Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 662/979 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dana jest funkcja liniowa
f(x)=-2x+2 .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{6},\frac{5}{3}\right)
T/N : funkcja f jest malejąca w zbiorze \mathbb{R}
T/N : miejscem zerowym tej funkcji jest liczba -1
Zadanie 2. 1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 125/214 [58%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dane są funkcje
f(x)=-2x-3 oraz
g(x)=f(x+4)+2 . Zapisz wzór funkcji
g
w postaci
g(x)=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 273/458 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja
f jest określona wzorem
f(x)=-4x-\frac{1}{2} dla każdej liczby z przedziału
\langle 2,6\rangle . Zbiorem wartości tej funkcji jest przedział
\langle p, q\rangle .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 300/461 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wykres funkcji liniowej
y=\frac{8}{3}x+8 przecina osie
układu współrzędnych w punktach
A i
B .
Oblicz pole powierzchni trójkąta AOB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11406 ⋅ Poprawnie: 483/672 [71%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Miejscem zerowym funkcji liniowej
f(x)=3(x+2)-6\sqrt{3} jest liczba
a+b\sqrt{3} .
Podaj a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 6. 1 pkt ⋅ Numer: pp-10922 ⋅ Poprawnie: 545/705 [77%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Dana jest funkcja liniowa
f(x)=\frac{1}{8}-\frac{5}{7}x .
Wyznacz miejsce zerowe tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcje liniowe określone wzorami
f(x)=-\frac{5}{3}x-5 oraz
g(x)=mx+2 mają wspólne miejsce zerowe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 413/556 [74%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja liniowa
f określona jest wzorem
f(x)=-\frac{1}{4}x-7 i przecina oś
Oy w punkcie
P .
Które z poniższych zdań są prawdziwe?
Odpowiedzi:
T/N : funkcja ta jest malejąca i P=\left(0,\frac{7}{4}\right)
T/N : funkcja ta jest rosnąca i P=\left(0,-\frac{7}{4}\right)
T/N : funkcja ta jest malejąca i P=\left(0,7\right)
Zadanie 9. 1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Wyznacz zbiór tych wartości parametru
m , dla których funkcja liniowa
f(x)=\frac{\left(9-m^2\right)}{4}x-9 jest rosnąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy
p ,
a ilość liczb całkowitych należących do rozwiązania jest równa
q .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 10. 1 pkt ⋅ Numer: pp-10916 ⋅ Poprawnie: 115/207 [55%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Funkcja liniowa
y=ax+b ma ujemne miejsce zerowe, a jej
wykres przecina oś
Oy poniżej punktu
(0,0) .
Wówczas:
Odpowiedzi:
A. a \lessdot 0 \wedge b \lessdot 0
B. a \lessdot 0 \wedge b > 0
C. a > 0 \wedge b \lessdot 0
D. a > 0 \wedge b > 0
Zadanie 11. 1 pkt ⋅ Numer: pp-10890 ⋅ Poprawnie: 42/82 [51%]
Rozwiąż
Podpunkt 11.1 (0.5 pkt)
Wykres funkcji liniowej określonej wzorem
h(x)=(\sqrt{2}-a)x+\frac{a}{2}
jest prostą, która nie przechodzi tylko przez czwartą ćwiartkę układu
współrzędnych.
Funkcja h spełnia ten warunek wtedy i tylko wtedy,
gdy liczba a należy do pewnego przedziału o końcach
p i q , przy czym
p\lessdot q .
Podaj p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (0.5 pkt)
Odpowiedź:
q=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 12. 1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%]
Rozwiąż
Podpunkt 12.1 (0.8 pkt)
Wykres funkcji liniowej
f(x)=2x-9a przecina oś
Oy powyżej punktu
(0,10)
wtedy i tylko wtedy, gdy parametr
a należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty
B. -1
C. -4
D. -3
E. 3
F. -\infty
Zadanie 13. 1 pkt ⋅ Numer: pp-10917 ⋅ Poprawnie: 96/188 [51%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
» Funkcja liniowa określona wzorem
f(x)=ax+b jest rosnąca i ma
miejsce zerowe
\frac{\sqrt{78}-9}{2} .
Wynika z tego, że:
Odpowiedzi:
A. a \lessdot 0 \wedge b < 0
B. a \lessdot 0 \wedge b > 0
C. a > 0 \wedge b > 0
D. a > 0 \wedge b \lessdot 0
Zadanie 14. 1 pkt ⋅ Numer: pp-10919 ⋅ Poprawnie: 219/321 [68%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Funkcja
f jest liniowa oraz
f(-4)=7 i
f(-3)=5 .
Oblicz f(0) .
Odpowiedź:
f(0)=
(wpisz liczbę całkowitą)
Zadanie 15. 1 pkt ⋅ Numer: pp-10901 ⋅ Poprawnie: 79/140 [56%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
A. y=4x^2
B. y=\frac{4}{x}
C. y=\frac{\sqrt{2}x}{2}
D. y=\frac{2}{\sqrt{2}x}
Zadanie 16. 1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%]
Rozwiąż
Podpunkt 16.1 (0.8 pkt)
Zbiorem wszystkich rozwiązań nierówności
\left(\sqrt{65}-\frac{81}{10}\right)(-10+6x) > 0 jest pewien przedział.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 1
B. 7
C. +\infty
D. -\infty
E. 2
F. 0
Zadanie 17. 1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%]
Rozwiąż
Podpunkt 17.1 (0.8 pkt)
Dana jest funkcja liniowa
g(x)=\frac{4}{3}-\frac{2}{5}x
.
Funkcja
g przyjmuje wartości ujemne dla argumentów
należących do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -8
B. 5
C. +\infty
D. -1
E. 1
F. -\infty
Zadanie 18. 1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 86/128 [67%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Punkt
M=\left(\frac{1}{2},-5\right) należy do wykresu
funkcji liniowej określonej wzorem
f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2 .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 19. 1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%]
Rozwiąż
Podpunkt 19.1 (0.8 pkt)
Rozwiąż nierówność
-\frac{1}{3}x\leqslant \frac{1}{3}x+\frac{3}{4} .
Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który
jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 19.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 4
B. 1
C. -4
D. -1
E. -\infty
F. +\infty
Zadanie 20. 1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%]
Rozwiąż
Podpunkt 20.1 (1 pkt)
«« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od
20 . Do jej wykresu należy punkt
\left(2,\frac{9}{2}\right) .
Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż