Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 274/402 [68%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-1)x+5 należy punkt S=(-2,17).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 274/402 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-1)x+5 należy punkt S=(-2,17).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10691 ⋅ Poprawnie: 385/756 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\frac{x+3}{\sqrt{6-x}} i rozwiązanie zapisz w postaci sumy przedziałów. Liczba x_1 jest najmniejszm z końców liczbowych tych przedziałów, a liczba x_2 jest największą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10687 ⋅ Poprawnie: 303/497 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę D_f funkcji określonej wzorem f(x)=\sqrt{10-x}-\sqrt{6-x} .

Podaj największą liczbę całkowitą, która należy do zbioru D_f.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10719 ⋅ Poprawnie: 120/160 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 resztę z dzielenia tej liczby przez 23.

Spośród liczb: f(79), f(87), f(99), f(112) największą jest:

Odpowiedzi:
A. f(79) B. f(112)
C. f(99) D. f(87)
Zadanie 6.  1 pkt ⋅ Numer: pp-10727 ⋅ Poprawnie: 466/699 [66%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji f:

Zbiorem wartości funkcji g określonej wzorem g(x)=f(x)-2 jest zbiór:

Odpowiedzi:
A. \left\langle -8,-\frac{7}{8}\right\rangle B. \left\langle -7,\frac{1}{8}\right\rangle
C. \left\langle -5,\frac{17}{8}\right\rangle D. \left\langle -6,\frac{9}{8}\right\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-10703 ⋅ Poprawnie: 169/242 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja h(x)=\left(-\frac{1}{3}m+2\right)x+\frac{3}{2}m-1. Funkcja ta dla argumentu -1 przyjmuje wartość 8.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x)^3 & \text{dla } -4\leqslant x \lessdot 2\\ -x^2+0x+4 & \text{dla } 2\leqslant x \leqslant 6 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-1)+f(0) > 0 T/N : f(2)-f(1) \lessdot 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11689 ⋅ Poprawnie: 41/62 [66%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{3}{2}x-4 w przedziale \langle -5,2\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11391 ⋅ Poprawnie: 157/225 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Wyznacz najmniejsze miejsce zerowe funkcji określonej wzorem f(x)=\frac{x^2+6x}{|x+6|}.
Odpowiedź:
x_{min}= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pr-10092 ⋅ Poprawnie: 14/14 [100%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} -(x-1)(x+5) & \text{dla }x \leqslant -1\\ x^2-1 & \text{dla }x > -1 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10091 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Wyznacz największe miejsce zerowe funkcji określonej wzorem f(x)=\left\lbrace \begin{array}{ll} x-4 & \text{dla }x \geqslant 5\\ x^2-25 & \text{dla }x \lessdot 5 \end{array} .
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 182/387 [47%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=x^2.

Wówczas:

Odpowiedzi:
T/N : ZW_f=\left(0,+\infty\right) T/N : D_f=\left\langle 0,+\infty\right)
T/N : iloczyn x\cdot f(x) jest liczba dodatnią T/N : funkcja ta jest monotoniczna
Zadanie 14.  1 pkt ⋅ Numer: pr-10279 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Które z wzorów opisują funkcję parzystą?
Odpowiedzi:
T/N : f(x)=\sqrt{-3x+6} T/N : f(x)=\sqrt{2-4x}
T/N : f(x)=\frac{x^4+2x^2}{x^4-81}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm