Podgląd testu : lo2@sp-04-funkcje-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 397/918 [43%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Na rysunku przedstawiono wykres funkcji
y=f(x) .
W którym z przedziałów, funkcja przyjmuje wartość 1 :
Odpowiedzi:
A. (-1,2)
B. (2,3)
C. \langle 2,4)
D. (-3,-2)
Zadanie 2. 1 pkt ⋅ Numer: pp-10735 ⋅ Poprawnie: 274/402 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=(m-3)x-3 należy punkt
S=(3,6) .
Wyznacz wartość parametru m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10694 ⋅ Poprawnie: 484/766 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zbiór liczb rzeczywistych jest dziedziną funkcji:
Odpowiedzi:
T/N : f(x)=\sqrt{-x-1}
T/N : f(x)=\sqrt{4+x^2}
Zadanie 4. 1 pkt ⋅ Numer: pp-10681 ⋅ Poprawnie: 638/894 [71%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz dziedzinę
D_f funkcji określonej wzorem
f(x)=\sqrt{-x-7}
.
Podaj największą liczbę całkowitą, która należy do zbioru D_f .
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10720 ⋅ Poprawnie: 215/295 [72%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
f jest określona wzorem
f(x)=\frac{-3x+6}{x} dla każdej liczby rzeczywistej
x\neq 0 . Oblicz wartość funkcji
f\left(\sqrt{2}\right) .
Wynik zapisz w najprostszej postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{Z} ,
c\in\mathbb{N}
i jest najmniejsze możliwe.
Odpowiedź:
Wpisz odpowiedź:
+
\cdot
√
(wpisz trzy liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10748 ⋅ Poprawnie: 105/126 [83%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Funkcja
f opisana jest wzorem:
f(x)=\sqrt[3]{-2-2x} .
Wówczas f(x-4) jest równa:
Odpowiedzi:
A. \sqrt[3]{-2x}
B. \sqrt[3]{-2-2x}-4
C. \sqrt[3]{-2x+6}
D. \sqrt[3]{2x-6}
Zadanie 7. 1 pkt ⋅ Numer: pp-10763 ⋅ Poprawnie: 117/163 [71%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Do wykresu funkcji
f(x)=ax-\frac{1}{2} określonej dla
x\neq -1 należy punkt
A=(-2,3) .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 3/3 [100%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dana jest funkcja
f określona wzorem
f(x)=\left\lbrace
\begin{array}{ll}
(x+2)^3 & \text{dla } -4\leqslant x \lessdot 0\\
-x^2-4x & \text{dla } 0\leqslant x \leqslant 4
\end{array}
.
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(1)-f(-4) \lessdot 0
T/N : f(-3)+f(-2) > 0
Zadanie 9. 1 pkt ⋅ Numer: pp-11691 ⋅ Poprawnie: 36/55 [65%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz najmniejszą wartość funkcji określonej wzorem
f(x)=-\frac{5}{6}x^2-3 ,
w przedziale
\langle 3,5\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10726 ⋅ Poprawnie: 325/864 [37%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rysunek przedstawia wykres funkcji
f :
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : zbiór wartości funkcji jest zawarty w \langle -4,4)
T/N : funkcja ta ma dwa miejsca zerowe
Zadanie 11. 1 pkt ⋅ Numer: pr-10094 ⋅ Poprawnie: 17/17 [100%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
« Funkcja określona wzorem
f(x)=\left\lbrace
\begin{array}{ll}
x+6 & \text{dla }x \in(-\infty,-2)\\
x^2-3 & \text{dla }x\in\langle -2,2)\\
2x-1 & \text{dla }x\in\langle 2,+\infty)
\end{array}
ma
k miejsc zerowych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pr-10090 ⋅ Poprawnie: 1/2 [50%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Funkcja
f określona jest wzorem:
f(x)=\left\lbrace
\begin{array}{ll}
2x-1 & \text{dla }x \lessdot 0\\
-3x-2 & \text{dla }0\leqslant x \lessdot 2\\
-\frac{1}{2}x+3 &\text{dla }x\geqslant 2
\end{array}
i ma
k miejsc zerowych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 204/561 [36%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
«« Dziedziną funkcji
f jest przedział
\langle -5,4\rangle :
Jaką długość ma najdłuższy przedział, w którym funkcja f jest malejąca?
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pr-10281 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 14.1 (1 pkt)
» Które z poniższych wzorów opisują funkcję nieparzystą?
Odpowiedzi:
T/N : f(x)=\frac{x-5}{2x^2}
T/N : f(x)=\frac{x^2-4}{|x-2|}
T/N : f(x)=\frac{x^2-1}{x^3+x}
Rozwiąż