Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 433/606 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty A=(-3,8) i B=(6,-7) należą do prostej o równaniu 5x+by+c=0.

Wyznacz liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 170/286 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(2,2) i B=(-3,7) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=\frac{3}{2}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-4(m^2-5)x+1 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-\sqrt{5},\sqrt{5}\right) B. m\in\left(-\infty, -\frac{\sqrt{20}}{5}\right)\cup\left(\frac{\sqrt{20}}{5}, +\infty\right)
C. m\in\left(-5,5\right) D. m\in\left(-\infty, -\sqrt{5}\right)\cup\left(\sqrt{5}, +\infty\right)
E. m\in\left(-\infty, -5\right)\cup\left(5, +\infty\right) F. m\in\left(-\infty, -\frac{\sqrt{20}}{4}\right)\cup\left(\frac{\sqrt{20}}{4}, +\infty\right)
Zadanie 5.  1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=2x-7a przecina oś Oy powyżej punktu (0,9) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -4 B. -3
C. +\infty D. 2
E. -2 F. -\infty
Zadanie 6.  1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Do wykresu funkcji liniowej y=ax+b należą punkty (3, 0) i (0, 2).

Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")

Odpowiedzi:
T/N : a > 0 \wedge b > 0 T/N : a \lessdot 0 \wedge b < 0
T/N : a > 0 \wedge b \lessdot 0  
Zadanie 7.  1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
« Proste p i q są równoległe, a punkt O(0,0) leży pomiędzy nimi.

Zatem:

Odpowiedzi:
A. a\cdot m > 0 \ \wedge\ b\cdot n > 0 B. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0
C. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0 D. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
Zadanie 8.  1 pkt ⋅ Numer: pp-10889 ⋅ Poprawnie: 39/62 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Dla której z podanych wartości m funkcja liniowa określona wzorem f(x)=-36x+m^2-9+m^4 x jest malejąca:
Odpowiedzi:
A. m=6 B. m=-2\sqrt{6}
C. m=\sqrt{6}+1 D. m=-\frac{\sqrt{6}}{6}
Zadanie 9.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=-\frac{5}{6}+\frac{1}{2}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -8
C. 6 D. -\infty
E. 7 F. -2
Zadanie 10.  1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/69 [75%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkt o współrzędnych P=\left(\sqrt{7}, 3\right) należy do wykresu funkcji liniowej y=-3\sqrt{7}x+2\cdot ......-4.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm