Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10757 ⋅ Poprawnie: 489/769 [63%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Do wykresu funkcji f należy punkt o współrzędnych (6,2) oraz f(-6)=4.

Funkcja f opisana jest wzorem:

Odpowiedzi:
A. f(x)=\frac{5}{x} B. f(x)=-7x^2
C. f(x)=-2x-1 D. f(x)=\sqrt{-x+10}
Zadanie 2.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 402/921 [43%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. (-1,2) B. \langle 1,2)
C. \langle 2,4) D. (2,3)
Zadanie 3.  1 pkt ⋅ Numer: pp-10694 ⋅ Poprawnie: 485/766 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zbiór liczb rzeczywistych jest dziedziną funkcji:
Odpowiedzi:
T/N : f(x)=\sqrt{-x-1} T/N : f(x)=\frac{x-1}{x^2}
Zadanie 4.  1 pkt ⋅ Numer: pp-10693 ⋅ Poprawnie: 124/152 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » Do dziedziny funkcji f(x)=\log(49-x^2) należy liczba:
Odpowiedzi:
A. -\sqrt{50} B. \sqrt{51}
C. 9 D. -\sqrt{48}
Zadanie 5.  1 pkt ⋅ Numer: pp-10704 ⋅ Poprawnie: 278/414 [67%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{4x}{x+1} dla x\neq -1.

Oblicz wartość funkcji f dla argumentu x=\sqrt{2}. Wynik zapisz w najprostszej nieskracalnej postaci \frac{a+b\sqrt{c}}{d}, gdzie a,b\in\mathbb{Z}, c,d\in\mathbb{N}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10727 ⋅ Poprawnie: 466/699 [66%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji f:

Zbiorem wartości funkcji g określonej wzorem g(x)=f(x)-1 jest zbiór:

Odpowiedzi:
A. \left\langle -6,\frac{9}{8}\right\rangle B. \left\langle -3,\frac{33}{8}\right\rangle
C. \left\langle -7,\frac{1}{8}\right\rangle D. \left\langle -5,\frac{17}{8}\right\rangle
Zadanie 7.  1 pkt ⋅ Numer: pp-10753 ⋅ Poprawnie: 57/82 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Wartością funkcji dla argumentu naturalnego n jest ostatnia cyfra kwadratu liczby n zwiększona o 2. Wynika stąd, że zbiór wartości funkcji zawiera liczbę:
Odpowiedzi:
A. 9 B. 4
C. 7 D. 5
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x+2)^3 & \text{dla } -4\leqslant x \lessdot 0\\ -x^2-4x & \text{dla } 0\leqslant x \leqslant 4 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-4)-f(0) > 0 T/N : f(-3)+f(-2) > 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11689 ⋅ Poprawnie: 46/68 [67%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{5}{4}x-\frac{4}{5} w przedziale \langle -4,2\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10741 ⋅ Poprawnie: 603/941 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Liczby -5 i 5 są miejscami zerowymi funkcji:
Odpowiedzi:
A. f(x)=\frac{(x-5)(x+5)}{x^2-25} B. f(x)=x^2-10x+25
C. f(x)=\frac{1}{50}x^2-\frac{1}{2} D. f(x)=x(x+5)
Zadanie 11.  1 pkt ⋅ Numer: pr-10093 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} x^3-1 & \text{dla }x \in(-1,0\rangle\\ x^5-27 & \text{dla }x > 2\\ x^3-4x^2 & \text{dla }x\in(0,2) \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10090 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} 2x-1 & \text{dla }x \lessdot 0\\ -3x-6 & \text{dla }0\leqslant x \lessdot 2\\ -\frac{1}{2}x-6 &\text{dla }x\geqslant 2 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 184/392 [46%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=x^2.

Wówczas:

Odpowiedzi:
T/N : f\left(-3\sqrt{2}\right)=-18 T/N : ZW_f=\left(0,+\infty\right)
T/N : D_f=\left\langle 0,+\infty\right) T/N : funkcja ta jest monotoniczna
Zadanie 14.  1 pkt ⋅ Numer: pr-10279 ⋅ Poprawnie: 3/4 [75%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Które z wzorów opisują funkcję parzystą?
Odpowiedzi:
T/N : f(x)=\frac{|x|}{x} T/N : f(x)=\frac{2x}{x^2+1}
T/N : f(x)=\sqrt{-3x+6}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm