Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 226/428 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(2,6) i B=(-4,-5) określona jest równaniem -11x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10940 ⋅ Poprawnie: 40/66 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Wykres funkcji liniowej h(x)=(p-9)x+2 przechodzi przez punkt S, którego obie współrzędne są nieparzyste.

Liczba p może być równa:

Odpowiedzi:
A. 10 B. 7
C. -5 D. -7
E. 5 F. -3
Zadanie 3.  1 pkt ⋅ Numer: pp-10795 ⋅ Poprawnie: 454/762 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja liniowa określona wzorem y=mx+n, wartości ujemne przyjmuje tylko w przedziale (-6,+\infty). Wykres tej funkcji przecina oś Oy w punkcie (0,-8).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 192/248 [77%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{49}\right)x+2401 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10890 ⋅ Poprawnie: 57/100 [57%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Wykres funkcji liniowej określonej wzorem h(x)=(\sqrt{7}-a)x+\frac{a}{2} jest prostą, która nie przechodzi tylko przez czwartą ćwiartkę układu współrzędnych.

Funkcja h spełnia ten warunek wtedy i tylko wtedy, gdy liczba a należy do pewnego przedziału o końcach p i q, przy czym p\lessdot q.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 5.2 (0.5 pkt)
 Podaj q.
Odpowiedź:
q= \cdot
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 83/138 [60%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja liniowa określona wzorem f(x)=ax+b jest malejąca i ma miejsce zerowe \frac{\sqrt{50}-7}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a > 0 \wedge b > 0 B. a > 0 \wedge b \lessdot 0
C. a \lessdot 0 \wedge b < 0 D. a \lessdot 0 \wedge b > 0
Zadanie 7.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 7.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(\frac{3}{10}-\frac{\sqrt{3}}{3}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 7.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{9}{20} B. -\infty
C. \frac{1}{10} D. -\frac{3}{20}
E. -\frac{1}{10} F. -\frac{9}{20}
Zadanie 8.  1 pkt ⋅ Numer: pp-10909 ⋅ Poprawnie: 99/226 [43%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wskaż prostą prostopadłą do osi Ox:
Odpowiedzi:
A. 2y+4=0 B. -4x+y=0
C. x-4=y D. 2x+4=0
E. 4y=0 F. 4y=x
Zadanie 9.  1 pkt ⋅ Numer: pp-10939 ⋅ Poprawnie: 101/204 [49%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Dla argumentu x_0 wartości funkcji określonych wzorami f(x)=3x+8 i g(x)=-5x-7 są sobie równe i obie równe y_0.

Wyznacz y_0.

Odpowiedź:
y_0=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 86/129 [66%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkt M=\left(\frac{1}{2},7\right) należy do wykresu funkcji liniowej określonej wzorem f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm