Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10814 ⋅ Poprawnie: 267/526 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Na rysunku przedstawiono wykres prostej:
Prosta symetryczna do tej prostej względem osi Oy określona jest równaniem ax+by=4.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 435/608 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-3,8) i B=(3,-2) należą do prostej o równaniu 5x+by+c=0.

Wyznacz liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10808 ⋅ Poprawnie: 198/381 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Wskaż wzór funkcji, której wykres jest symetryczny do tego wykresu względem osi Oy:
Odpowiedzi:
A. y=\sqrt{3}x+1 B. y=-\frac{\sqrt{3}}{3}x+1
C. y=-\sqrt{3}x+1 D. y=\frac{1}{\sqrt{3}}x+1
Zadanie 4.  1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 318/476 [66%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji liniowej y=-\frac{2}{3}x+6 przecina osie układu współrzędnych w punktach A i B.

Oblicz pole powierzchni trójkąta AOB.

Odpowiedź:
P_{AOB}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11431 ⋅ Poprawnie: 323/509 [63%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba 1 jest miejscem zerowym funkcji liniowej f(x)=.....\cdot x+b, a punkt M=(6,25) należy do wykresu tej funkcji.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10933 ⋅ Poprawnie: 302/535 [56%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Wykresy funkcji f(x)=-\frac{5}{3}x-5 oraz g(x)=mx+2 przecinają oś Ox w tym samym punkcie.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=-\frac{5}{3}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10893 ⋅ Poprawnie: 451/589 [76%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Które z poniższych wzorów opisują funkcję malejącą?
Odpowiedzi:
T/N : y=\left(12-5\sqrt{5}\right)x+\sqrt{5} T/N : y=\left(11-7\sqrt{2}\right)x+\sqrt{2}
T/N : y=\left(6-2\sqrt{7}\right)x+\sqrt{7}  
Zadanie 9.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-5(m^2-7)x+3 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-\infty, -\frac{\sqrt{35}}{5}\right)\cup\left(\frac{\sqrt{35}}{5}, +\infty\right) B. m\in\left(-7,7\right)
C. m\in\left(-\sqrt{7},\sqrt{7}\right) D. m\in\left(-\infty, -\sqrt{7}\right)\cup\left(\sqrt{7}, +\infty\right)
E. m\in\left(-\infty, -\frac{\sqrt{35}}{7}\right)\cup\left(\frac{\sqrt{35}}{7}, +\infty\right) F. m\in\left(-\infty, -7\right)\cup\left(7, +\infty\right)
Zadanie 10.  1 pkt ⋅ Numer: pp-10916 ⋅ Poprawnie: 115/207 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja liniowa y=ax+b ma dodatnie miejsce zerowe, a jej wykres przecina oś Oy powyżej punktu (0,0).

Wówczas:

Odpowiedzi:
A. a > 0 \wedge b \lessdot 0 B. a > 0 \wedge b > 0
C. a \lessdot 0 \wedge b \lessdot 0 D. a \lessdot 0 \wedge b > 0
Zadanie 11.  1 pkt ⋅ Numer: pp-10890 ⋅ Poprawnie: 42/82 [51%] Rozwiąż 
Podpunkt 11.1 (0.5 pkt)
 Wykres funkcji liniowej określonej wzorem h(x)=(\sqrt{8}-a)x+\frac{a}{2} jest prostą, która nie przechodzi tylko przez czwartą ćwiartkę układu współrzędnych.

Funkcja h spełnia ten warunek wtedy i tylko wtedy, gdy liczba a należy do pewnego przedziału o końcach p i q, przy czym p\lessdot q.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 11.2 (0.5 pkt)
 Podaj q.
Odpowiedź:
q= \cdot
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10912 ⋅ Poprawnie: 99/174 [56%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja f(x)=\left(-2m-\frac{4}{3}\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -5 B. 7
C. 1 D. -\infty
E. 4 F. +\infty
Zadanie 13.  1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 76/139 [54%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja liniowa f(x)=\left(-\frac{16}{3}m-3\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 6 B. -11
C. +\infty D. -\infty
E. -9 F. 12
Zadanie 14.  1 pkt ⋅ Numer: pp-10924 ⋅ Poprawnie: 50/67 [74%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=ax+b i spełnia warunek f(7)-f(4)=36.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10909 ⋅ Poprawnie: 98/225 [43%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wskaż prostą prostopadłą do osi Ox:
Odpowiedzi:
A. -3y=x B. 3x+y=0
C. x+3=y D. 6x-3=0
E. -3y=0 F. 6y-3=0
Zadanie 16.  1 pkt ⋅ Numer: pp-10801 ⋅ Poprawnie: 152/244 [62%] Rozwiąż 
Podpunkt 16.1 (0.5 pkt)
 Dana jest funkcja f(x)=-5x+5.

Zbiór rozwiązań nierówności -9\leqslant f(x)\leqslant -4 jest przedziałem \langle a, b\rangle.

Odpowiedź:
a=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10930 ⋅ Poprawnie: 99/132 [75%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Funkcje określone wzorami f(x)=\frac{1}{5}x+3 i g(x)=-\frac{1}{5}x-5 przyjmują równą wartość dla argumentu x_0.

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 18.  1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 86/128 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Punkt M=\left(\frac{1}{2},10\right) należy do wykresu funkcji liniowej określonej wzorem f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 68/122 [55%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Wykres funkcji f(x)=-7x-6m przecina oś Oy w punkcie o rzędnej 18. Wykres funkcji g(x)=7x+10m przecina oś Ox w punkcie o odciętej ......... .

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 20.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 20.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=\frac{10}{9}x+4.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 20.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -9 B. -\infty
C. +\infty D. 9
E. -10 F. 10


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm