Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 532/802 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=mx+n. Funkcja ta spełnia warunek f(3)=3, a jej wykres zawiera punkt (-1,-6).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 224/425 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(3,3) i B=(-1,-6) określona jest równaniem -9x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10807 ⋅ Poprawnie: 511/690 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Współczynnik kierunkowy prostej, do której należą punkty A=(23,42) i B=(10,68) jest równy m.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 105/164 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt o współrzędnych (2t-3, 4t+3), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem y=2x+b.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10794 ⋅ Poprawnie: 348/480 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji określonej wzorem f(x)=-\frac{2}{3}-\frac{3}{8}x.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 67/119 [56%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Miejscem zerowym funkcji określonej wzorem f(x)=8\sqrt{3}x-\frac{\sqrt{15}}{2} jest liczba \frac{\sqrt{3\cdot 15}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10796 ⋅ Poprawnie: 152/254 [59%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Liczba -1 jest miejscem zerowym funkcji określonej wzorem f(x)=\left(1+\frac{a}{8}\right)x+2.

Wyznacz a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10893 ⋅ Poprawnie: 421/566 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Które z poniższych wzorów opisują funkcję malejącą?
Odpowiedzi:
T/N : y=\left(8-4\sqrt{3}\right)x+2\sqrt{3} T/N : y=\left(8-2\sqrt{13}\right)x+\sqrt{13}
T/N : y=\left(12-5\sqrt{6}\right)x+\sqrt{6}  
Zadanie 9.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-4(m^2-6)x-1 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-\sqrt{6},\sqrt{6}\right) B. m\in\left(-6,6\right)
C. m\in\left(-\infty, -\frac{\sqrt{24}}{4}\right)\cup\left(\frac{\sqrt{24}}{4}, +\infty\right) D. m\in\left(-\infty, -6\right)\cup\left(6, +\infty\right)
E. m\in\left(-\infty, -\frac{\sqrt{24}}{6}\right)\cup\left(\frac{\sqrt{24}}{6}, +\infty\right) F. m\in\left(-\infty, -\sqrt{6}\right)\cup\left(\sqrt{6}, +\infty\right)
Zadanie 10.  1 pkt ⋅ Numer: pp-10880 ⋅ Poprawnie: 102/185 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(25-m^2\right)x+2 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 243/364 [66%] Rozwiąż 
Podpunkt 11.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=9+7x-12mx jest malejąca, wtedy i tylko wtedy, gdy liczba m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 6 B. -\infty
C. -4 D. 8
E. -6 F. +\infty
Zadanie 12.  1 pkt ⋅ Numer: pp-10903 ⋅ Poprawnie: 210/344 [61%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-2+7m)x+1-6m jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -8 B. +\infty
C. 3 D. -\infty
E. 2 F. 12
Zadanie 13.  1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 82/137 [59%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Funkcja liniowa określona wzorem f(x)=ax+b jest malejąca i ma miejsce zerowe \frac{\sqrt{8}-3}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a > 0 \wedge b > 0 B. a \lessdot 0 \wedge b > 0
C. a \lessdot 0 \wedge b < 0 D. a > 0 \wedge b \lessdot 0
Zadanie 14.  1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji liniowej y=ax+b należą punkty (3, 0) i (0, 3).

Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")

Odpowiedzi:
T/N : a > 0 \wedge b \lessdot 0 T/N : a > 0 \wedge b > 0
T/N : a \lessdot 0 \wedge b > 0  
Zadanie 15.  1 pkt ⋅ Numer: pp-10911 ⋅ Poprawnie: 198/317 [62%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wskaż prostą równoległą do osi Ox:
Odpowiedzi:
A. 2x=0 B. 3x+2=0
C. x-2=y D. 2x=3
E. 3y+2=0 F. 2x=3y
Zadanie 16.  1 pkt ⋅ Numer: pp-10929 ⋅ Poprawnie: 57/99 [57%] Rozwiąż 
Podpunkt 16.1 (0.8 pkt)
 Wykres funkcji liniowej określonej wzorem y=\frac{1}{10}(x+2)+4m-1 przecina dodatnią półoś Oy wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -5
C. -\infty D. -8
E. -1 F. 0
Zadanie 17.  1 pkt ⋅ Numer: pp-10939 ⋅ Poprawnie: 101/204 [49%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 « Dla argumentu x_0 wartości funkcji określonych wzorami f(x)=3x+4 i g(x)=-2x-7 są sobie równe i obie równe y_0.

Wyznacz y_0.

Odpowiedź:
y_0=
(wpisz dwie liczby całkowite)
Zadanie 18.  1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 86/128 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Punkt M=\left(\frac{1}{2},7\right) należy do wykresu funkcji liniowej określonej wzorem f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%] Rozwiąż 
Podpunkt 19.1 (0.8 pkt)
 Rozwiąż nierówność -\frac{1}{2}x\leqslant -\frac{3}{2}x+\frac{3}{4}.

Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 19.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 5 B. -\infty
C. 0 D. +\infty
E. -1 F. 3
Zadanie 20.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/205 [57%] Rozwiąż 
Podpunkt 20.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=-\frac{3}{5}x+2.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 20.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -5 B. -3
C. 5 D. +\infty
E. -\infty F. 3


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm