Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 534/805 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=mx+n. Funkcja ta spełnia warunek f(-6)=-3, a jej wykres zawiera punkt (1,-5).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10805 ⋅ Poprawnie: 275/541 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja liniowa spełnia warunki f(-\sqrt{2})=1 i f(5\sqrt{2})=-6.

Wynika z tego, że jej wykres przechodzi przez ćwiartki układu:

Odpowiedzi:
A. I, II i IV B. II, III i IV
C. I, III i IV D. I, II i III
Zadanie 3.  1 pkt ⋅ Numer: pp-10933 ⋅ Poprawnie: 302/535 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykresy funkcji f(x)=-\frac{1}{7}x-5 oraz g(x)=mx+2 przecinają oś Ox w tym samym punkcie.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10920 ⋅ Poprawnie: 78/133 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja określona wzorem f(x)=\left(m^2-8m\right)x+5 spełnia warunek f(-3)=f(3).

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=2x-3a przecina oś Oy powyżej punktu (0,5) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 1 B. +\infty
C. -\infty D. -8
E. 8 F. 4
Zadanie 6.  1 pkt ⋅ Numer: pp-10924 ⋅ Poprawnie: 50/67 [74%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=ax+b i spełnia warunek f(7)-f(4)=6.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 7.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(\frac{1}{2}-\frac{\sqrt{3}}{6}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 7.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. \frac{1}{3}
C. -\frac{1}{3} D. 2
E. -\infty F. -\frac{3}{2}
Zadanie 8.  1 pkt ⋅ Numer: pp-10911 ⋅ Poprawnie: 198/317 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wskaż prostą równoległą do osi Ox:
Odpowiedzi:
A. -2x=-6y B. x+2=y
C. -2x=-6 D. -6x-2=0
E. -6y-2=0 F. -2x=0
Zadanie 9.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=-\frac{2}{9}-\frac{1}{3}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 9 B. -7
C. -9 D. -\infty
E. +\infty F. 6
Zadanie 10.  1 pkt ⋅ Numer: pp-10934 ⋅ Poprawnie: 84/157 [53%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 O funkcji f określonej wzorem f(x)=\frac{-8-m}{m+11}x-3 wiadomo, że f(-1)=0.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm