Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-6x oblicz h\left(\frac{3\sqrt{3}-6}{6}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest niewymierna T/N : liczba ta jest ujemna
Zadanie 2.  1 pkt ⋅ Numer: pp-10808 ⋅ Poprawnie: 196/379 [51%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Wskaż wzór funkcji, której wykres jest symetryczny do tego wykresu względem osi Oy:
Odpowiedzi:
A. y=\sqrt{3}x+1 B. y=\frac{1}{\sqrt{3}}x+1
C. y=-\frac{\sqrt{3}}{3}x+1 D. y=-\sqrt{3}x+1
Zadanie 3.  1 pkt ⋅ Numer: pp-10795 ⋅ Poprawnie: 453/761 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja liniowa określona wzorem y=mx+n, wartości ujemne przyjmuje tylko w przedziale (-6,+\infty). Wykres tej funkcji przecina oś Oy w punkcie (0,-4).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10916 ⋅ Poprawnie: 115/207 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa y=ax+b ma dodatnie miejsce zerowe, a jej wykres przecina oś Oy poniżej punktu (0,0).

Wówczas:

Odpowiedzi:
A. a > 0 \wedge b > 0 B. a > 0 \wedge b \lessdot 0
C. a \lessdot 0 \wedge b > 0 D. a \lessdot 0 \wedge b \lessdot 0
Zadanie 5.  1 pkt ⋅ Numer: pp-11504 ⋅ Poprawnie: 585/920 [63%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 (1 pkt) Funkcja f określona jest wzorem f(x)=(\sqrt{5}m-5)x+2 dla każdej liczby rzeczywistej x.

Funkcja ta jest rosnąca, wtedy i tylko wtedy, gdy:

Odpowiedzi:
A. m\in\left\langle -\sqrt{5},+\infty\right) B. m\in\left\langle \sqrt{5},+\infty\right)
C. m\in\left(-\infty,-\sqrt{5}\right\rangle D. m\in\left(-\infty,\sqrt{5}\right\rangle
Zadanie 6.  1 pkt ⋅ Numer: pp-10882 ⋅ Poprawnie: 217/415 [52%] Rozwiąż 
Podpunkt 6.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=\left(-\frac{6}{5}+\frac{5}{4}m\right)x+5 jest rosnąca, gdy m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 9 B. 3
C. -9 D. 8
E. +\infty F. -\infty
Zadanie 7.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 7.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(\frac{3}{5}-\frac{\sqrt{3}}{8}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 7.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. +\infty
C. \frac{12}{5} D. -\frac{8}{15}
E. -\frac{4}{5} F. -\frac{12}{5}
Zadanie 8.  1 pkt ⋅ Numer: pp-10889 ⋅ Poprawnie: 39/62 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dla której z podanych wartości m funkcja liniowa określona wzorem f(x)=-36x+m^2-9+m^4 x jest malejąca:
Odpowiedzi:
A. m=-\frac{\sqrt{6}}{6} B. m=6
C. m=\sqrt{6}+1 D. m=-2\sqrt{6}
Zadanie 9.  1 pkt ⋅ Numer: pp-10930 ⋅ Poprawnie: 99/132 [75%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Funkcje określone wzorami f(x)=\frac{4}{3}x-4 i g(x)=\frac{2}{3}x+5 przyjmują równą wartość dla argumentu x_0.

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od 16. Do jej wykresu należy punkt \left(4,\frac{3}{2}\right).

Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm