Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 558/824 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=mx+n. Funkcja ta spełnia warunek f(5)=-1, a jej wykres zawiera punkt (-1,6).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 515/715 [72%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(-6,-5) i Q=(-1,7).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10933 ⋅ Poprawnie: 302/535 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykresy funkcji f(x)=-\frac{5}{2}x-5 oraz g(x)=mx+2 przecinają oś Ox w tym samym punkcie.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 191/247 [77%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{81}\right)x+6561 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 253/376 [67%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=11+9x-12mx jest malejąca, wtedy i tylko wtedy, gdy liczba m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -5 B. -\infty
C. 4 D. 3
E. -7 F. +\infty
Zadanie 6.  1 pkt ⋅ Numer: pp-10877 ⋅ Poprawnie: 137/250 [54%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Dana jest funkcja f(x)=ax+b. Warunek f(x) \lessdot 0 spełnia każde x ujemne, a warunek f(x) > 0 spełnia każde x dodatnie.

Wynika z tego, że:

Odpowiedzi:
A. a=0 B. a\lessdot 0
C. a > 0 \wedge b=0 D. a=0 \wedge b > 0
Zadanie 7.  1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
« Proste p i q są równoległe, a punkt O(0,0) leży pomiędzy nimi.

Zatem:

Odpowiedzi:
A. a\cdot m > 0 \ \wedge\ b\cdot n > 0 B. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
C. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0 D. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0
Zadanie 8.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/297 [72%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=3x+\frac{5}{4} i g(x)=9 opisują proste:
Odpowiedzi:
A. przecinające się pod kątem o mierze 90^{\circ} B. pokrywające się
C. przecinające się pod kątem różnym od 90^{\circ} D. równoległe i różne
Zadanie 9.  1 pkt ⋅ Numer: pp-10801 ⋅ Poprawnie: 162/256 [63%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Dana jest funkcja f(x)=5x-1.

Zbiór rozwiązań nierówności -2\leqslant f(x)\leqslant 8 jest przedziałem \langle a, b\rangle.

Odpowiedź:
a=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od 12. Do jej wykresu należy punkt \left(4,\frac{3}{2}\right).

Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm