Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 397/918 [43%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. (-1,2) B. (2,3)
C. \langle 2,4) D. (-3,-2)
Zadanie 2.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 274/402 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-3)x-3 należy punkt S=(3,6).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10694 ⋅ Poprawnie: 484/766 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zbiór liczb rzeczywistych jest dziedziną funkcji:
Odpowiedzi:
T/N : f(x)=\sqrt{-x-1} T/N : f(x)=\sqrt{4+x^2}
Zadanie 4.  1 pkt ⋅ Numer: pp-10681 ⋅ Poprawnie: 638/894 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz dziedzinę D_f funkcji określonej wzorem f(x)=\sqrt{-x-7} .

Podaj największą liczbę całkowitą, która należy do zbioru D_f.

Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10720 ⋅ Poprawnie: 215/295 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{-3x+6}{x} dla każdej liczby rzeczywistej x\neq 0. Oblicz wartość funkcji f\left(\sqrt{2}\right). Wynik zapisz w najprostszej postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Z}, c\in\mathbb{N} i jest najmniejsze możliwe.
Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10748 ⋅ Poprawnie: 105/126 [83%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f opisana jest wzorem: f(x)=\sqrt[3]{-2-2x}.

Wówczas f(x-4) jest równa:

Odpowiedzi:
A. \sqrt[3]{-2x} B. \sqrt[3]{-2-2x}-4
C. \sqrt[3]{-2x+6} D. \sqrt[3]{2x-6}
Zadanie 7.  1 pkt ⋅ Numer: pp-10763 ⋅ Poprawnie: 117/163 [71%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Do wykresu funkcji f(x)=ax-\frac{1}{2} określonej dla x\neq -1 należy punkt A=(-2,3).

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 3/3 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x+2)^3 & \text{dla } -4\leqslant x \lessdot 0\\ -x^2-4x & \text{dla } 0\leqslant x \leqslant 4 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(1)-f(-4) \lessdot 0 T/N : f(-3)+f(-2) > 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 36/55 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=-\frac{5}{6}x^2-3, w przedziale \langle 3,5\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10726 ⋅ Poprawnie: 325/864 [37%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Rysunek przedstawia wykres funkcji f:

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : zbiór wartości funkcji jest zawarty w \langle -4,4) T/N : funkcja ta ma dwa miejsca zerowe
Zadanie 11.  1 pkt ⋅ Numer: pr-10094 ⋅ Poprawnie: 17/17 [100%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Funkcja określona wzorem f(x)=\left\lbrace \begin{array}{ll} x+6 & \text{dla }x \in(-\infty,-2)\\ x^2-3 & \text{dla }x\in\langle -2,2)\\ 2x-1 & \text{dla }x\in\langle 2,+\infty) \end{array} ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10090 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} 2x-1 & \text{dla }x \lessdot 0\\ -3x-2 & \text{dla }0\leqslant x \lessdot 2\\ -\frac{1}{2}x+3 &\text{dla }x\geqslant 2 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 204/561 [36%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 «« Dziedziną funkcji f jest przedział \langle -5,4\rangle:

Jaką długość ma najdłuższy przedział, w którym funkcja f jest malejąca?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pr-10281 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=\frac{x-5}{2x^2} T/N : f(x)=\frac{x^2-4}{|x-2|}
T/N : f(x)=\frac{x^2-1}{x^3+x}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm