Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10813 ⋅ Poprawnie: 211/390 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Proste pokazane na rysunku
określone są równaniami 2x-4y=a, 3x+y=b i 3x+8y=c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 300/461 [65%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji liniowej y=\frac{7}{5}x+7 przecina osie układu współrzędnych w punktach A i B.

Oblicz pole powierzchni trójkąta AOB.

Odpowiedź:
P_{AOB}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=-\frac{5}{2}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10899 ⋅ Poprawnie: 81/113 [71%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkty o współrzędnych (300,500) oraz (400,-200) należą do wykresu funkcji liniowej y=mx+n.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : z treści wynika, że n \lessdot 0 T/N : z treści wynika, że m > 0
T/N : z treści wynika, że m \lessdot 0  
Zadanie 5.  1 pkt ⋅ Numer: pp-10903 ⋅ Poprawnie: 210/345 [60%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Funkcja liniowa f(x)=(2+5m)x+1-6m jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 4 B. -\infty
C. -1 D. +\infty
E. -10 F. 6
Zadanie 6.  1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji liniowej y=2^{19}x-2^{24} przechodzi przez ćwiartki układu współrzędnych:
Odpowiedzi:
A. II, III, IV B. I, II i IV
C. I, II i III D. I, III i IV
Zadanie 7.  1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
« Proste p i q są równoległe, a punkt O(0,0) leży pomiędzy nimi.

Zatem:

Odpowiedzi:
A. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0 B. a\cdot m > 0 \ \wedge\ b\cdot n > 0
C. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0 D. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
Zadanie 8.  1 pkt ⋅ Numer: pp-10909 ⋅ Poprawnie: 98/225 [43%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wskaż prostą prostopadłą do osi Ox:
Odpowiedzi:
A. -3y=x B. 2y-3=0
C. 3x+y=0 D. -3y=0
E. 2x-3=0 F. x+3=y
Zadanie 9.  1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Nierówności \left(9+\sqrt{82}\right)\left(\sqrt{82}-9\right)x > 2x-4 oraz (-2-3x)^2+3x\leqslant (3x-2)^2-5x+4 są spełnione przez każdą liczbę z pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -\infty
C. -4 D. 0
Zadanie 10.  1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%] Rozwiąż 
Podpunkt 10.1 (0.8 pkt)
 Rozwiąż nierówność -\frac{1}{3}x\leqslant \frac{3}{5}x+\frac{3}{4}.

Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -3 B. -4
C. +\infty D. 1
E. 5 F. -\infty


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm