Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Wiedząc, że
h(x)=3\sqrt{3}-3x oblicz
h\left(\frac{3\sqrt{3}-9}{3}\right) .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : liczba ta jest ujemna
T/N : liczba ta jest niewymierna
Zadanie 2. 1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 125/214 [58%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dane są funkcje
f(x)=-2x-3 oraz
g(x)=f(x+3)+4 . Zapisz wzór funkcji
g
w postaci
g(x)=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 273/458 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja
f jest określona wzorem
f(x)=-3x-\frac{1}{2} dla każdej liczby z przedziału
\langle -1,6\rangle . Zbiorem wartości tej funkcji jest przedział
\langle p, q\rangle .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10940 ⋅ Poprawnie: 39/65 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wykres funkcji liniowej
h(x)=(p-9)x-4 przechodzi
przez punkt
S , którego obie współrzędne są
nieparzyste.
Liczba p może być równa:
Odpowiedzi:
A. 7
B. 10
C. -1
D. -3
E. -5
F. 9
Zadanie 5. 1 pkt ⋅ Numer: pp-10795 ⋅ Poprawnie: 453/761 [59%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja liniowa określona wzorem
y=mx+n , wartości ujemne
przyjmuje tylko w przedziale
(-3,+\infty) . Wykres tej funkcji
przecina oś
Oy w punkcie
(0,-8) .
Wyznacz współczynniki m i n .
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-10922 ⋅ Poprawnie: 545/705 [77%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Dana jest funkcja liniowa
f(x)=-\frac{6}{7}-\frac{4}{5}x .
Wyznacz miejsce zerowe tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcje liniowe określone wzorami
f(x)=-\frac{4}{7}x-5 oraz
g(x)=mx+2 mają wspólne miejsce zerowe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10899 ⋅ Poprawnie: 81/113 [71%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Punkty o współrzędnych
(200,500) oraz
(900,-500) należą do wykresu funkcji liniowej
y=mx+n .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : z treści wynika, że m \lessdot 0
T/N : z treści wynika, że n \lessdot 0
T/N : z treści wynika, że n=0
Zadanie 9. 1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wyznacz zbiór tych wartości parametru
m , dla których funkcja liniowa
f(x)=\frac{\left(16-m^2\right)}{4}x-9 jest rosnąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy
p ,
a ilość liczb całkowitych należących do rozwiązania jest równa
q .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Wyznacz zbiór tych wszystkich wartości parametru
m , dla których
funkcja liniowa określona wzorem
f(x)=\left(m^2-81\right)x+2 jest rosnąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 11. 1 pkt ⋅ Numer: pp-11504 ⋅ Poprawnie: 585/920 [63%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
(1 pkt)
Funkcja
f określona jest wzorem
f(x)=(\sqrt{2}m+10)x+4
dla każdej liczby rzeczywistej
x .
Funkcja ta jest rosnąca, wtedy i tylko wtedy, gdy:
Odpowiedzi:
A. m\in\left(-\infty,-5\sqrt{2}\right\rangle
B. m\in\left\langle 5\sqrt{2},+\infty\right)
C. m\in\left(-\infty,5\sqrt{2}\right\rangle
D. m\in\left\langle -5\sqrt{2},+\infty\right)
Zadanie 12. 1 pkt ⋅ Numer: pp-10903 ⋅ Poprawnie: 210/345 [60%]
Rozwiąż
Podpunkt 12.1 (0.8 pkt)
Funkcja liniowa
f(x)=(7-4m)x+1-6m jest rosnąca, gdy
parametr
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 5
B. 10
C. -3
D. -9
E. +\infty
F. -\infty
Zadanie 13. 1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 82/137 [59%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
« Funkcja liniowa określona wzorem
f(x)=ax+b jest malejąca i ma
miejsce zerowe
\frac{\sqrt{51}-7}{2} .
Wynika z tego, że:
Odpowiedzi:
A. a > 0 \wedge b > 0
B. a \lessdot 0 \wedge b < 0
C. a \lessdot 0 \wedge b > 0
D. a > 0 \wedge b \lessdot 0
Zadanie 14. 1 pkt ⋅ Numer: pp-10919 ⋅ Poprawnie: 219/321 [68%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Funkcja
f jest liniowa oraz
f(-4)=-5 i
f(-3)=-1 .
Oblicz f(0) .
Odpowiedź:
f(0)=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10909 ⋅ Poprawnie: 98/225 [43%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Wskaż prostą prostopadłą do osi
Ox :
Odpowiedzi:
A. -4x+y=0
B. 4y=0
C. -4x+4=0
D. -4y+4=0
E. 4y=x
F. x-4=y
Zadanie 16. 1 pkt ⋅ Numer: pp-10801 ⋅ Poprawnie: 152/244 [62%]
Rozwiąż
Podpunkt 16.1 (0.5 pkt)
Dana jest funkcja
f(x)=6x+4 .
Zbiór rozwiązań nierówności -5\leqslant f(x)\leqslant 3 jest przedziałem
\langle a, b\rangle .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 17. 1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%]
Rozwiąż
Podpunkt 17.1 (0.8 pkt)
Dana jest funkcja liniowa
g(x)=\frac{5}{6}-\frac{1}{10}x
.
Funkcja
g przyjmuje wartości ujemne dla argumentów
należących do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -2
B. 0
C. +\infty
D. -11
E. -\infty
F. 3
Zadanie 18. 1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/69 [75%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Punkt o współrzędnych
P=\left(\sqrt{7}, -4\right)
należy do wykresu funkcji liniowej
y=-3\sqrt{7}x+2\cdot ......-4 .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 19. 1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 68/122 [55%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
Wykres funkcji
f(x)=-4x+3m przecina oś
Oy w punkcie o rzędnej
30 .
Wykres funkcji
g(x)=8x-6m przecina oś
Ox w punkcie o odciętej
......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 20. 1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%]
Rozwiąż
Podpunkt 20.1 (1 pkt)
«« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od
14 . Do jej wykresu należy punkt
\left(7,\frac{7}{2}\right) .
Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż