Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-9x oblicz h\left(\frac{3\sqrt{3}-5}{9}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest pierwsza T/N : liczba ta jest ujemna
Zadanie 2.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 170/286 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(0,14) i B=(2,12) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 492/694 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(-3,7) i Q=(-8,6).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 300/461 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji liniowej y=\frac{7}{6}x+7 przecina osie układu współrzędnych w punktach A i B.

Oblicz pole powierzchni trójkąta AOB.

Odpowiedź:
P_{AOB}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10793 ⋅ Poprawnie: 482/632 [76%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Liczba ......... jest miejscem zerowym funkcji określonej wzorem f(x)=\frac{7}{6}x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10922 ⋅ Poprawnie: 545/705 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-\frac{3}{7}+\frac{3}{5}x.

Wyznacz miejsce zerowe tej funkcji.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 206/278 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji g(x)=(m+9)x+15 przecina oś Ox w punkcie o odciętej równej \frac{\log_{2}{8}}{3^0}.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10893 ⋅ Poprawnie: 451/589 [76%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Które z poniższych wzorów opisują funkcję malejącą?
Odpowiedzi:
T/N : y=\left(9-3\sqrt{6}\right)x+\sqrt{6} T/N : y=\left(11-3\sqrt{11}\right)x+\sqrt{11}
T/N : y=\left(12-5\sqrt{5}\right)x+\sqrt{5}  
Zadanie 9.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-2(m^2-3)x-2 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-\infty, -\sqrt{3}\right)\cup\left(\sqrt{3}, +\infty\right) B. m\in\left(-\sqrt{3},\sqrt{3}\right)
C. m\in\left(-\infty, -\frac{\sqrt{6}}{2}\right)\cup\left(\frac{\sqrt{6}}{2}, +\infty\right) D. m\in\left(-\infty, -3\right)\cup\left(3, +\infty\right)
E. m\in\left(-3,3\right) F. m\in\left(-\infty, -\frac{\sqrt{6}}{3}\right)\cup\left(\frac{\sqrt{6}}{3}, +\infty\right)
Zadanie 10.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{81}\right)x+6561 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 243/364 [66%] Rozwiąż 
Podpunkt 11.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=11+9x-12mx jest malejąca, wtedy i tylko wtedy, gdy liczba m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -4 B. -6
C. 8 D. -3
E. -\infty F. +\infty
Zadanie 12.  1 pkt ⋅ Numer: pp-10903 ⋅ Poprawnie: 210/345 [60%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Funkcja liniowa f(x)=(3+8m)x+1-6m jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 7 B. +\infty
C. -1 D. 12
E. 10 F. -\infty
Zadanie 13.  1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 82/137 [59%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Funkcja liniowa określona wzorem f(x)=ax+b jest malejąca i ma miejsce zerowe \frac{\sqrt{78}-9}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a \lessdot 0 \wedge b > 0 B. a > 0 \wedge b > 0
C. a > 0 \wedge b \lessdot 0 D. a \lessdot 0 \wedge b < 0
Zadanie 14.  1 pkt ⋅ Numer: pp-10882 ⋅ Poprawnie: 217/415 [52%] Rozwiąż 
Podpunkt 14.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=\left(-3+2m\right)x+5 jest rosnąca, gdy m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 14.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -10 B. 2
C. -\infty D. +\infty
E. -1 F. -2
Zadanie 15.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 15.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(\frac{4}{5}-\frac{\sqrt{3}}{5}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 15.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{8}{3} B. +\infty
C. -\frac{4}{9} D. -\infty
E. 2 F. -\frac{2}{3}
Zadanie 16.  1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 16.1 (0.8 pkt)
 Nierówności \left(7+\sqrt{50}\right)\left(\sqrt{50}-7\right)x > 2x-4 oraz (-6-3x)^2+3x\leqslant (3x-6)^2-5x+4 są spełnione przez każdą liczbę z pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. 0
C. -4 D. +\infty
Zadanie 17.  1 pkt ⋅ Numer: pp-10938 ⋅ Poprawnie: 121/181 [66%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Punkt A=(m^2+1,-3) należy do wykresu funkcji liniowej określonej wzorem g(x)=31-2x:
Odpowiedzi:
A. tylko dla m=-4 B. tylko dla m=-8
C. dla m\in\{-4,4\} D. dla m\in\emptyset
E. dla m\in\mathbb{R} F. tylko dla m=4
Zadanie 18.  1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Do wykresu funkcji y=-\frac{3}{2}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(-\frac{2}{3},-3\right) B. \left(\frac{4}{3},-4\right)
C. \left(\frac{1}{3},-3\right) D. \left(-\frac{5}{3},1\right)
Zadanie 19.  1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%] Rozwiąż 
Podpunkt 19.1 (0.8 pkt)
 Rozwiąż nierówność \frac{1}{3}x\leqslant -\frac{4}{5}x+\frac{3}{4}.

Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 19.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -4 B. -1
C. 5 D. +\infty
E. -6 F. -\infty
Zadanie 20.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 20.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=-\frac{2}{5}x-3.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 20.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -2 B. +\infty
C. -5 D. 2
E. -\infty F. 5


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm