Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10739 ⋅ Poprawnie: 316/419 [75%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt B=(-3,y) należy do wykresu funkcji f(x)=\frac{4-x^2}{x+1}.

Wyznacz y.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 251/384 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m+1)x+8 należy punkt S=(3,-1).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10691 ⋅ Poprawnie: 376/740 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyznacz dziedzinę funkcji f(x)=\frac{x+3}{\sqrt{5-x}} i rozwiązanie zapisz w postaci sumy przedziałów. Liczba x_1 jest najmniejszm z końców liczbowych tych przedziałów, a liczba x_2 jest największą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_1 i x_2.

Odpowiedzi:
x_1= (wpisz liczbę całkowitą)
x_2= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10684 ⋅ Poprawnie: 159/241 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla którego z podanych zbiorów liczb naturalnych wyrażenie \frac{\sqrt{x-5}}{x-7} ma sens liczbowy:
Odpowiedzi:
A. \{6,7,11\} B. \{5,8\}
C. \{4,5,8\} D. \{0,5,10\}
Zadanie 5.  1 pkt ⋅ Numer: pp-10722 ⋅ Poprawnie: 429/764 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wykres funkcji f pokazano na rysunku:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(2)\lessdot f(8) T/N : f(5) > f(-3)
T/N : f(2) > f(7)  
Zadanie 6.  1 pkt ⋅ Numer: pp-10715 ⋅ Poprawnie: 71/93 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej n większej od 1 ilość liczb pierwszych mniejszych od n.

Oblicz f(29)-f(21).

Odpowiedź:
f(x_1)-f(x_2)= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10705 ⋅ Poprawnie: 497/585 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x).

Wyznacz największą wartość funkcji f w przedziale \langle -1, 1\rangle.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x+2)^3 & \text{dla } -4\leqslant x \lessdot 0\\ -x^2-4x & \text{dla } 0\leqslant x \leqslant 4 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-3)+f(-2) > 0 T/N : f(-4)-f(0) > 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 35/54 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{2}{3}x^2+1, w przedziale \langle 2,4\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10746 ⋅ Poprawnie: 166/364 [45%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f opisana jest wzorem f(x)=|x|-7, dla x\in\mathbb{C}.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wykres tej funkcji nie ma punktów wspólnych z osią Oy T/N : dla pewnego argumentu funkcja ta przyjmuje wartość 11
T/N : wartości tej funkcji są liczbami naturalnymi  
Zadanie 11.  1 pkt ⋅ Numer: pr-10093 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} x^3-1 & \text{dla }x \in(-1,0\rangle\\ x^5-36 & \text{dla }x > 2\\ 3x^3+2x^2 & \text{dla }x\in(0,2) \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10090 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} 2x-1 & \text{dla }x \lessdot 0\\ -3x+6 & \text{dla }0\leqslant x \lessdot 2\\ -\frac{1}{2}x+1 &\text{dla }x\geqslant 2 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 202/559 [36%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział \langle -5,4\rangle:

Jaką długość ma najdłuższy przedział, w którym funkcja f jest malejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pr-10279 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Które z wzorów opisują funkcję parzystą?
Odpowiedzi:
T/N : f(x)=\sqrt{2-4x} T/N : f(x)=\frac{x^4+2x^2}{x^4-81}
T/N : f(x)=\frac{2x}{x^2+1}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm