Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 434/607 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty A=(3,-2) i B=(6,-7) należą do prostej o równaniu 5x+by+c=0.

Wyznacz liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 171/287 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(3,-1) i B=(1,1) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 67/119 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Miejscem zerowym funkcji określonej wzorem f(x)=2\sqrt{13}x-\frac{\sqrt{91}}{2} jest liczba \frac{\sqrt{13\cdot 91}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10920 ⋅ Poprawnie: 78/133 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja określona wzorem f(x)=\left(m^2-8m\right)x+5 spełnia warunek f(-5)=f(5).

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 240/447 [53%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-12-m)x+2m jest malejąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -\frac{1}{12}
C. \frac{1}{12} D. \frac{1}{6}
E. -\infty F. -\frac{1}{6}
Zadanie 6.  1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 82/137 [59%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja liniowa określona wzorem f(x)=ax+b jest malejąca i ma miejsce zerowe \frac{\sqrt{48}-7}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a \lessdot 0 \wedge b < 0 B. a > 0 \wedge b > 0
C. a > 0 \wedge b \lessdot 0 D. a \lessdot 0 \wedge b > 0
Zadanie 7.  1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
« Proste p i q są równoległe, a punkt O(0,0) leży pomiędzy nimi.

Zatem:

Odpowiedzi:
A. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0 B. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0
C. a\cdot m > 0 \ \wedge\ b\cdot n > 0 D. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
Zadanie 8.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/296 [72%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=x+\frac{5}{4} i g(x)=8 opisują proste:
Odpowiedzi:
A. pokrywające się B. przecinające się pod kątem różnym od 90^{\circ}
C. przecinające się pod kątem o mierze 90^{\circ} D. równoległe i różne
Zadanie 9.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%] Rozwiąż 
Podpunkt 9.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=\frac{5}{3}+\frac{1}{10}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 2 B. -9
C. -8 D. 0
E. +\infty F. -\infty
Zadanie 10.  1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 86/128 [67%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Punkt M=\left(\frac{1}{2},-6\right) należy do wykresu funkcji liniowej określonej wzorem f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm