Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Wiedząc, że
h(x)=3\sqrt{3}-2x oblicz
h\left(\frac{3\sqrt{3}-6}{2}\right) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : liczba ta jest niewymierna
T/N : liczba ta jest ujemna
Zadanie 2. 1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 224/426 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta wyznaczona przez punkty
A=(-1,-5) i
B=(4,5) określona jest równaniem
10x+by+c=0 .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10807 ⋅ Poprawnie: 511/690 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Współczynnik kierunkowy prostej, do której należą punkty
A=(58,16) i
B=(50,56)
jest równy
m .
Podaj m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10806 ⋅ Poprawnie: 278/546 [50%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Funkcja liniowa
f(x)=(m+2)x-(m+1)^2+41 jest malejąca
i jej wykres przecina oś rzędnych w punkcie
P=(0,-23) .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10793 ⋅ Poprawnie: 482/632 [76%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Liczba
......... jest miejscem zerowym funkcji określonej wzorem
f(x)=-\frac{4}{3}x-\frac{1}{2} .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 67/119 [56%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Miejscem zerowym funkcji określonej wzorem
f(x)=2\sqrt{3}x-\frac{\sqrt{33}}{2}
jest liczba
\frac{\sqrt{3\cdot 33}}{......} .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 206/278 [74%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wykres funkcji
g(x)=(m-10)x+15 przecina oś
Ox w punkcie o odciętej równej
\frac{\log_{2}{8}}{3^0} .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 1 pkt ⋅ Numer: pp-10900 ⋅ Poprawnie: 119/192 [61%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
T/N : y=\frac{\sqrt{x}}{x-8}
T/N : y=\frac{x}{\sqrt{6}}
T/N : y=\frac{\sqrt{6}}{2}x
Zadanie 9. 1 pkt ⋅ Numer: pp-10897 ⋅ Poprawnie: 60/101 [59%]
Rozwiąż
Podpunkt 9.1 (0.5 pkt)
Wyznacz te wartości parametru
m , dla których funkcja liniowa
f(x)=(2-m^2)x+1 jest rosnąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Liczba
p jest najmniejszym z końców liczbowych tych przedziałów,
a liczba
q jest ilością liczb całkowitych należących do
rozwiązania.
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m , dla których
funkcja liniowa określona wzorem
f(x)=\left(m^2-\frac{1}{4}\right)x+16
jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 11. 1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 240/447 [53%]
Rozwiąż
Podpunkt 11.1 (0.8 pkt)
Funkcja liniowa
f(x)=(-12-m)x+2m jest malejąca, gdy parametr
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą całkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 11.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty
B. \frac{1}{12}
C. -\frac{1}{12}
D. \frac{1}{6}
E. -\frac{1}{6}
F. -\infty
Zadanie 12. 1 pkt ⋅ Numer: pp-10906 ⋅ Poprawnie: 54/153 [35%]
Rozwiąż
Podpunkt 12.1 (0.8 pkt)
Wykres funkcji liniowej
f(x)=-5x-3a przecina oś
Oy poniżej punktu
(0,8)
wtedy i tylko wtedy, gdy parametr
a należy do pewnego
przedziału.
Podaj ten z końców tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty
B. -4
C. 1
D. -\infty
E. -6
F. 7
Zadanie 13. 1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 82/137 [59%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
« Funkcja liniowa określona wzorem
f(x)=ax+b jest malejąca i ma
miejsce zerowe
\frac{\sqrt{37}-6}{2} .
Wynika z tego, że:
Odpowiedzi:
A. a \lessdot 0 \wedge b > 0
B. a \lessdot 0 \wedge b < 0
C. a > 0 \wedge b > 0
D. a > 0 \wedge b \lessdot 0
Zadanie 14. 1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji liniowej
y=ax+b należą punkty
(-6, 0) i
(0, 1) .
Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")
Odpowiedzi:
T/N : a \lessdot 0 \wedge b < 0
T/N : a > 0 \wedge b \lessdot 0
T/N : a \lessdot 0 \wedge b > 0
Zadanie 15. 1 pkt ⋅ Numer: pp-10884 ⋅ Poprawnie: 141/181 [77%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Funkcja liniowa
f określona jest wzorem
f(x)=2^{10}x-2^{20} .
Prosta będąca wykresem funkcji f nie przechodzi
przez ćwiartkę układu:
Odpowiedzi:
A. czwartą
B. pierwszą
C. trzecią
D. drugą
Zadanie 16. 1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%]
Rozwiąż
Podpunkt 16.1 (0.8 pkt)
Nierówności
\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)x > 2x-4
oraz
(1-3x)^2+3x\leqslant (3x+1)^2-5x+4 są spełnione
przez każdą liczbę z pewnego przedziału.
Podaj lewy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty
B. 0
C. +\infty
D. 4
Zadanie 17. 1 pkt ⋅ Numer: pp-10939 ⋅ Poprawnie: 101/204 [49%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
« Dla argumentu
x_0 wartości funkcji określonych wzorami
f(x)=-8x+1 i
g(x)=-7x+4
są sobie równe i obie równe
y_0 .
Wyznacz y_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 18. 1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 86/128 [67%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Punkt
M=\left(\frac{1}{2},-6\right) należy do wykresu
funkcji liniowej określonej wzorem
f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2 .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 19. 1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 68/122 [55%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
Wykres funkcji
f(x)=-6x+4m przecina oś
Oy w punkcie o rzędnej
24 .
Wykres funkcji
g(x)=-3x-2m przecina oś
Ox w punkcie o odciętej
......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 20. 1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%]
Rozwiąż
Podpunkt 20.1 (0.8 pkt)
« Dana jest funkcja określona wzorem
f(x)=\frac{8}{3}x-4 .
Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.
Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 20.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -3
B. +\infty
C. -\infty
D. 3
E. -8
F. 8
Rozwiąż