Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10936 ⋅ Poprawnie: 848/1226 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dana jest funkcja liniowa określona wzorem f(x)=2x-4.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wykres tej funkcji przecina oś rzędnych w punkcie (0,-4) T/N : funkcja f rośnie w \mathbb{R}
T/N : do jej wykresu należy punkt (-1,6)  
Zadanie 2.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 224/426 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(-1,-5) i B=(6,5) określona jest równaniem 10x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 273/458 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=-4x-\frac{1}{2} dla każdej liczby z przedziału \langle -5,6\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10806 ⋅ Poprawnie: 278/546 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa f(x)=(m+2)x-(m+1)^2+9 jest malejąca i jej wykres przecina oś rzędnych w punkcie P=(0,-91).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11406 ⋅ Poprawnie: 483/672 [71%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Miejscem zerowym funkcji liniowej f(x)=3(x+2)-6\sqrt{3} jest liczba a+b\sqrt{3}.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (0.5 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja liniowa określona wzorem g(x)=(\sqrt{8}+\sqrt{3})x-5 . Miejscem zerowym funkcji g jest liczba \frac{\sqrt{3}-\sqrt{8}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 206/278 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji g(x)=(m-9)x+15 przecina oś Ox w punkcie o odciętej równej \frac{\log_{2}{8}}{3^0}.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 413/556 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=-\frac{1}{4}x-6 i przecina oś Oy w punkcie P.

Które z poniższych zdań są prawdziwe?

Odpowiedzi:
T/N : funkcja ta jest malejąca i P=\left(0,\frac{3}{2}\right) T/N : funkcja ta jest rosnąca i P=\left(0,-\frac{3}{2}\right)
T/N : funkcja ta jest malejąca i P=\left(0,6\right)  
Zadanie 9.  1 pkt ⋅ Numer: pp-10897 ⋅ Poprawnie: 60/101 [59%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Wyznacz te wartości parametru m, dla których funkcja liniowa f(x)=(3-m^2)x+1 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Liczba p jest najmniejszym z końców liczbowych tych przedziałów, a liczba q jest ilością liczb całkowitych należących do rozwiązania.

Podaj liczbę p.

Odpowiedź:
p= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Podaj liczbę q.
Odpowiedź:
q= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-36\right)x+2 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10890 ⋅ Poprawnie: 42/82 [51%] Rozwiąż 
Podpunkt 11.1 (0.5 pkt)
 Wykres funkcji liniowej określonej wzorem h(x)=(\sqrt{2}-a)x+\frac{a}{2} jest prostą, która nie przechodzi tylko przez czwartą ćwiartkę układu współrzędnych.

Funkcja h spełnia ten warunek wtedy i tylko wtedy, gdy liczba a należy do pewnego przedziału o końcach p i q, przy czym p\lessdot q.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 11.2 (0.5 pkt)
 Podaj q.
Odpowiedź:
q= \cdot
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=2x-3a przecina oś Oy powyżej punktu (0,8) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 4
C. 7 D. -\infty
E. 1 F. 6
Zadanie 13.  1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 82/137 [59%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Funkcja liniowa określona wzorem f(x)=ax+b jest malejąca i ma miejsce zerowe \frac{\sqrt{10}-3}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a \lessdot 0 \wedge b < 0 B. a > 0 \wedge b > 0
C. a \lessdot 0 \wedge b > 0 D. a > 0 \wedge b \lessdot 0
Zadanie 14.  1 pkt ⋅ Numer: pp-10919 ⋅ Poprawnie: 219/321 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Funkcja f jest liniowa oraz f(-4)=-4 i f(-3)=0.

Oblicz f(0).

Odpowiedź:
f(0)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10909 ⋅ Poprawnie: 98/225 [43%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wskaż prostą prostopadłą do osi Ox:
Odpowiedzi:
A. 4y=0 B. x-4=y
C. -4x+y=0 D. 6y+4=0
E. 6x+4=0 F. 4y=x
Zadanie 16.  1 pkt ⋅ Numer: pp-10929 ⋅ Poprawnie: 57/99 [57%] Rozwiąż 
Podpunkt 16.1 (0.8 pkt)
 Wykres funkcji liniowej określonej wzorem y=\frac{1}{10}(x-2)+4m-1 przecina dodatnią półoś Oy wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 12 B. +\infty
C. 2 D. -9
E. -6 F. -\infty
Zadanie 17.  1 pkt ⋅ Numer: pp-10939 ⋅ Poprawnie: 101/204 [49%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 « Dla argumentu x_0 wartości funkcji określonych wzorami f(x)=-x-7 i g(x)=8x+7 są sobie równe i obie równe y_0.

Wyznacz y_0.

Odpowiedź:
y_0=
(wpisz dwie liczby całkowite)
Zadanie 18.  1 pkt ⋅ Numer: pp-10925 ⋅ Poprawnie: 66/91 [72%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Wykres funkcji liniowej f(x)=\left(\frac{1}{2}m-6\right)x+\frac{1}{2}m+5 zawiera punkt M=(0,1).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 19.  1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%] Rozwiąż 
Podpunkt 19.1 (0.8 pkt)
 Rozwiąż nierówność \frac{1}{3}x\leqslant -\frac{5}{4}x+\frac{3}{4}.

Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 19.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -4
C. 5 D. -\infty
E. 3 F. -5
Zadanie 20.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 20.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=\frac{5}{4}x-4.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 20.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -8 B. -\infty
C. 8 D. +\infty
E. 10 F. -10


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm