Podgląd testu : lo2@sp-04-funkcje-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10739 ⋅ Poprawnie: 322/425 [75%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt
B=(6,y) należy do wykresu funkcji
f(x)=\frac{4-x^2}{x-1} .
Wyznacz y .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 402/921 [43%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Na rysunku przedstawiono wykres funkcji
y=f(x) .
W którym z przedziałów, funkcja przyjmuje wartość 1 :
Odpowiedzi:
A. \langle 1,2)
B. (-3,-2)
C. \left(-2,-\frac{3}{2}\right)
D. (2,3)
Zadanie 3. 1 pkt ⋅ Numer: pp-10690 ⋅ Poprawnie: 105/208 [50%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Wyznacz dziedzinę funkcji określonej wzorem
f(x)=\sqrt{x+6}\sqrt{x-9}
i zapisz rozwiązanie w postaci sumy przedziałów.
Liczba
x_0 jest największym z końców
liczbowych tych przedziałów.
Liczba
m jest najmniejszą liczbą całkowitą z dziedziny
tej funkcji.
Podaj liczby x_0 i m .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10687 ⋅ Poprawnie: 304/499 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę
D_f funkcji określonej wzorem
f(x)=\sqrt{15-x}-\sqrt{16-x}
.
Podaj największą liczbę całkowitą, która należy do zbioru D_f .
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10721 ⋅ Poprawnie: 218/401 [54%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Wykres funkcji
f pokazano na rysunku:
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : \frac{1}{f(3)} > f(4)
T/N : f(3) > \left[f(3)\right]^2
Zadanie 6. 1 pkt ⋅ Numer: pp-10715 ⋅ Poprawnie: 73/95 [76%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja
f przyporządkowuje każdej liczbie naturalnej
n większej od
1 ilość
liczb pierwszych mniejszych od
n .
Oblicz f(37)-f(20) .
Odpowiedź:
f(x_1)-f(x_2)=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10710 ⋅ Poprawnie: 92/137 [67%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Funkcja
f określona jest wzorem
f(x)=\sqrt[3]{x}-\frac{1}{\sqrt[3]{x^2}} .
Wtedy liczba f(-14) jest równa:
Odpowiedzi:
A. -\frac{14}{15}\sqrt[3]{196}
B. -\frac{15}{14}\sqrt[3]{14}
C. -\frac{14}{15}\sqrt[3]{14}
D. -\frac{15}{14}\sqrt[3]{196}
Zadanie 8. 1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 6/6 [100%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dana jest funkcja
f określona wzorem
f(x)=\left\lbrace
\begin{array}{ll}
(x-3)^3 & \text{dla } -4\leqslant x \lessdot 5\\
-x^2+6x-5 & \text{dla } 5\leqslant x \leqslant 9
\end{array}
.
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(2)+f(3) > 0
T/N : f(6)-f(1) \lessdot 0
Zadanie 9. 1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 55/90 [61%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz najmniejszą wartość funkcji określonej wzorem
f(x)=\frac{4}{5}x-\frac{1}{3}
w przedziale
\langle -3,2\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10713 ⋅ Poprawnie: 132/197 [67%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Ile miejsc zerowych ma funkcja określona wzorem
f(x)=|x^2+11|-11 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pr-10094 ⋅ Poprawnie: 19/20 [95%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Funkcja określona wzorem
f(x)=\left\lbrace
\begin{array}{ll}
x+4 & \text{dla }x \in(-\infty,-2)\\
x^2+5 & \text{dla }x\in\langle -2,2)\\
2x-1 & \text{dla }x\in\langle 2,+\infty)
\end{array}
ma
k miejsc zerowych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pr-10090 ⋅ Poprawnie: 1/2 [50%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Funkcja
f określona jest wzorem:
f(x)=\left\lbrace
\begin{array}{ll}
2x+2 & \text{dla }x \lessdot 0\\
-3x+5 & \text{dla }0\leqslant x \lessdot 2\\
-\frac{1}{2}x-1 &\text{dla }x\geqslant 2
\end{array}
i ma
k miejsc zerowych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 205/563 [36%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
«« Dziedziną funkcji
f jest przedział
\langle -5,4\rangle :
Jaką długość ma najdłuższy przedział, w którym funkcja f jest niemalejąca?
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pr-10280 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=\frac{x-5}{2x^2}
T/N : f(x)=x^3-3x
T/N : f(x)=-x^4-1
Rozwiąż