Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 662/979 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-2x+2.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{6},\frac{5}{3}\right) T/N : funkcja f jest malejąca w zbiorze \mathbb{R}
T/N : miejscem zerowym tej funkcji jest liczba -1  
Zadanie 2.  1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 125/214 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dane są funkcje f(x)=-2x-3 oraz g(x)=f(x+4)+2. Zapisz wzór funkcji g w postaci g(x)=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 273/458 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=-4x-\frac{1}{2} dla każdej liczby z przedziału \langle 2,6\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 300/461 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji liniowej y=\frac{8}{3}x+8 przecina osie układu współrzędnych w punktach A i B.

Oblicz pole powierzchni trójkąta AOB.

Odpowiedź:
P_{AOB}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11406 ⋅ Poprawnie: 483/672 [71%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Miejscem zerowym funkcji liniowej f(x)=3(x+2)-6\sqrt{3} jest liczba a+b\sqrt{3}.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (0.5 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10922 ⋅ Poprawnie: 545/705 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=\frac{1}{8}-\frac{5}{7}x.

Wyznacz miejsce zerowe tej funkcji.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=-\frac{5}{3}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 413/556 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=-\frac{1}{4}x-7 i przecina oś Oy w punkcie P.

Które z poniższych zdań są prawdziwe?

Odpowiedzi:
T/N : funkcja ta jest malejąca i P=\left(0,\frac{7}{4}\right) T/N : funkcja ta jest rosnąca i P=\left(0,-\frac{7}{4}\right)
T/N : funkcja ta jest malejąca i P=\left(0,7\right)  
Zadanie 9.  1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa f(x)=\frac{\left(9-m^2\right)}{4}x-9 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p, a ilość liczb całkowitych należących do rozwiązania jest równa q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10916 ⋅ Poprawnie: 115/207 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Funkcja liniowa y=ax+b ma ujemne miejsce zerowe, a jej wykres przecina oś Oy poniżej punktu (0,0).

Wówczas:

Odpowiedzi:
A. a \lessdot 0 \wedge b \lessdot 0 B. a \lessdot 0 \wedge b > 0
C. a > 0 \wedge b \lessdot 0 D. a > 0 \wedge b > 0
Zadanie 11.  1 pkt ⋅ Numer: pp-10890 ⋅ Poprawnie: 42/82 [51%] Rozwiąż 
Podpunkt 11.1 (0.5 pkt)
 Wykres funkcji liniowej określonej wzorem h(x)=(\sqrt{2}-a)x+\frac{a}{2} jest prostą, która nie przechodzi tylko przez czwartą ćwiartkę układu współrzędnych.

Funkcja h spełnia ten warunek wtedy i tylko wtedy, gdy liczba a należy do pewnego przedziału o końcach p i q, przy czym p\lessdot q.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 11.2 (0.5 pkt)
 Podaj q.
Odpowiedź:
q= \cdot
(wpisz dwie liczby całkowite)
Zadanie 12.  1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=2x-9a przecina oś Oy powyżej punktu (0,10) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -1
C. -4 D. -3
E. 3 F. -\infty
Zadanie 13.  1 pkt ⋅ Numer: pp-10917 ⋅ Poprawnie: 96/188 [51%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 » Funkcja liniowa określona wzorem f(x)=ax+b jest rosnąca i ma miejsce zerowe \frac{\sqrt{78}-9}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a \lessdot 0 \wedge b < 0 B. a \lessdot 0 \wedge b > 0
C. a > 0 \wedge b > 0 D. a > 0 \wedge b \lessdot 0
Zadanie 14.  1 pkt ⋅ Numer: pp-10919 ⋅ Poprawnie: 219/321 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Funkcja f jest liniowa oraz f(-4)=7 i f(-3)=5.

Oblicz f(0).

Odpowiedź:
f(0)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10901 ⋅ Poprawnie: 79/140 [56%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
A. y=4x^2 B. y=\frac{4}{x}
C. y=\frac{\sqrt{2}x}{2} D. y=\frac{2}{\sqrt{2}x}
Zadanie 16.  1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%] Rozwiąż 
Podpunkt 16.1 (0.8 pkt)
 Zbiorem wszystkich rozwiązań nierówności \left(\sqrt{65}-\frac{81}{10}\right)(-10+6x) > 0 jest pewien przedział.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 1 B. 7
C. +\infty D. -\infty
E. 2 F. 0
Zadanie 17.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%] Rozwiąż 
Podpunkt 17.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=\frac{4}{3}-\frac{2}{5}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -8 B. 5
C. +\infty D. -1
E. 1 F. -\infty
Zadanie 18.  1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 86/128 [67%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Punkt M=\left(\frac{1}{2},-5\right) należy do wykresu funkcji liniowej określonej wzorem f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%] Rozwiąż 
Podpunkt 19.1 (0.8 pkt)
 Rozwiąż nierówność -\frac{1}{3}x\leqslant \frac{1}{3}x+\frac{3}{4}.

Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 19.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 4 B. 1
C. -4 D. -1
E. -\infty F. +\infty
Zadanie 20.  1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 «« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od 20. Do jej wykresu należy punkt \left(2,\frac{9}{2}\right).

Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm