Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 533/804 [66%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=mx+n. Funkcja ta spełnia warunek f(6)=-6, a jej wykres zawiera punkt (-6,-4).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 224/426 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(6,-6) i B=(-6,-4) określona jest równaniem 2x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10808 ⋅ Poprawnie: 196/379 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Wskaż wzór tej funkcji:
Odpowiedzi:
A. y=-\frac{\sqrt{2}}{2}x+1 B. y=-\sqrt{2}x+1
C. y=\frac{1}{\sqrt{2}}x+1 D. y=\sqrt{2}x+1
Zadanie 4.  1 pkt ⋅ Numer: pp-10805 ⋅ Poprawnie: 274/540 [50%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa spełnia warunki f(-\sqrt{2})=1 i f(12\sqrt{2})=-13.

Wynika z tego, że jej wykres przechodzi przez ćwiartki układu:

Odpowiedzi:
A. I, II i IV B. I, III i IV
C. I, II i III D. II, III i IV
Zadanie 5.  1 pkt ⋅ Numer: pp-11406 ⋅ Poprawnie: 483/672 [71%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Miejscem zerowym funkcji liniowej f(x)=3(x+7)-6\sqrt{3} jest liczba a+b\sqrt{3}.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 5.2 (0.5 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 6.  1 pkt ⋅ Numer: pp-10922 ⋅ Poprawnie: 545/705 [77%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-\frac{1}{5}-\frac{1}{4}x.

Wyznacz miejsce zerowe tej funkcji.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=\frac{5}{6}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10899 ⋅ Poprawnie: 81/113 [71%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Punkty o współrzędnych (100,100) oraz (200,-200) należą do wykresu funkcji liniowej y=mx+n.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : z treści wynika, że m \lessdot 0 T/N : z treści wynika, że n=0
T/N : z treści wynika, że n \lessdot 0  
Zadanie 9.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-5(m^2-2)x-4 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-\infty, -\frac{\sqrt{10}}{2}\right)\cup\left(\frac{\sqrt{10}}{2}, +\infty\right) B. m\in\left(-\infty, -2\right)\cup\left(2, +\infty\right)
C. m\in\left(-\sqrt{2},\sqrt{2}\right) D. m\in\left(-2,2\right)
E. m\in\left(-\infty, -\frac{\sqrt{10}}{5}\right)\cup\left(\frac{\sqrt{10}}{5}, +\infty\right) F. m\in\left(-\infty, -\sqrt{2}\right)\cup\left(\sqrt{2}, +\infty\right)
Zadanie 10.  1 pkt ⋅ Numer: pp-10880 ⋅ Poprawnie: 102/185 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(4-m^2\right)x+2 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-11504 ⋅ Poprawnie: 584/918 [63%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 (1 pkt) Funkcja f określona jest wzorem f(x)=(\sqrt{2}m-8)x+1 dla każdej liczby rzeczywistej x.

Funkcja ta jest rosnąca, wtedy i tylko wtedy, gdy:

Odpowiedzi:
A. m\in\left\langle 4\sqrt{2},+\infty\right) B. m\in\left(-\infty,4\sqrt{2}\right\rangle
C. m\in\left\langle -4\sqrt{2},+\infty\right) D. m\in\left(-\infty,-4\sqrt{2}\right\rangle
Zadanie 12.  1 pkt ⋅ Numer: pp-10912 ⋅ Poprawnie: 99/174 [56%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja f(x)=\left(-2m-\frac{3}{4}\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 7 B. -\infty
C. 3 D. +\infty
E. -8 F. -1
Zadanie 13.  1 pkt ⋅ Numer: pp-10749 ⋅ Poprawnie: 118/142 [83%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Funkcja f opisana jest wzorem: f(x)=\frac{3}{4}x+3. Jeśli argument funkcji f wzrośnie o 2, to wartość tej funkcji:
Odpowiedzi:
A. wzrośnie o \frac{3}{4} B. wzrośnie o \frac{3}{2}
C. wzrośnie o \frac{9}{4} D. zmaleje o \frac{3}{2}
Zadanie 14.  1 pkt ⋅ Numer: pp-10919 ⋅ Poprawnie: 219/321 [68%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Funkcja f jest liniowa oraz f(-4)=-8 i f(-3)=-6.

Oblicz f(0).

Odpowiedź:
f(0)= (wpisz liczbę całkowitą)
Zadanie 15.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/296 [72%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=x+\frac{5}{4} i g(x)=3 opisują proste:
Odpowiedzi:
A. przecinające się pod kątem różnym od 90^{\circ} B. pokrywające się
C. przecinające się pod kątem o mierze 90^{\circ} D. równoległe i różne
Zadanie 16.  1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 16.1 (0.8 pkt)
 Nierówności \left(9+\sqrt{82}\right)\left(\sqrt{82}-9\right)x > 2x-4 oraz (-6-3x)^2+3x\leqslant (3x-6)^2-5x+4 są spełnione przez każdą liczbę z pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 0 B. -\infty
C. +\infty D. -4
Zadanie 17.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%] Rozwiąż 
Podpunkt 17.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=\frac{3}{2}-\frac{1}{5}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 12
C. 5 D. 0
E. -\infty F. -7
Zadanie 18.  1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/69 [75%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Punkt o współrzędnych P=\left(\sqrt{7}, 6\right) należy do wykresu funkcji liniowej y=-3\sqrt{7}x+2\cdot ......-4.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%] Rozwiąż 
Podpunkt 19.1 (0.8 pkt)
 Rozwiąż nierówność -\frac{1}{2}x\leqslant \frac{5}{6}x+\frac{3}{4}.

Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 19.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 5 B. -3
C. -5 D. 1
E. -\infty F. +\infty
Zadanie 20.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 20.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=-\frac{10}{9}x-6.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 20.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 9 B. -10
C. 10 D. -9
E. -\infty F. +\infty


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm