Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10752 ⋅ Poprawnie: 356/577 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Wykres funkcji y=\frac{14}{x} zawiera punkt o współrzędnych:
Odpowiedzi:
A. \left(-7\sqrt{2}, -\sqrt{2}\right) B. \left(\sqrt{14},-\sqrt{14}\right)
C. \left(-\sqrt{7}, -2\sqrt{2}\right) D. \left(-7,2\right)
Zadanie 2.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 400/920 [43%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. (-3,-2) B. (-1,2)
C. \langle 1,2) D. (0;1,(9)\rangle
Zadanie 3.  1 pkt ⋅ Numer: pp-10689 ⋅ Poprawnie: 337/509 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dziedziną funkcji f(x)=\frac{x}{\sqrt{16+x^2}}+(2-x)^2 jest:
Odpowiedzi:
A. \mathbb{R} B. \mathbb{R}-\{-4,4\}
C. \mathbb{R}-\{-4\} D. (-\infty;-4)\cup(4;+\infty)
Zadanie 4.  1 pkt ⋅ Numer: pp-10681 ⋅ Poprawnie: 638/894 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę D_f funkcji określonej wzorem f(x)=\sqrt{-x-8} .

Podaj największą liczbę całkowitą, która należy do zbioru D_f.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10761 ⋅ Poprawnie: 127/237 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dana jest funkcja określona wzorem g(x)=-\frac{12-2x}{x}. Połowę liczby g\left(\sqrt{2}\right) zapisz w postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.
Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10747 ⋅ Poprawnie: 141/210 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=2025(2x+1)^{2025}-1.

Oblicz f(-1).

Odpowiedź:
f(x)= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10762 ⋅ Poprawnie: 250/300 [83%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Podaj największą wartość funkcji f, której wykres pokazano na rysunku:
Odpowiedź:
f_{max}(x)= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 5/5 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x+1)^3 & \text{dla } -4\leqslant x \lessdot 1\\ -x^2-2x+3 & \text{dla } 1\leqslant x \leqslant 5 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-2)+f(-1) > 0 T/N : f(2)-f(-3) \lessdot 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 36/56 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=-\frac{1}{2}x^2-6, w przedziale \langle 4,6\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10726 ⋅ Poprawnie: 325/865 [37%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rysunek przedstawia wykres funkcji f:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(x) \lessdot 0 dla x > 0 T/N : dziedziną funkcji jest przedział (-5,6)
Zadanie 11.  1 pkt ⋅ Numer: pr-10093 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} x^3 & \text{dla }x \in(-1,0\rangle\\ x^5-34 & \text{dla }x > 2\\ 3x^3+x^2 & \text{dla }x\in(0,2) \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10090 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} 2x-1 & \text{dla }x \lessdot 0\\ -3x+4 & \text{dla }0\leqslant x \lessdot 2\\ -\frac{1}{2}x+3 &\text{dla }x\geqslant 2 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 204/562 [36%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział \langle -5,4\rangle:

Jaką długość ma najdłuższy przedział, w którym funkcja f jest monotoniczna?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pr-10281 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=\frac{x^4+2x^2}{x^4-81} T/N : f(x)=x^2+6
T/N : f(x)=\frac{x}{x^4+2x^2}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm