Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 217/391 [55%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt M o rzędnej równej 12 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10730 ⋅ Poprawnie: 1006/1383 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Rysunek przedstawia wykres pewnej funkcji y=f(x), określonej dla x\in\langle -4,4\rangle.

Zbiór wszystkich argumentów, dla których funkcja f przyjmuje wartości niedodatnie, to zbiór:

Odpowiedzi:
A. (-4,-3)\cup(0,3)\cup(3,4) B. (-2,1)\cup(3,4)
C. \langle -4,-3\rangle\cup \langle 0,4\rangle D. \langle 0,3)\cup (3,4\rangle
Zadanie 3.  1 pkt ⋅ Numer: pp-10690 ⋅ Poprawnie: 84/174 [48%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x+10}\sqrt{x-8} i zapisz rozwiązanie w postaci sumy przedziałów.
Liczba x_0 jest największym z końców liczbowych tych przedziałów.
Liczba m jest najmniejszą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_0 i m.

Odpowiedzi:
x_0= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10693 ⋅ Poprawnie: 94/133 [70%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Do dziedziny funkcji f(x)=\log(64-x^2) należy liczba:
Odpowiedzi:
A. -\sqrt{65} B. -\sqrt{63}
C. \sqrt{66} D. 10
Zadanie 5.  1 pkt ⋅ Numer: pp-10719 ⋅ Poprawnie: 102/143 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 resztę z dzielenia tej liczby przez 23.

Spośród liczb: f(79), f(89), f(103), f(115) największą jest:

Odpowiedzi:
A. f(79) B. f(89)
C. f(115) D. f(103)
Zadanie 6.  1 pkt ⋅ Numer: pp-10714 ⋅ Poprawnie: 292/390 [74%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f każdej liczbie naturalnej ze zbioru \{ 14,18,24,29\} przyporządkowuje resztę z dzielenia tej liczby przez 4.

Zbiorem wartości tej funkcji jest zbiór:

Odpowiedzi:
A. \{1,2,3\} B. \{0,1,2\}
C. \{0,2,3\} D. \{0,1,3\}
Zadanie 7.  1 pkt ⋅ Numer: pp-10764 ⋅ Poprawnie: 516/689 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Rysunek przedstawia wykres pewnej funkcji y=f(x), określonej dla x\in\langle -4, 4\rangle.

Zbiór wszystkich argumentów, dla których funkcja f przyjmuje wartości niedodatnie, to zbiór:

Odpowiedzi:
A. (-2,1)\cup(3,4) B. (-4,-3)\cup(0,3)\cup(3,4)
C. \langle 0,3) \cup (3,4\rangle D. \langle -4,-3\rangle \cup \langle 0,4\rangle
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x)^3 & \text{dla } -4\leqslant x \lessdot 2\\ -x^2+0x+4 & \text{dla } 2\leqslant x \leqslant 6 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-1)+f(0) > 0 T/N : f(-2)-f(2) > 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 52/86 [60%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=-2x-\frac{5}{4} w przedziale \langle -2,3\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10726 ⋅ Poprawnie: 309/840 [36%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rysunek przedstawia wykres funkcji f:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja ta ma dwa miejsca zerowe T/N : zbiór wartości funkcji jest zawarty w \langle -4,4)
Zadanie 11.  1 pkt ⋅ Numer: pr-10094 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Funkcja określona wzorem f(x)=\left\lbrace \begin{array}{ll} x+1 & \text{dla }x \in(-\infty,-2)\\ x^2-6 & \text{dla }x\in\langle -2,2)\\ 2x-1 & \text{dla }x\in\langle 2,+\infty) \end{array} ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10084 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} x-4 & \text{dla }x\leqslant 4\\ -x+4 & \text{dla }x > 4 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10700 ⋅ Poprawnie: 500/888 [56%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji h:

Jaką długość ma najdłuższy przedział, w którym funkcja h jest monotoniczna?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pr-10281 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=x^2+6 T/N : f(x)=\frac{x^2-4}{|x-2|}
T/N : f(x)=x^8+x^4-x^2  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm