Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10701 ⋅ Poprawnie: 180/450 [40%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f, przy czym f(0)=-2 i f(1)=0.

Wykres funkcji g jest symetryczny do wykresu funkcji f względem osi Ox.

Funkcja g jest określona wzorem:

Odpowiedzi:
A. g(x)=-2x+2 B. g(x)=2x+2
C. g(x)=2x-2 D. g(x)=-2x-2
Zadanie 2.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 270/399 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m+3)x+7 należy punkt S=(3,25).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10690 ⋅ Poprawnie: 87/181 [48%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz dziedzinę funkcji określonej wzorem f(x)=\sqrt{x+8}\sqrt{x-10} i zapisz rozwiązanie w postaci sumy przedziałów.
Liczba x_0 jest największym z końców liczbowych tych przedziałów.
Liczba m jest najmniejszą liczbą całkowitą z dziedziny tej funkcji.

Podaj liczby x_0 i m.

Odpowiedzi:
x_0= (wpisz liczbę całkowitą)
m= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10686 ⋅ Poprawnie: 289/479 [60%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Dziedziną funkcji g(x)=\sqrt{8-\frac{8x-10}{2}} jest pewien przedział.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 14
C. -3 D. 12
E. 0 F. -\infty
Zadanie 5.  1 pkt ⋅ Numer: pp-10704 ⋅ Poprawnie: 249/374 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=\frac{7x}{x+1} dla x\neq -1.

Oblicz wartość funkcji f dla argumentu x=\sqrt{10}. Wynik zapisz w najprostszej nieskracalnej postaci \frac{a+b\sqrt{c}}{d}, gdzie a,b\in\mathbb{Z}, c,d\in\mathbb{N}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10717 ⋅ Poprawnie: 184/242 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej resztę z dzielenia tej liczby przez 8.

Oblicz wartość wyrażenia \frac{f(25)}{f(37)}.

Odpowiedź:
\frac{f(m)}{f(n)}=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10703 ⋅ Poprawnie: 169/242 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Dana jest funkcja h(x)=\left(-\frac{1}{3}m+2\right)x+\frac{3}{2}m-1. Funkcja ta dla argumentu 3 przyjmuje wartość 3.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x-1)^3 & \text{dla } -4\leqslant x \lessdot 3\\ -x^2+2x+3 & \text{dla } 3\leqslant x \leqslant 7 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(3)-f(2) \lessdot 0 T/N : f(0)+f(1) > 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 52/86 [60%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=\frac{4}{5}x+\frac{3}{5} w przedziale \langle -2,5\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10742 ⋅ Poprawnie: 363/633 [57%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja f(x)= \begin{cases} x+7\text{, dla } x\in(-\infty, 0\rangle \\ 1+3x^2\text{, dla } x\in(0,+\infty) \end{cases} ?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pr-10092 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} -(x-1)(x+3) & \text{dla }x \leqslant -1\\ x^2-9 & \text{dla }x > -1 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10090 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Funkcja f określona jest wzorem: f(x)=\left\lbrace \begin{array}{ll} 2x+1 & \text{dla }x \lessdot 0\\ -3x+5 & \text{dla }0\leqslant x \lessdot 2\\ -\frac{1}{2}x+3 &\text{dla }x\geqslant 2 \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10744 ⋅ Poprawnie: 182/387 [47%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Funkcja f opisana jest wzorem: f(x)=x^2.

Wówczas:

Odpowiedzi:
T/N : funkcja ta jest monotoniczna T/N : f\left(-8\sqrt{7}\right)=-448
T/N : iloczyn x\cdot f(x) jest liczba dodatnią T/N : D_f=\left\langle 0,+\infty\right)
Zadanie 14.  1 pkt ⋅ Numer: pr-10281 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=\frac{|x|}{x} T/N : f(x)=\frac{x^2}{|x|}
T/N : f(x)=\frac{x^2-4}{|x-2|}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm