Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10813 ⋅ Poprawnie: 211/389 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Proste pokazane na rysunku
określone są równaniami 2x-4y=a, 3x+y=b i 3x+8y=c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10807 ⋅ Poprawnie: 511/690 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Współczynnik kierunkowy prostej, do której należą punkty A=(30,50) i B=(27,14) jest równy m.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10923 ⋅ Poprawnie: 157/248 [63%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Miejsce zerowe funkcji liniowej określonej wzorem f(x)=4x-3m jest większe od 2 dla każdej liczby m należącej do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (-\infty,q)
C. (p,q) D. (-\infty,q\rangle
E. (p,+\infty) F. \langle p,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{16}\right)x+256 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 240/447 [53%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-5-m)x+2m jest malejąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\frac{2}{5} B. -\infty
C. -\frac{1}{5} D. \frac{2}{5}
E. +\infty F. \frac{1}{5}
Zadanie 6.  1 pkt ⋅ Numer: pp-10877 ⋅ Poprawnie: 137/250 [54%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Dana jest funkcja f(x)=ax+b. Warunek f(x) \lessdot 0 spełnia każde x dodatnie, a warunek f(x) > 0 spełnia każde x ujemne.

Wynika z tego, że:

Odpowiedzi:
A. a=0 B. a > 0
C. a=0 \wedge b \lessdot 0 D. a \lessdot 0 \wedge b=0
Zadanie 7.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 7.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(-\frac{1}{8}-\frac{\sqrt{3}}{4}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 7.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -\frac{1}{18}
C. \frac{1}{18} D. \frac{1}{4}
E. -\frac{1}{3} F. -\infty
Zadanie 8.  1 pkt ⋅ Numer: pp-10908 ⋅ Poprawnie: 91/133 [68%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja liniowa f(x)=(2-m)x+(m+1)^2-3 jest rosnąca i jej wykres przecina oś rzędnych w punkcie P=(0,46).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 9.  1 pkt ⋅ Numer: pp-10938 ⋅ Poprawnie: 121/181 [66%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Punkt A=(m^2+1,-3) należy do wykresu funkcji liniowej określonej wzorem g(x)=31-2x:
Odpowiedzi:
A. tylko dla m=-4 B. dla m\in\mathbb{R}
C. dla m\in\emptyset D. tylko dla m=-8
E. dla m\in\{-4,4\} F. tylko dla m=4
Zadanie 10.  1 pkt ⋅ Numer: pp-10934 ⋅ Poprawnie: 84/157 [53%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 O funkcji f określonej wzorem f(x)=\frac{-8-m}{m-3}x-2 wiadomo, że f(-1)=0.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm