Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 558/824 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=mx+n. Funkcja ta spełnia warunek f(4)=-2, a jej wykres zawiera punkt (-4,-1).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 435/608 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(6,-7) i B=(-3,8) należą do prostej o równaniu 5x+by+c=0.

Wyznacz liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 516/716 [72%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(-6,-5) i Q=(3,-1).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10940 ⋅ Poprawnie: 40/66 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wykres funkcji liniowej h(x)=(p-9)x-5 przechodzi przez punkt S, którego obie współrzędne są nieparzyste.

Liczba p może być równa:

Odpowiedzi:
A. 8 B. -4
C. 0 D. 2
E. 6 F. -9
Zadanie 5.  1 pkt ⋅ Numer: pp-11406 ⋅ Poprawnie: 501/691 [72%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Miejscem zerowym funkcji liniowej f(x)=3(x+2)-6\sqrt{3} jest liczba a+b\sqrt{3}.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (0.5 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja liniowa określona wzorem g(x)=(\sqrt{5}+\sqrt{3})x-2 . Miejscem zerowym funkcji g jest liczba \frac{\sqrt{3}-\sqrt{5}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 215/292 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji g(x)=(m-8)x+15 przecina oś Ox w punkcie o odciętej równej \frac{\log_{2}{8}}{3^0}.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 417/562 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=-\frac{1}{3}x-3 i przecina oś Oy w punkcie P.

Które z poniższych zdań są prawdziwe?

Odpowiedzi:
T/N : funkcja ta jest malejąca i P=\left(0,-3\right) T/N : funkcja ta jest malejąca i P=\left(0,3\right)
T/N : funkcja ta jest malejąca i P=\left(0,1\right)  
Zadanie 9.  1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa f(x)=\frac{\left(9-m^2\right)}{4}x-9 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p, a ilość liczb całkowitych należących do rozwiązania jest równa q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 192/248 [77%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{9}\right)x+81 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 254/377 [67%] Rozwiąż 
Podpunkt 11.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=4+2x-12mx jest malejąca, wtedy i tylko wtedy, gdy liczba m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 7 B. -8
C. +\infty D. -7
E. -\infty F. 3
Zadanie 12.  1 pkt ⋅ Numer: pp-10906 ⋅ Poprawnie: 54/153 [35%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=-5x-3a przecina oś Oy poniżej punktu (0,5) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj ten z końców tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 0 B. 4
C. -4 D. +\infty
E. -\infty F. 3
Zadanie 13.  1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 77/140 [55%] Rozwiąż 
Podpunkt 13.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja liniowa f(x)=\left(-\frac{7}{2}m-4\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 13.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -12 B. 9
C. -\infty D. -3
E. -5 F. +\infty
Zadanie 14.  1 pkt ⋅ Numer: pp-10882 ⋅ Poprawnie: 218/416 [52%] Rozwiąż 
Podpunkt 14.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=\left(-\frac{2}{3}+\frac{1}{5}m\right)x+5 jest rosnąca, gdy m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 14.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 10 B. +\infty
C. -\infty D. -11
E. -1 F. 3
Zadanie 15.  1 pkt ⋅ Numer: pp-10901 ⋅ Poprawnie: 79/140 [56%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
A. y=6x^2 B. y=\frac{\sqrt{3}x}{3}
C. y=\frac{9}{x} D. y=\frac{3}{\sqrt{3}x}
Zadanie 16.  1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%] Rozwiąż 
Podpunkt 16.1 (0.8 pkt)
 Zbiorem wszystkich rozwiązań nierówności \left(\sqrt{40}-\frac{32}{5}\right)(-7+5x) > 0 jest pewien przedział.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 3 B. -8
C. -7 D. -\infty
E. +\infty F. -5
Zadanie 17.  1 pkt ⋅ Numer: pp-10930 ⋅ Poprawnie: 111/144 [77%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Funkcje określone wzorami f(x)=\frac{1}{2}x-5 i g(x)=-\frac{1}{5}x+5 przyjmują równą wartość dla argumentu x_0.

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 18.  1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/70 [74%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Punkt o współrzędnych P=\left(\sqrt{7}, -5\right) należy do wykresu funkcji liniowej y=-3\sqrt{7}x+2\cdot ......-4.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10798 ⋅ Poprawnie: 36/81 [44%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Trójkąt o bokach długości 5, 2p+21, p+9 jest równoramienny.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 20.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=\frac{6}{5}x-2.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 20.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -5 B. 5
C. 6 D. +\infty
E. -\infty F. -6


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm