Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 115/192 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-6x oblicz h\left(\frac{3\sqrt{3}-6}{6}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest złożona T/N : liczba ta jest ujemna
Zadanie 2.  1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 107/166 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt o współrzędnych (2t-3, 4t+2), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem y=2x+b.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dana jest funkcja liniowa określona wzorem g(x)=(\sqrt{7}+\sqrt{2})x-5 . Miejscem zerowym funkcji g jest liczba \frac{\sqrt{2}-\sqrt{7}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10916 ⋅ Poprawnie: 127/219 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa y=ax+b ma dodatnie miejsce zerowe, a jej wykres przecina oś Oy poniżej punktu (0,0).

Wówczas:

Odpowiedzi:
A. a \lessdot 0 \wedge b > 0 B. a > 0 \wedge b > 0
C. a > 0 \wedge b \lessdot 0 D. a \lessdot 0 \wedge b \lessdot 0
Zadanie 5.  1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-36\right)x+2 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10924 ⋅ Poprawnie: 60/79 [75%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=ax+b i spełnia warunek f(7)-f(4)=27.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
« Proste p i q są równoległe, a punkt O(0,0) leży pomiędzy nimi.

Zatem:

Odpowiedzi:
A. a\cdot m > 0 \ \wedge\ b\cdot n > 0 B. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
C. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0 D. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0
Zadanie 8.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/297 [72%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=4x+\frac{5}{4} i g(x)=6 opisują proste:
Odpowiedzi:
A. równoległe i różne B. przecinające się pod kątem o mierze 90^{\circ}
C. pokrywające się D. przecinające się pod kątem różnym od 90^{\circ}
Zadanie 9.  1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Nierówności \left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)x > 2x-4 oraz (2-3x)^2+3x\leqslant (3x+2)^2-5x+4 są spełnione przez każdą liczbę z pewnego przedziału.

Podaj lewy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. 4
C. 0 D. -2
Zadanie 10.  1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Do wykresu funkcji y=\frac{3}{2}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(\frac{11}{3},\frac{5}{2}\right) B. \left(\frac{8}{3},0\right)
C. \left(\frac{14}{3},5\right) D. \left(\frac{5}{3},\frac{3}{2}\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm