Podgląd testu : lo2@sp-04-funkcje-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 403/922 [43%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Na rysunku przedstawiono wykres funkcji
y=f(x) .
W którym z przedziałów, funkcja przyjmuje wartość 1 :
Odpowiedzi:
A. (0;1,(9)\rangle
B. (2,3)
C. \langle 1,2)
D. (-1,2)
Zadanie 2. 1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 403/922 [43%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Na rysunku przedstawiono wykres funkcji
y=f(x) .
W którym z przedziałów, funkcja przyjmuje wartość 1 :
Odpowiedzi:
A. \langle 1,2)
B. (0;1,(9)\rangle
C. (-1,2)
D. (2,3)
Zadanie 3. 1 pkt ⋅ Numer: pp-10689 ⋅ Poprawnie: 338/511 [66%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dziedziną funkcji
f(x)=\frac{x}{\sqrt{16+x^2}}+(2-x)^2
jest:
Odpowiedzi:
A. \mathbb{R}-\{-4\}
B. (-\infty;-4)\cup(4;+\infty)
C. \mathbb{R}
D. \mathbb{R}-\{4\}
Zadanie 4. 1 pkt ⋅ Numer: pp-10683 ⋅ Poprawnie: 999/1113 [89%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dziedziną funkcji
f jest przedział:
Odpowiedzi:
A. \langle -3, 3\rangle
B. (0, 8\rangle
C. \langle 0, 3\rangle
D. (-3, 8\rangle
Zadanie 5. 1 pkt ⋅ Numer: pp-10720 ⋅ Poprawnie: 216/296 [72%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
f jest określona wzorem
f(x)=\frac{-3x+8}{x} dla każdej liczby rzeczywistej
x\neq 0 . Oblicz wartość funkcji
f\left(\sqrt{2}\right) .
Wynik zapisz w najprostszej postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{Z} ,
c\in\mathbb{N}
i jest najmniejsze możliwe.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10740 ⋅ Poprawnie: 100/128 [78%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja
f opisana jest wzorem
f(x)=\frac{1+9x}{x-1} dla pewnego argumentu
przyjmuje wartość
\sqrt{82} .
Argumentem tym jest:
Odpowiedzi:
A. \frac{\sqrt{82}+1}{\sqrt{82}-9}
B. \sqrt{82}-1
C. 82+\sqrt{82}
D. \left(\sqrt{82}+1\right)^2
Zadanie 7. 1 pkt ⋅ Numer: pp-10710 ⋅ Poprawnie: 93/138 [67%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Funkcja
f określona jest wzorem
f(x)=\sqrt[3]{x}-\frac{1}{\sqrt[3]{x^2}} .
Wtedy liczba f(-7) jest równa:
Odpowiedzi:
A. -\frac{7}{8}\sqrt[3]{49}
B. -\frac{7}{8}\sqrt[3]{7}
C. -\frac{8}{7}\sqrt[3]{7}
D. -\frac{8}{7}\sqrt[3]{49}
Zadanie 8. 1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 6/6 [100%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dana jest funkcja
f określona wzorem
f(x)=\left\lbrace
\begin{array}{ll}
(x+1)^3 & \text{dla } -4\leqslant x \lessdot 1\\
-x^2-2x+3 & \text{dla } 1\leqslant x \leqslant 5
\end{array}
.
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(2)-f(-3) \lessdot 0
T/N : f(1)-f(0) \lessdot 0
Zadanie 9. 1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 55/91 [60%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz najmniejszą wartość funkcji określonej wzorem
f(x)=\frac{1}{6}x+2
w przedziale
\langle -2,6\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10738 ⋅ Poprawnie: 137/259 [52%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Funkcja
f opisana jest wzorem
f(x)=\sqrt{x} .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : funkcja f przyjmuje tylko wartości ujemne
T/N : funkcja f nie ma miejsc zerowych
T/N : funkcja przyjmuje wartość \frac{13}{\sqrt{13}}
Zadanie 11. 1 pkt ⋅ Numer: pr-10094 ⋅ Poprawnie: 19/20 [95%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Funkcja określona wzorem
f(x)=\left\lbrace
\begin{array}{ll}
x-2 & \text{dla }x \in(-\infty,-2)\\
x^2+1 & \text{dla }x\in\langle -2,2)\\
2x+3 & \text{dla }x\in\langle 2,+\infty)
\end{array}
ma
k miejsc zerowych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pr-10084 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Funkcja
f określona jest wzorem:
f(x)=\left\lbrace
\begin{array}{ll}
x-3 & \text{dla }x\leqslant 4\\
-x+5 & \text{dla }x > 4
\end{array}
i ma
k miejsc zerowych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10699 ⋅ Poprawnie: 709/1323 [53%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Na rysunku przedstawiono wykres funkcji
f .
Jaka długość ma najdłuższy przedział, w którym funkcja f jest monotoniczna?
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pr-10279 ⋅ Poprawnie: 3/4 [75%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Które z wzorów opisują funkcję parzystą?
Odpowiedzi:
T/N : f(x)=\frac{|x|}{x}
T/N : f(x)=\sqrt{-3x+6}
T/N : f(x)=\frac{x^4+2x^2}{x^4-81}
Rozwiąż