Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 403/922 [43%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. (0;1,(9)\rangle B. (2,3)
C. \langle 1,2) D. (-1,2)
Zadanie 2.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 403/922 [43%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. \langle 1,2) B. (0;1,(9)\rangle
C. (-1,2) D. (2,3)
Zadanie 3.  1 pkt ⋅ Numer: pp-10689 ⋅ Poprawnie: 338/511 [66%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dziedziną funkcji f(x)=\frac{x}{\sqrt{16+x^2}}+(2-x)^2 jest:
Odpowiedzi:
A. \mathbb{R}-\{-4\} B. (-\infty;-4)\cup(4;+\infty)
C. \mathbb{R} D. \mathbb{R}-\{4\}
Zadanie 4.  1 pkt ⋅ Numer: pp-10683 ⋅ Poprawnie: 999/1113 [89%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Dziedziną funkcji f jest przedział:
Odpowiedzi:
A. \langle -3, 3\rangle B. (0, 8\rangle
C. \langle 0, 3\rangle D. (-3, 8\rangle
Zadanie 5.  1 pkt ⋅ Numer: pp-10720 ⋅ Poprawnie: 216/296 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{-3x+8}{x} dla każdej liczby rzeczywistej x\neq 0. Oblicz wartość funkcji f\left(\sqrt{2}\right). Wynik zapisz w najprostszej postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Z}, c\in\mathbb{N} i jest najmniejsze możliwe.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10740 ⋅ Poprawnie: 100/128 [78%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f opisana jest wzorem f(x)=\frac{1+9x}{x-1} dla pewnego argumentu przyjmuje wartość \sqrt{82}.

Argumentem tym jest:

Odpowiedzi:
A. \frac{\sqrt{82}+1}{\sqrt{82}-9} B. \sqrt{82}-1
C. 82+\sqrt{82} D. \left(\sqrt{82}+1\right)^2
Zadanie 7.  1 pkt ⋅ Numer: pp-10710 ⋅ Poprawnie: 93/138 [67%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=\sqrt[3]{x}-\frac{1}{\sqrt[3]{x^2}}.

Wtedy liczba f(-7) jest równa:

Odpowiedzi:
A. -\frac{7}{8}\sqrt[3]{49} B. -\frac{7}{8}\sqrt[3]{7}
C. -\frac{8}{7}\sqrt[3]{7} D. -\frac{8}{7}\sqrt[3]{49}
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x+1)^3 & \text{dla } -4\leqslant x \lessdot 1\\ -x^2-2x+3 & \text{dla } 1\leqslant x \leqslant 5 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(2)-f(-3) \lessdot 0 T/N : f(1)-f(0) \lessdot 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 55/91 [60%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{1}{6}x+2 w przedziale \langle -2,6\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10738 ⋅ Poprawnie: 137/259 [52%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=\sqrt{x}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f przyjmuje tylko wartości ujemne T/N : funkcja f nie ma miejsc zerowych
T/N : funkcja przyjmuje wartość \frac{13}{\sqrt{13}}  
Zadanie 11.  1 pkt ⋅ Numer: pr-10094 ⋅ Poprawnie: 19/20 [95%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Funkcja określona wzorem f(x)=\left\lbrace \begin{array}{ll} x-2 & \text{dla }x \in(-\infty,-2)\\ x^2+1 & \text{dla }x\in\langle -2,2)\\ 2x+3 & \text{dla }x\in\langle 2,+\infty) \end{array} ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10084 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} x-3 & \text{dla }x\leqslant 4\\ -x+5 & \text{dla }x > 4 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10699 ⋅ Poprawnie: 709/1323 [53%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f.

Jaka długość ma najdłuższy przedział, w którym funkcja f jest monotoniczna?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pr-10279 ⋅ Poprawnie: 3/4 [75%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Które z wzorów opisują funkcję parzystą?
Odpowiedzi:
T/N : f(x)=\frac{|x|}{x} T/N : f(x)=\sqrt{-3x+6}
T/N : f(x)=\frac{x^4+2x^2}{x^4-81}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm