Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10754 ⋅ Poprawnie: 260/431 [60%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt M o rzędnej równej 10 należy do wykresu funkcji f(x)=2+\frac{4}{1-x}.

Wyznacz odciętą punktu M.

Odpowiedź:
x_M=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 402/921 [43%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Na rysunku przedstawiono wykres funkcji y=f(x).

W którym z przedziałów, funkcja przyjmuje wartość 1:

Odpowiedzi:
A. (-3,-2) B. (0;1,(9)\rangle
C. \langle 1,2) D. (-1,2)
Zadanie 3.  1 pkt ⋅ Numer: pp-10688 ⋅ Poprawnie: 409/555 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz największą liczbę całkowitą należącą do dziedziny funkcji określonej wzorem f(x)=\sqrt{30-\frac{5}{9}x} .
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10683 ⋅ Poprawnie: 998/1112 [89%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Dziedziną funkcji f jest przedział:
Odpowiedzi:
A. \langle -3, 3\rangle B. (0, 8\rangle
C. \langle 0, 3\rangle D. (-3, 8\rangle
Zadanie 5.  1 pkt ⋅ Numer: pp-10758 ⋅ Poprawnie: 178/290 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Dla argumentu x=\frac{1}{\sqrt{7}-1} oblicz wartość funkcji określonej wzorem f(x)=-2x+4 i zapisz wynik w najprostszej postaci \frac{m+n\sqrt{k}}{p}, gdzie m,n,k,p\in\mathbb{Z}.

Podaj liczby m, n, k i p.

Odpowiedź:
\frac{m+n\sqrt{k}}{p}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10748 ⋅ Poprawnie: 106/127 [83%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f opisana jest wzorem: f(x)=\sqrt[3]{-1+3x}.

Wówczas f(x-4) jest równa:

Odpowiedzi:
A. \sqrt[3]{-3x-5} B. \sqrt[3]{3x-13}
C. \sqrt[3]{-1+3x}-4 D. \sqrt[3]{3x-4}
Zadanie 7.  1 pkt ⋅ Numer: pp-11390 ⋅ Poprawnie: 168/213 [78%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Do zbioru wartości funkcji f(x)=-2-|x|, gdzie x\in\mathbb{N} należy liczba:
Odpowiedzi:
A. 3 B. 1
C. -6 D. \frac{2}{5}
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 6/6 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x+1)^3 & \text{dla } -4\leqslant x \lessdot 1\\ -x^2-2x+3 & \text{dla } 1\leqslant x \leqslant 5 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-3)-f(1) > 0 T/N : f(-2)+f(-1) > 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11692 ⋅ Poprawnie: 39/60 [65%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 » Wyznacz największą wartość funkcji określonej wzorem f(x)=-\frac{4}{3}x^2+2, w przedziale \langle -5,-4\rangle.
Odpowiedź:
f_{max}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10736 ⋅ Poprawnie: 370/601 [61%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja liniowa f określona wzorem f(x)=2x+b ma takie samo miejsce zerowe, jakie ma funkcja g(x)=-3x-\frac{1}{2}.

Wyznacz wartość parametru b.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pr-10093 ⋅ Poprawnie: 2/3 [66%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} x^3 & \text{dla }x \in(-1,0\rangle\\ x^5-34 & \text{dla }x > 2\\ 4x^3-x^2 & \text{dla }x\in(0,2) \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10090 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} 2x-1 & \text{dla }x \lessdot 0\\ -3x+3 & \text{dla }0\leqslant x \lessdot 2\\ -\frac{1}{2}x+6 &\text{dla }x\geqslant 2 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 92/471 [19%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 (1 pkt) Na rysunku pokazano wykres funkcji określonej wzorem y=f(x):
Wskaż zdanie fałszywe:
Odpowiedzi:
A. funkcja f ma ujemne miejsce zerowe B. ZW_{f}=\langle -2, 3\rangle
C. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna D. D_{f}=\langle -5, 4\rangle
E. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle F. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach
Zadanie 14.  1 pkt ⋅ Numer: pr-10281 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=\frac{x^2}{|x|} T/N : f(x)=\frac{x}{x^4+2x^2}
T/N : f(x)=\frac{x^4-1}{x^2+1}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm