Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-2x oblicz h\left(\frac{3\sqrt{3}-5}{2}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest złożona T/N : liczba ta jest pierwsza
Zadanie 2.  1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 433/606 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-9,18) i B=(3,-2) należą do prostej o równaniu 5x+by+c=0.

Wyznacz liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10808 ⋅ Poprawnie: 196/379 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Wskaż wzór funkcji, której wykres jest symetryczny do tego wykresu względem osi Oy:
Odpowiedzi:
A. y=-\frac{\sqrt{2}}{2}x+1 B. y=\sqrt{2}x+1
C. y=-\sqrt{2}x+1 D. y=\frac{1}{\sqrt{2}}x+1
Zadanie 4.  1 pkt ⋅ Numer: pp-10806 ⋅ Poprawnie: 278/546 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa f(x)=(m+2)x-(m+1)^2+31 jest malejąca i jej wykres przecina oś rzędnych w punkcie P=(0,-90).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10793 ⋅ Poprawnie: 482/632 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba ......... jest miejscem zerowym funkcji określonej wzorem f(x)=-\frac{4}{3}x-\frac{3}{4}.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10923 ⋅ Poprawnie: 157/248 [63%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 Miejsce zerowe funkcji liniowej określonej wzorem f(x)=3x-5m jest większe od 2 dla każdej liczby m należącej do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. \langle p,q\rangle B. (-\infty,q\rangle
C. \langle p,+\infty) D. (p,+\infty)
E. (p,q) F. (-\infty,q)
Podpunkt 6.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=-\frac{6}{7}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10900 ⋅ Poprawnie: 119/192 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
T/N : y=-8x^2 T/N : y=\frac{\sqrt{x}}{x-8}
T/N : y=\frac{64}{x}  
Zadanie 9.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-3(m^2-2)x+4 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-\sqrt{2},\sqrt{2}\right) B. m\in\left(-\infty, -2\right)\cup\left(2, +\infty\right)
C. m\in\left(-\infty, -\frac{\sqrt{6}}{3}\right)\cup\left(\frac{\sqrt{6}}{3}, +\infty\right) D. m\in\left(-2,2\right)
E. m\in\left(-\infty, -\sqrt{2}\right)\cup\left(\sqrt{2}, +\infty\right) F. m\in\left(-\infty, -\frac{\sqrt{6}}{2}\right)\cup\left(\frac{\sqrt{6}}{2}, +\infty\right)
Zadanie 10.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{4}\right)x+16 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 240/447 [53%] Rozwiąż 
Podpunkt 11.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-12-m)x+2m jest malejąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{1}{6} B. \frac{1}{12}
C. -\infty D. +\infty
E. -\frac{1}{6} F. -\frac{1}{12}
Zadanie 12.  1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=2x-3a przecina oś Oy powyżej punktu (0,7) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 0 B. +\infty
C. 5 D. -2
E. 2 F. -\infty
Zadanie 13.  1 pkt ⋅ Numer: pp-10749 ⋅ Poprawnie: 118/142 [83%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja f opisana jest wzorem: f(x)=\frac{2}{9}x+3. Jeśli argument funkcji f wzrośnie o 5, to wartość tej funkcji:
Odpowiedzi:
A. zmaleje o \frac{8}{9} B. wzrośnie o \frac{10}{9}
C. wzrośnie o \frac{4}{3} D. wzrośnie o \frac{8}{9}
Zadanie 14.  1 pkt ⋅ Numer: pp-10924 ⋅ Poprawnie: 50/67 [74%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=ax+b i spełnia warunek f(7)-f(4)=6.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/296 [72%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=x+\frac{5}{4} i g(x)=5 opisują proste:
Odpowiedzi:
A. przecinające się pod kątem różnym od 90^{\circ} B. równoległe i różne
C. pokrywające się D. przecinające się pod kątem o mierze 90^{\circ}
Zadanie 16.  1 pkt ⋅ Numer: pp-10929 ⋅ Poprawnie: 57/99 [57%] Rozwiąż 
Podpunkt 16.1 (0.8 pkt)
 Wykres funkcji liniowej określonej wzorem y=\frac{1}{10}(x+2)+4m-1 przecina dodatnią półoś Oy wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -9 B. -2
C. -7 D. -\infty
E. +\infty F. 9
Zadanie 17.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%] Rozwiąż 
Podpunkt 17.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=-\frac{4}{9}-\frac{1}{6}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 11 B. -2
C. +\infty D. -6
E. -\infty F. -7
Zadanie 18.  1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 86/128 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Punkt M=\left(\frac{1}{2},-6\right) należy do wykresu funkcji liniowej określonej wzorem f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10798 ⋅ Poprawnie: 36/81 [44%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Trójkąt o bokach długości 5, 2p+25, p+11 jest równoramienny.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10934 ⋅ Poprawnie: 84/157 [53%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 O funkcji f określonej wzorem f(x)=\frac{-12-m}{m-1}x-2 wiadomo, że f(-1)=0.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm