Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-3x oblicz h\left(\frac{3\sqrt{3}-9}{3}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest ujemna T/N : liczba ta jest niewymierna
Zadanie 2.  1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 125/214 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dane są funkcje f(x)=-2x-3 oraz g(x)=f(x+3)+4. Zapisz wzór funkcji g w postaci g(x)=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 273/458 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=-3x-\frac{1}{2} dla każdej liczby z przedziału \langle -1,6\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10940 ⋅ Poprawnie: 39/65 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wykres funkcji liniowej h(x)=(p-9)x-4 przechodzi przez punkt S, którego obie współrzędne są nieparzyste.

Liczba p może być równa:

Odpowiedzi:
A. 7 B. 10
C. -1 D. -3
E. -5 F. 9
Zadanie 5.  1 pkt ⋅ Numer: pp-10795 ⋅ Poprawnie: 453/761 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja liniowa określona wzorem y=mx+n, wartości ujemne przyjmuje tylko w przedziale (-3,+\infty). Wykres tej funkcji przecina oś Oy w punkcie (0,-8).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10922 ⋅ Poprawnie: 545/705 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-\frac{6}{7}-\frac{4}{5}x.

Wyznacz miejsce zerowe tej funkcji.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=-\frac{4}{7}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10899 ⋅ Poprawnie: 81/113 [71%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty o współrzędnych (200,500) oraz (900,-500) należą do wykresu funkcji liniowej y=mx+n.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : z treści wynika, że m \lessdot 0 T/N : z treści wynika, że n \lessdot 0
T/N : z treści wynika, że n=0  
Zadanie 9.  1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa f(x)=\frac{\left(16-m^2\right)}{4}x-9 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p, a ilość liczb całkowitych należących do rozwiązania jest równa q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-81\right)x+2 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11504 ⋅ Poprawnie: 585/920 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 (1 pkt) Funkcja f określona jest wzorem f(x)=(\sqrt{2}m+10)x+4 dla każdej liczby rzeczywistej x.

Funkcja ta jest rosnąca, wtedy i tylko wtedy, gdy:

Odpowiedzi:
A. m\in\left(-\infty,-5\sqrt{2}\right\rangle B. m\in\left\langle 5\sqrt{2},+\infty\right)
C. m\in\left(-\infty,5\sqrt{2}\right\rangle D. m\in\left\langle -5\sqrt{2},+\infty\right)
Zadanie 12.  1 pkt ⋅ Numer: pp-10903 ⋅ Poprawnie: 210/345 [60%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Funkcja liniowa f(x)=(7-4m)x+1-6m jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 5 B. 10
C. -3 D. -9
E. +\infty F. -\infty
Zadanie 13.  1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 82/137 [59%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Funkcja liniowa określona wzorem f(x)=ax+b jest malejąca i ma miejsce zerowe \frac{\sqrt{51}-7}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a > 0 \wedge b > 0 B. a \lessdot 0 \wedge b < 0
C. a \lessdot 0 \wedge b > 0 D. a > 0 \wedge b \lessdot 0
Zadanie 14.  1 pkt ⋅ Numer: pp-10919 ⋅ Poprawnie: 219/321 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Funkcja f jest liniowa oraz f(-4)=-5 i f(-3)=-1.

Oblicz f(0).

Odpowiedź:
f(0)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10909 ⋅ Poprawnie: 98/225 [43%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wskaż prostą prostopadłą do osi Ox:
Odpowiedzi:
A. -4x+y=0 B. 4y=0
C. -4x+4=0 D. -4y+4=0
E. 4y=x F. x-4=y
Zadanie 16.  1 pkt ⋅ Numer: pp-10801 ⋅ Poprawnie: 152/244 [62%] Rozwiąż 
Podpunkt 16.1 (0.5 pkt)
 Dana jest funkcja f(x)=6x+4.

Zbiór rozwiązań nierówności -5\leqslant f(x)\leqslant 3 jest przedziałem \langle a, b\rangle.

Odpowiedź:
a=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 17.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%] Rozwiąż 
Podpunkt 17.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=\frac{5}{6}-\frac{1}{10}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -2 B. 0
C. +\infty D. -11
E. -\infty F. 3
Zadanie 18.  1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/69 [75%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Punkt o współrzędnych P=\left(\sqrt{7}, -4\right) należy do wykresu funkcji liniowej y=-3\sqrt{7}x+2\cdot ......-4.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 68/122 [55%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Wykres funkcji f(x)=-4x+3m przecina oś Oy w punkcie o rzędnej 30. Wykres funkcji g(x)=8x-6m przecina oś Ox w punkcie o odciętej ......... .

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 20.  1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 «« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od 14. Do jej wykresu należy punkt \left(7,\frac{7}{2}\right).

Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm