Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10757 ⋅ Poprawnie: 467/751 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Do wykresu funkcji f należy punkt o współrzędnych (4,2) oraz f(-8)=4.

Funkcja f opisana jest wzorem:

Odpowiedzi:
A. f(x)=2x^2 B. f(x)=3x-4
C. f(x)=\frac{-3}{x} D. f(x)=\sqrt{-x+8}
Zadanie 2.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 394/911 [43%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. (-3,-2) B. (2,3)
C. \left(-2,-\frac{3}{2}\right) D. \langle 1,2)
Zadanie 3.  1 pkt ⋅ Numer: pp-10690 ⋅ Poprawnie: 87/181 [48%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x+9}\sqrt{x-5} i zapisz rozwiązanie w postaci sumy przedziałów.
Liczba x_0 jest największym z końców liczbowych tych przedziałów.
Liczba m jest najmniejszą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_0 i m.

Odpowiedzi:
x_0= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10681 ⋅ Poprawnie: 616/869 [70%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę D_f funkcji określonej wzorem f(x)=\sqrt{-x-13} .

Podaj największą liczbę całkowitą, która należy do zbioru D_f.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10718 ⋅ Poprawnie: 33/85 [38%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem y=f(x) jest przedział \langle -4,7). Natomiast zbiorem wartości funkcji y=-3\cdot f(x) jest pewien inny przedział, w którym min jest najmniejszą liczbą całkowitą, a max największą liczbą całkowitą.

Podaj liczby min i max.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10747 ⋅ Poprawnie: 139/208 [66%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=2031(2x+1)^{2031}-1.

Oblicz f(-1).

Odpowiedź:
f(x)= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10760 ⋅ Poprawnie: 57/109 [52%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Zbiorem wartości funkcji f jest przedział \langle -19,-3\rangle. Wyznacz zbiór tych wartości parametru q, dla których funkcja określona wzorem g(x)=f(x)+q nie ma miejsc zerowych.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 7.2 (0.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x-2)^3 & \text{dla } -4\leqslant x \lessdot 4\\ -x^2+4x & \text{dla } 4\leqslant x \leqslant 8 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(1)+f(2) > 0 T/N : f(0)-f(4) > 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 34/53 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=-\frac{3}{2}x^2+3, w przedziale \langle 2,5\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10738 ⋅ Poprawnie: 109/236 [46%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=\sqrt{-x}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja przyjmuje wartość \frac{23}{\sqrt{23}} T/N : funkcja f przyjmuje tylko wartości dodatnie
T/N : funkcja f nie ma miejsc zerowych  
Zadanie 11.  1 pkt ⋅ Numer: pr-10092 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} -(x-1)(x+5) & \text{dla }x \leqslant -1\\ x^2+25 & \text{dla }x > -1 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10091 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Wyznacz największe miejsce zerowe funkcji określonej wzorem f(x)=\left\lbrace \begin{array}{ll} x-6 & \text{dla }x \geqslant 7\\ x^2-49 & \text{dla }x \lessdot 7 \end{array} .
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10699 ⋅ Poprawnie: 688/1285 [53%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f.

Jaką długośc ma najdłuższy przedział, w którym funkcja f jest niemalejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pr-10278 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 14.1 (1 pkt)
 « Które z poniższych wzorów opisują funkcję nieróżnowartościową?
Odpowiedzi:
T/N : g(x)=\frac{2}{x} T/N : g(x)=|2-x|


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm