Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 272/401 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-3)x-1 należy punkt S=(6,-7).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 272/401 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-3)x-1 należy punkt S=(6,-7).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10692 ⋅ Poprawnie: 121/163 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dziedziną funkcji f określonej wzorem f(x)=\log{(x^2+25)} jest zbiór:
Odpowiedzi:
A. \mathbb{R} B. (-5;5)
C. \mathbb{R}-\{-5;5\} D. (-\infty;-5)\cup(5;+\infty)
Zadanie 4.  1 pkt ⋅ Numer: pp-10686 ⋅ Poprawnie: 321/512 [62%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Dziedziną funkcji g(x)=\sqrt{5-\frac{5x-6}{2}} jest pewien przedział.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 4 B. 7
C. +\infty D. 10
E. -4 F. -\infty
Zadanie 5.  1 pkt ⋅ Numer: pp-10745 ⋅ Poprawnie: 162/244 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 jej największy dzielnik będący liczbą pierwszą.

Spośród liczb: f(45), f(46), f(48), f(49) największa to:

Odpowiedzi:
A. f(48) B. f(49)
C. f(46) D. f(45)
Zadanie 6.  1 pkt ⋅ Numer: pp-10728 ⋅ Poprawnie: 471/596 [79%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Na rysunku przedstawiony jest wykres funkcji y=f(x).

Podaj największą wartość tej funkcji.

Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10710 ⋅ Poprawnie: 91/135 [67%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=\sqrt[3]{x}-\frac{1}{\sqrt[3]{x^2}}.

Wtedy liczba f(-7) jest równa:

Odpowiedzi:
A. -\frac{8}{7}\sqrt[3]{49} B. -\frac{7}{8}\sqrt[3]{49}
C. -\frac{7}{8}\sqrt[3]{7} D. -\frac{8}{7}\sqrt[3]{7}
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x+1)^3 & \text{dla } -4\leqslant x \lessdot 1\\ -x^2-2x+3 & \text{dla } 1\leqslant x \leqslant 5 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-2)+f(-1) > 0 T/N : f(-3)-f(1) > 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11689 ⋅ Poprawnie: 41/62 [66%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz największą wartość funkcji określonej wzorem f(x)=-3x-\frac{1}{6} w przedziale \langle -6,1\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10751 ⋅ Poprawnie: 203/368 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji f(x)=\sqrt{52}(x-3)-1.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pr-10093 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} x^3 & \text{dla }x \in(-1,0\rangle\\ x^5-31 & \text{dla }x > 2\\ 4x^3+2x^2 & \text{dla }x\in(0,2) \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10090 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} 2x+1 & \text{dla }x \lessdot 0\\ -3x+4 & \text{dla }0\leqslant x \lessdot 2\\ -\frac{1}{2}x+3 &\text{dla }x\geqslant 2 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10699 ⋅ Poprawnie: 702/1313 [53%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f.

Jaka długość ma najdłuższy przedział, w którym funkcja f jest monotoniczna?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pr-10278 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Które z poniższych wzorów opisują funkcję nieróżnowartościową?
Odpowiedzi:
T/N : g(x)=|2-x| T/N : g(x)=\frac{5}{x^3}


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm