Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10814 ⋅ Poprawnie: 266/525 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Na rysunku przedstawiono wykres prostej o równaniu ax+by=4:

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 125/214 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dane są funkcje f(x)=-2x-3 oraz g(x)=f(x+2)-4. Zapisz wzór funkcji g w postaci g(x)=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 492/694 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(-8,3) i Q=(-1,-3).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10805 ⋅ Poprawnie: 274/540 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa spełnia warunki f(-\sqrt{2})=1 i f(6\sqrt{2})=-7.

Wynika z tego, że jej wykres przechodzi przez ćwiartki układu:

Odpowiedzi:
A. I, II i IV B. II, III i IV
C. I, III i IV D. I, II i III
Zadanie 5.  1 pkt ⋅ Numer: pp-10794 ⋅ Poprawnie: 354/492 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji określonej wzorem f(x)=-\frac{1}{2}+\frac{5}{2}x.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja liniowa określona wzorem g(x)=(\sqrt{8}+\sqrt{2})x-6 . Miejscem zerowym funkcji g jest liczba \frac{\sqrt{2}-\sqrt{8}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 206/278 [74%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji g(x)=(m-6)x+15 przecina oś Ox w punkcie o odciętej równej \frac{\log_{2}{8}}{3^0}.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10900 ⋅ Poprawnie: 119/192 [61%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
T/N : y=-5x^2 T/N : y=\frac{\sqrt{2}}{2}x
T/N : y=\frac{25}{x}  
Zadanie 9.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-2(m^2-2)x-4 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-\infty, -\frac{\sqrt{4}}{2}\right)\cup\left(\frac{\sqrt{4}}{2}, +\infty\right) B. m\in\left(-\infty, -\sqrt{2}\right)\cup\left(\sqrt{2}, +\infty\right)
C. m\in\left(-\sqrt{2},\sqrt{2}\right) D. m\in\left(-\infty, -2\right)\cup\left(2, +\infty\right)
E. m\in\left(-2,2\right) F. m\in\left(-\infty, -\frac{\sqrt{4}}{2}\right)\cup\left(\frac{\sqrt{4}}{2}, +\infty\right)
Zadanie 10.  1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-4\right)x+2 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11504 ⋅ Poprawnie: 562/902 [62%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 (1 pkt) Funkcja f określona jest wzorem f(x)=(\sqrt{2}m-10)x+1 dla każdej liczby rzeczywistej x.

Funkcja ta jest rosnąca, wtedy i tylko wtedy, gdy:

Odpowiedzi:
A. m\in\left(-\infty,-5\sqrt{2}\right\rangle B. m\in\left\langle -5\sqrt{2},+\infty\right)
C. m\in\left\langle 5\sqrt{2},+\infty\right) D. m\in\left(-\infty,5\sqrt{2}\right\rangle
Zadanie 12.  1 pkt ⋅ Numer: pp-10906 ⋅ Poprawnie: 54/153 [35%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=-5x-3a przecina oś Oy poniżej punktu (0,10) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj ten z końców tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 6
C. -7 D. -\infty
E. 7 F. -1
Zadanie 13.  1 pkt ⋅ Numer: pp-10749 ⋅ Poprawnie: 118/142 [83%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja f opisana jest wzorem: f(x)=\frac{5}{8}x+3. Jeśli argument funkcji f wzrośnie o 2, to wartość tej funkcji:
Odpowiedzi:
A. wzrośnie o \frac{5}{8} B. wzrośnie o \frac{5}{4}
C. zmaleje o \frac{5}{4} D. zmaleje o \frac{5}{8}
Zadanie 14.  1 pkt ⋅ Numer: pp-10924 ⋅ Poprawnie: 50/67 [74%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=ax+b i spełnia warunek f(7)-f(4)=12.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10885 ⋅ Poprawnie: 102/162 [62%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wykres funkcji liniowej f określonej wzorem f(x)=ax+b nie przechodzi tylko przez ćwiartkę układu współrzędnych o numerze 1.

Wówczas:

Odpowiedzi:
A. a>0 \wedge b>0 B. a\lessdot 0 \wedge b<0
C. a\lessdot 0 \wedge b>0 D. a>0 \wedge b\lessdot 0
Zadanie 16.  1 pkt ⋅ Numer: pp-10929 ⋅ Poprawnie: 57/99 [57%] Rozwiąż 
Podpunkt 16.1 (0.8 pkt)
 Wykres funkcji liniowej określonej wzorem y=\frac{1}{10}(x-3)+4m-1 przecina dodatnią półoś Oy wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -9 B. 4
C. 9 D. -\infty
E. 10 F. +\infty
Zadanie 17.  1 pkt ⋅ Numer: pp-10930 ⋅ Poprawnie: 99/132 [75%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Funkcje określone wzorami f(x)=\frac{3}{2}x-1 i g(x)=\frac{1}{3}x+2 przyjmują równą wartość dla argumentu x_0.

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 18.  1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/69 [75%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Punkt o współrzędnych P=\left(\sqrt{7}, -4\right) należy do wykresu funkcji liniowej y=-3\sqrt{7}x+2\cdot ......-4.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10798 ⋅ Poprawnie: 36/81 [44%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Trójkąt o bokach długości 5, 2p+17, p+7 jest równoramienny.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 20.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 20.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=\frac{9}{2}x-1.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 20.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -2 B. 9
C. -\infty D. +\infty
E. 2 F. -9


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm