Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-04-funkcje-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10701 ⋅ Poprawnie: 196/471 [41%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f, przy czym f(0)=-2 i f(1)=0.

Wykres funkcji g jest symetryczny do wykresu funkcji f względem osi Ox.

Funkcja g jest określona wzorem:

Odpowiedzi:
A. g(x)=-2x+2 B. g(x)=-2x-2
C. g(x)=2x+2 D. g(x)=2x-2
Zadanie 2.  1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 272/401 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=(m-1)x+5 należy punkt S=(-6,23).

Wyznacz wartość parametru m.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10694 ⋅ Poprawnie: 481/763 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zbiór liczb rzeczywistych jest dziedziną funkcji:
Odpowiedzi:
T/N : f(x)=\sqrt{-x-1} T/N : f(x)=\frac{x-1}{x^2}
Zadanie 4.  1 pkt ⋅ Numer: pp-10683 ⋅ Poprawnie: 997/1112 [89%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Dziedziną funkcji f jest przedział:
Odpowiedzi:
A. (-3, 8\rangle B. \langle 0, 3\rangle
C. (0, 8\rangle D. \langle -3, 3\rangle
Zadanie 5.  1 pkt ⋅ Numer: pp-10719 ⋅ Poprawnie: 120/160 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Funkcja f przyporządkowuje każdej liczbie naturalnej większej od 1 resztę z dzielenia tej liczby przez 23.

Spośród liczb: f(77), f(90), f(96), f(105) największą jest:

Odpowiedzi:
A. f(96) B. f(90)
C. f(77) D. f(105)
Zadanie 6.  1 pkt ⋅ Numer: pp-10717 ⋅ Poprawnie: 186/244 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja f przyporządkowuje każdej liczbie naturalnej resztę z dzielenia tej liczby przez 6.

Oblicz wartość wyrażenia \frac{f(21)}{f(27)}.

Odpowiedź:
\frac{f(m)}{f(n)}=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10705 ⋅ Poprawnie: 497/585 [84%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x).

Wyznacz największą wartość funkcji f w przedziale \langle -1, 1\rangle.

Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Dana jest funkcja f określona wzorem f(x)=\left\lbrace \begin{array}{ll} (x+1)^3 & \text{dla } -4\leqslant x \lessdot 1\\ -x^2-2x+3 & \text{dla } 1\leqslant x \leqslant 5 \end{array} .

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : f(-3)-f(1) > 0 T/N : f(-2)+f(-1) > 0
Zadanie 9.  1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 53/87 [60%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Wyznacz najmniejszą wartość funkcji określonej wzorem f(x)=-6x+4 w przedziale \langle -6,1\rangle.
Odpowiedź:
f_{min}(x)=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10742 ⋅ Poprawnie: 406/669 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Ile miejsc zerowych ma funkcja f(x)= \begin{cases} x+5\text{, dla } x\in(-\infty, 0\rangle \\ 1-8x^2\text{, dla } x\in(0,+\infty) \end{cases} ?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pr-10093 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 » Funkcja f opisana jest wzorem f(x)=\left\lbrace \begin{array}{ll} x^3 & \text{dla }x \in(-1,0\rangle\\ x^5-34 & \text{dla }x > 2\\ x^3-x^2 & \text{dla }x\in(0,2) \end{array} i ma k miejsc zerowych.

Wyznacz liczbę k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 12.  1 pkt ⋅ Numer: pr-10091 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Wyznacz największe miejsce zerowe funkcji określonej wzorem f(x)=\left\lbrace \begin{array}{ll} x-2 & \text{dla }x \geqslant 4\\ x^2-16 & \text{dla }x \lessdot 4 \end{array} .
Odpowiedź:
x_{max}= (wpisz liczbę całkowitą)
Zadanie 13.  1 pkt ⋅ Numer: pp-10699 ⋅ Poprawnie: 702/1313 [53%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji f.

Jaka długość ma najdłuższy przedział, w którym funkcja f jest monotoniczna?

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 14.  1 pkt ⋅ Numer: pr-10281 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 14.1 (1 pkt)
 » Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=x^2+6 T/N : f(x)=\frac{x^4-1}{x^2+1}
T/N : f(x)=\frac{x^4+2x^2}{x^4-81}  


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm