Podgląd testu : lo2@sp-04-funkcje-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 396/915 [43%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Na rysunku przedstawiono wykres funkcji
y=f(x) .
W którym z przedziałów, funkcja przyjmuje wartość 1 :
Odpowiedzi:
A. (-3,-2)
B. (2,3)
C. \left(-2,-\frac{3}{2}\right)
D. \langle 1,2)
Zadanie 2. 1 pkt ⋅ Numer: pp-10731 ⋅ Poprawnie: 396/915 [43%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Na rysunku przedstawiono wykres funkcji
y=f(x) .
W którym z przedziałów, funkcja przyjmuje wartość 1 :
Odpowiedzi:
A. \left(-2,-\frac{3}{2}\right)
B. (-1,2)
C. \langle 1,2)
D. (2,3)
Zadanie 3. 1 pkt ⋅ Numer: pp-10694 ⋅ Poprawnie: 481/763 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zbiór liczb rzeczywistych jest dziedziną funkcji:
Odpowiedzi:
T/N : f(x)=\frac{x-1}{x^2}
T/N : f(x)=\frac{1}{x+1}
Zadanie 4. 1 pkt ⋅ Numer: pp-10684 ⋅ Poprawnie: 161/243 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dla którego z podanych zbiorów liczb naturalnych wyrażenie
\frac{\sqrt{x-11}}{x-13}
ma sens liczbowy:
Odpowiedzi:
A. \{0,11,16\}
B. \{11,14\}
C. \{10,11,14\}
D. \{12,13,17\}
Zadanie 5. 1 pkt ⋅ Numer: pp-10745 ⋅ Poprawnie: 162/244 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja
f przyporządkowuje każdej liczbie naturalnej
większej od
1 jej największy dzielnik będący liczbą
pierwszą.
Spośród liczb: f(45) ,
f(46) , f(48) ,
f(49) największa to:
Odpowiedzi:
A. f(45)
B. f(46)
C. f(48)
D. f(49)
Zadanie 6. 1 pkt ⋅ Numer: pp-10729 ⋅ Poprawnie: 854/1363 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Zbiorem wartości funkcji, której wykres pokazano na rysunku jest:
Odpowiedzi:
A. \langle -1,2)\cup(2,4\rangle
B. (-1,4)-\{2\}
C. \langle -1,4)
D. \langle -1,4\rangle
Zadanie 7. 1 pkt ⋅ Numer: pp-10703 ⋅ Poprawnie: 169/242 [69%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Dana jest funkcja
h(x)=\left(-\frac{1}{3}m+2\right)x+\frac{3}{2}m-1 .
Funkcja ta dla argumentu
3 przyjmuje wartość
2 .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pr-10089 ⋅ Poprawnie: 2/2 [100%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Dana jest funkcja
f określona wzorem
f(x)=\left\lbrace
\begin{array}{ll}
(x-4)^3 & \text{dla } -4\leqslant x \lessdot 6\\
-x^2+8x-12 & \text{dla } 6\leqslant x \leqslant 10
\end{array}
.
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : f(7)-f(2) \lessdot 0
T/N : f(6)-f(5) \lessdot 0
Zadanie 9. 1 pkt ⋅ Numer: pp-11690 ⋅ Poprawnie: 53/87 [60%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Wyznacz najmniejszą wartość funkcji określonej wzorem
f(x)=\frac{1}{2}x+\frac{2}{5}
w przedziale
\langle -3,5\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10726 ⋅ Poprawnie: 323/860 [37%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Rysunek przedstawia wykres funkcji
f :
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : dziedziną funkcji jest przedział (-5,6)
T/N : zbiór wartości funkcji jest zawarty w \langle -4,4)
Zadanie 11. 1 pkt ⋅ Numer: pr-10093 ⋅ Poprawnie: 1/2 [50%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
» Funkcja
f opisana jest wzorem
f(x)=\left\lbrace
\begin{array}{ll}
x^3+1 & \text{dla }x \in(-1,0\rangle\\
x^5-30 & \text{dla }x > 2\\
x^3+4x^2 & \text{dla }x\in(0,2)
\end{array}
i ma
k miejsc zerowych.
Wyznacz liczbę k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 12. 1 pkt ⋅ Numer: pr-10091 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 12.1 (1 pkt)
» Wyznacz największe miejsce zerowe funkcji określonej wzorem
f(x)=\left\lbrace
\begin{array}{ll}
x-8 & \text{dla }x \geqslant 9\\
x^2-81 & \text{dla }x \lessdot 9
\end{array}
.
Odpowiedź:
x_{max}=
(wpisz liczbę całkowitą)
Zadanie 13. 1 pkt ⋅ Numer: pp-10698 ⋅ Poprawnie: 202/559 [36%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
«« Dziedziną funkcji
f jest przedział
\langle -5,4\rangle :
Jaką długość ma najdłuższy przedział, w którym funkcja f jest niemalejąca?
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 14. 1 pkt ⋅ Numer: pr-10278 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
« Które z poniższych wzorów opisują funkcję nieróżnowartościową?
Odpowiedzi:
T/N : g(x)=\frac{5}{x^3}
T/N : g(x)=\sqrt{x-1}
Rozwiąż