Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 663/980 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-4x+2.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f jest malejąca w zbiorze \mathbb{R} T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2)
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{2},0\right)  
Zadanie 2.  1 pkt ⋅ Numer: pp-10818 ⋅ Poprawnie: 190/333 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Do wykresu funkcji liniowej f należą punkty A=(4, 0) i B=(0,1). Wykres funkcji liniowej g określonej wzorem g(x)=mx+n jest symetryczny do wykresu funkcji f względem osi Ox.

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10807 ⋅ Poprawnie: 512/691 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Współczynnik kierunkowy prostej, do której należą punkty A=(31,51) i B=(37,69) jest równy m.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 106/165 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt o współrzędnych (2t-3, 4t+2), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem y=2x+b.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10795 ⋅ Poprawnie: 454/762 [59%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcja liniowa określona wzorem y=mx+n, wartości ujemne przyjmuje tylko w przedziale (-5,+\infty). Wykres tej funkcji przecina oś Oy w punkcie (0,-2).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10923 ⋅ Poprawnie: 157/248 [63%] Rozwiąż 
Podpunkt 6.1 (0.2 pkt)
 Miejsce zerowe funkcji liniowej określonej wzorem f(x)=7x-3m jest większe od 2 dla każdej liczby m należącej do pewnego przedziału.

Przedział ten ma postać:

Odpowiedzi:
A. (p,+\infty) B. (-\infty,q)
C. \langle p,+\infty) D. \langle p,q\rangle
E. (-\infty,q\rangle F. (p,q)
Podpunkt 6.2 (0.8 pkt)
 Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 206/278 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji g(x)=(m+3)x+15 przecina oś Ox w punkcie o odciętej równej \frac{\log_{2}{8}}{3^0}.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 413/556 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=\frac{1}{3}x-9 i przecina oś Oy w punkcie P.

Które z poniższych zdań są prawdziwe?

Odpowiedzi:
T/N : funkcja ta jest rosnąca i P=\left(0,3\right) T/N : funkcja ta jest rosnąca i P=\left(0,-9\right)
T/N : funkcja ta jest malejąca i P=\left(0,-3\right)  
Zadanie 9.  1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa f(x)=\frac{\left(100-m^2\right)}{4}x-9 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p, a ilość liczb całkowitych należących do rozwiązania jest równa q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10916 ⋅ Poprawnie: 115/207 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja liniowa y=ax+b ma dodatnie miejsce zerowe, a jej wykres przecina oś Oy powyżej punktu (0,0).

Wówczas:

Odpowiedzi:
A. a > 0 \wedge b \lessdot 0 B. a \lessdot 0 \wedge b \lessdot 0
C. a > 0 \wedge b > 0 D. a \lessdot 0 \wedge b > 0
Zadanie 11.  1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 240/447 [53%] Rozwiąż 
Podpunkt 11.1 (0.8 pkt)
 Funkcja liniowa f(x)=(3-m)x+2m jest malejąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 11.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{2}{3} B. -\frac{2}{3}
C. +\infty D. -\frac{1}{3}
E. -\infty F. \frac{1}{3}
Zadanie 12.  1 pkt ⋅ Numer: pp-10906 ⋅ Poprawnie: 54/153 [35%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=-5x-7a przecina oś Oy poniżej punktu (0,5) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj ten z końców tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -2 B. -1
C. +\infty D. -3
E. -\infty F. -8
Zadanie 13.  1 pkt ⋅ Numer: pp-10917 ⋅ Poprawnie: 96/188 [51%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Funkcja liniowa określona wzorem f(x)=ax+b jest rosnąca i ma miejsce zerowe \frac{\sqrt{82}-9}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a > 0 \wedge b \lessdot 0 B. a > 0 \wedge b > 0
C. a \lessdot 0 \wedge b > 0 D. a \lessdot 0 \wedge b < 0
Zadanie 14.  1 pkt ⋅ Numer: pp-10924 ⋅ Poprawnie: 50/67 [74%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=ax+b i spełnia warunek f(7)-f(4)=27.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10911 ⋅ Poprawnie: 198/317 [62%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wskaż prostą równoległą do osi Ox:
Odpowiedzi:
A. -3x=2y B. x+3=y
C. -3x=2 D. 2y-3=0
E. 2x-3=0 F. -3x=0
Zadanie 16.  1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%] Rozwiąż 
Podpunkt 16.1 (0.8 pkt)
 Zbiorem wszystkich rozwiązań nierówności \left(\sqrt{80}-9\right)(-8+6x) > 0 jest pewien przedział.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -8 B. -6
C. -\infty D. +\infty
E. 5 F. -4
Zadanie 17.  1 pkt ⋅ Numer: pp-10938 ⋅ Poprawnie: 122/182 [67%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Punkt A=(m^2+1,-3) należy do wykresu funkcji liniowej określonej wzorem g(x)=49-2x:
Odpowiedzi:
A. tylko dla m=5 B. tylko dla m=-10
C. dla m\in\emptyset D. tylko dla m=-5
E. dla m\in\mathbb{R} F. dla m\in\{-5,5\}
Zadanie 18.  1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/69 [75%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Punkt o współrzędnych P=\left(\sqrt{7}, 2\right) należy do wykresu funkcji liniowej y=-3\sqrt{7}x+2\cdot ......-4.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%] Rozwiąż 
Podpunkt 19.1 (0.8 pkt)
 Rozwiąż nierówność \frac{1}{3}x\leqslant \frac{1}{2}x+\frac{3}{4}.

Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 19.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 3 B. -\infty
C. 0 D. +\infty
E. 4 F. 6
Zadanie 20.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 20.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=\frac{3}{4}x+5.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 20.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -3
C. 4 D. -4
E. 3 F. -\infty


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm