Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10734 ⋅ Poprawnie: 676/971 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Do wykresu funkcji f(x)=\frac{a}{x+1} należy punkt A=\left(-4,3\right).

Wyznacz wartość parametru a.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 277/402 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m+2)x-3 należy punkt S=(-4,-7).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10682 ⋅ Poprawnie: 674/827 [81%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dziedziną funkcji f określonej wzorem f(x)=\frac{x-4}{x^2-2x} może być zbiór:
Odpowiedzi:
A. \mathbb{R} B. \mathbb{R}-\{-2,2\}
C. \mathbb{R}-\{-2,0\} D. \mathbb{R}-\{0,2\}
Zadanie 4.  1 pkt ⋅ Numer: pp-10683 ⋅ Poprawnie: 998/1112 [89%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Dziedziną funkcji f jest przedział:
Odpowiedzi:
A. (-3, 8\rangle B. \langle -3, 3\rangle
C. (0, 8\rangle D. \langle 0, 3\rangle
Zadanie 5.  1 pkt ⋅ Numer: pp-10721 ⋅ Poprawnie: 218/401 [54%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wykres funkcji f pokazano na rysunku:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(1) > \left[f(3)\right]^2 T/N : \frac{1}{f(2)} > f(4)
Zadanie 6.  1 pkt ⋅ Numer: pp-10715 ⋅ Poprawnie: 73/95 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej n większej od 1 ilość liczb pierwszych mniejszych od n.

Oblicz f(25)-f(16).

Odpowiedź:
f(x_1)-f(x_2)= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10760 ⋅ Poprawnie: 60/113 [53%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 Zbiorem wartości funkcji f jest przedział \langle -9,-3\rangle. Wyznacz zbiór tych wartości parametru q, dla których funkcja określona wzorem g(x)=f(x)+q nie ma miejsc zerowych.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 7.2 (0.5 pkt)
 Podaj największy z końców liczbowych tych przedziałów.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x+4)^3 & \text{dla } -4\leqslant x \lessdot -2\\ -x^2-8x-12 & \text{dla } -2\leqslant x \leqslant 2 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-1)-f(-6) \lessdot 0 T/N : f(-5)+f(-4) > 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 55/90 [61%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=4x-\frac{3}{5} w przedziale \langle -6,2\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10741 ⋅ Poprawnie: 603/941 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Liczby -1 i 1 są miejscami zerowymi funkcji:
Odpowiedzi:
A. f(x)=\frac{1}{2}x^2-\frac{1}{2} B. f(x)=x^2-2x+1
C. f(x)=\frac{(x-1)(x+1)}{x^2-1} D. f(x)=x(x+1)
Zadanie 11.  1 pkt ⋅ Numer: pr-10094 ⋅ Poprawnie: 19/20 [95%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Funkcja określona wzorem f(x)=\left\lbrace \begin{array}{ll} x-3 & \text{dla }x \in(-\infty,-2)\\ x^2+2 & \text{dla }x\in\langle -2,2)\\ 2x-2 & \text{dla }x\in\langle 2,+\infty) \end{array} ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10091 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Wyznacz największe miejsce zerowe funkcji określonej wzorem f(x)=\left\lbrace \begin{array}{ll} x+1 & \text{dla }x \geqslant 1\\ x^2-1 & \text{dla }x \lessdot 1 \end{array} .
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 92/471 [19%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna B. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle
C. funkcja f nie jest różnowartościowa D. ZW_{f}=\langle -2, 3\rangle
E. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach F. D_{f}=\langle -5, 4\rangle
Zadanie 14.  1 pkt ⋅ Numer: pr-10281 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=\frac{x^2}{|x|} T/N : f(x)=\frac{x^2-4}{|x-2|}
T/N : f(x)=\frac{x^4-1}{x^2+1}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm