrt{20}(x-8)-1.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pr-10092 ⋅ Poprawnie: 15/15 [100%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} -(x-1)(x+7) & \text{dla }x \leqslant -1\\ x^2+1 & \text{dla }x > -1 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10091 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Wyznacz największe miejsce zerowe funkcji określonej wzorem f(x)=\left\lbrace \begin{array}{ll} x-6 & \text{dla }x \geqslant 7\\ x^2-49 & \text{dla }x \lessdot 7 \end{array} .
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 183/388 [47%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=x^2.

Wówczas:

Odpowiedzi:
T/N : f\left(16\sqrt{2}\right)=128\sqrt{2} T/N : D_f=\left\langle 0,+\infty\right)
T/N : funkcja ta nie jest monotoniczna T/N : funkcja ta jest monotoniczna
Zadanie 14.  1 pkt ⋅ Numer: pr-10279 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Które z wzorów opisują funkcję parzystą?
Odpowiedzi:
T/N : f(x)=\frac{x-5}{2x^2} T/N : f(x)=\frac{2x}{x^2+1}
T/N : f(x)=\sqrt{2-4x}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm