Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 226/428 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(1,-6) i B=(-5,-2) określona jest równaniem 4x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 324/482 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wykres funkcji liniowej y=-\frac{1}{3}x+9 przecina osie układu współrzędnych w punktach A i B.

Oblicz pole powierzchni trójkąta AOB.

Odpowiedź:
P_{AOB}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10933 ⋅ Poprawnie: 302/535 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wykresy funkcji f(x)=-\frac{1}{7}x-5 oraz g(x)=mx+2 przecinają oś Ox w tym samym punkcie.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10897 ⋅ Poprawnie: 61/102 [59%] Rozwiąż 
Podpunkt 4.1 (0.5 pkt)
 Wyznacz te wartości parametru m, dla których funkcja liniowa f(x)=(10-m^2)x-5 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Liczba p jest najmniejszym z końców liczbowych tych przedziałów, a liczba q jest ilością liczb całkowitych należących do rozwiązania.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10912 ⋅ Poprawnie: 105/180 [58%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja f(x)=\left(-2m+\frac{7}{3}\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. -3
C. 8 D. +\infty
E. -10 F. -9
Zadanie 6.  1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykres funkcji liniowej y=2^{21}x+2^{11} przechodzi przez ćwiartki układu współrzędnych:
Odpowiedzi:
A. I, II i IV B. II, III, IV
C. I, II i III D. I, III i IV
Zadanie 7.  1 pkt ⋅ Numer: pp-10885 ⋅ Poprawnie: 104/168 [61%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji liniowej f określonej wzorem f(x)=ax+b nie przechodzi tylko przez ćwiartkę układu współrzędnych o numerze 3.

Wówczas:

Odpowiedzi:
A. a\lessdot 0 \wedge b<0 B. a>0 \wedge b>0
C. a\lessdot 0 \wedge b>0 D. a>0 \wedge b\lessdot 0
Zadanie 8.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/297 [72%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=x+\frac{5}{4} i g(x)=4 opisują proste:
Odpowiedzi:
A. przecinające się pod kątem różnym od 90^{\circ} B. pokrywające się
C. równoległe i różne D. przecinające się pod kątem o mierze 90^{\circ}
Zadanie 9.  1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Zbiorem wszystkich rozwiązań nierówności \left(\sqrt{58}-\frac{77}{10}\right)(-8+7x) > 0 jest pewien przedział.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -4 B. +\infty
C. 5 D. -6
E. -1 F. -\infty
Zadanie 10.  1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Do wykresu funkcji y=-\frac{3}{2}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(-\frac{7}{3},\frac{5}{2}\right) B. \left(\frac{2}{3},-3\right)
C. \left(-\frac{1}{3},-\frac{5}{2}\right) D. \left(-\frac{4}{3},-2\right)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm