Podgląd testu : lo2@sp-04-funkcje-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10701 ⋅ Poprawnie: 197/472 [41%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Na rysunku przedstawiony jest fragment wykresu funkcji liniowej
f , przy czym
f(0)=-2 i
f(1)=0 .
Wykres funkcji g jest symetryczny do wykresu funkcji
f względem osi Oy .
Funkcja g jest określona wzorem:
Odpowiedzi:
A. g(x)=-2x+2
B. g(x)=2x+2
C. g(x)=-2x-2
D. g(x)=2x-2
Zadanie 2. 1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 276/402 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=(m+5)x+7 należy punkt
S=(6,13) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10694 ⋅ Poprawnie: 485/766 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zbiór liczb rzeczywistych jest dziedziną funkcji:
Odpowiedzi:
T/N : f(x)=\frac{1}{x^2+5}
T/N : f(x)=\frac{1}{x+5}
Zadanie 4. 1 pkt ⋅ Numer: pp-10681 ⋅ Poprawnie: 638/894 [71%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę
D_f funkcji określonej wzorem
f(x)=\sqrt{-x-14}
.
Podaj największą liczbę całkowitą, która należy do zbioru D_f .
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10722 ⋅ Poprawnie: 433/769 [56%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wykres funkcji
f pokazano na rysunku:
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(2)\lessdot f(8)
T/N : f(0) > f(7)
T/N : f(3) > f(-4)
Zadanie 6. 1 pkt ⋅ Numer: pp-10759 ⋅ Poprawnie: 142/220 [64%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Funkcja
f przyporządkowuje dowolnej liczbie
całkowitej
n ostatnią cyfrę
4 -ej potęgi liczby
n .
Ile elementów należy do zbioru wartości tej funkcji?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10763 ⋅ Poprawnie: 117/163 [71%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Do wykresu funkcji
f(x)=ax+\frac{7}{8} określonej dla
x\neq -1 należy punkt
A=(-2,3) .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 4/4 [100%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dana jest funkcja
f określona wzorem
f(x)=\left\lbrace
\begin{array}{ll}
(x-3)^3 & \text{dla } -4\leqslant x \lessdot 5\\
-x^2+6x-5 & \text{dla } 5\leqslant x \leqslant 9
\end{array}
.
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(2)+f(3) > 0
T/N : f(1)-f(5) > 0
Zadanie 9. 1 pkt ⋅ Numer: pp-11689 ⋅ Poprawnie: 44/66 [66%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz największą wartość funkcji określonej wzorem
f(x)=\frac{5}{6}x+\frac{4}{3}
w przedziale
\langle -1,1\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10742 ⋅ Poprawnie: 408/672 [60%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Ile miejsc zerowych ma funkcja
f(x)=
\begin{cases}
x+7\text{, dla } x\in(-\infty, 0\rangle \\
1+8x^2\text{, dla } x\in(0,+\infty)
\end{cases}
?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pr-10093 ⋅ Poprawnie: 2/3 [66%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Funkcja
f opisana jest wzorem
f(x)=\left\lbrace
\begin{array}{ll}
x^3+1 & \text{dla }x \in(-1,0\rangle\\
x^5-36 & \text{dla }x > 2\\
4x^3-3x^2 & \text{dla }x\in(0,2)
\end{array}
i ma
k miejsc zerowych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pr-10090 ⋅ Poprawnie: 1/2 [50%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Funkcja
f określona jest wzorem:
f(x)=\left\lbrace
\begin{array}{ll}
2x+1 & \text{dla }x \lessdot 0\\
-3x+5 & \text{dla }0\leqslant x \lessdot 2\\
-\frac{1}{2}x+6 &\text{dla }x\geqslant 2
\end{array}
i ma
k miejsc zerowych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-11533 ⋅ Poprawnie: 91/468 [19%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
(1 pkt)
Na rysunku pokazano wykres funkcji określonej wzorem
y=f(x) :
Wskaż zdanie fałszywe:
Odpowiedzi:
A. w przedziale \langle -3, 2\rangle funkcja jest monotoniczna
B. funkcja f nie jest różnowartościowa
C. D_{f}=\langle -5, 4\rangle
D. ZW_{f}=\langle -2, 3\rangle
E. funkcja jest malejąca, gdy x\in\langle -5, -3\rangle\cup\langle 2, 4\rangle
F. funkcja jest rosnąca w co najmniej dwóch rozłącznych przedziałach
Zadanie 14. 1 pkt ⋅ Numer: pr-10280 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=x^2+6
T/N : f(x)=\frac{x-5}{2x^2}
T/N : f(x)=\frac{2x}{x^2+1}
Rozwiąż