Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 558/824 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=mx+n. Funkcja ta spełnia warunek f(-5)=-3, a jej wykres zawiera punkt (6,5).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 226/428 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(5,3) i B=(-2,-4) określona jest równaniem -7x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10808 ⋅ Poprawnie: 198/382 [51%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Wskaż wzór tej funkcji:
Odpowiedzi:
A. y=-\sqrt{3}x+1 B. y=\frac{1}{\sqrt{3}}x+1
C. y=-\frac{\sqrt{3}}{3}x+1 D. y=\sqrt{3}x+1
Zadanie 4.  1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 107/166 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Punkt o współrzędnych (2t-3, 4t+1), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem y=2x+b.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10794 ⋅ Poprawnie: 354/493 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wyznacz miejsce zerowe funkcji określonej wzorem f(x)=\frac{4}{9}-\frac{1}{4}x.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dana jest funkcja liniowa określona wzorem g(x)=(\sqrt{11}+\sqrt{8})x-3 . Miejscem zerowym funkcji g jest liczba \frac{\sqrt{8}-\sqrt{11}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 215/292 [73%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wykres funkcji g(x)=(m+1)x+15 przecina oś Ox w punkcie o odciętej równej \frac{\log_{2}{8}}{3^0}.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10893 ⋅ Poprawnie: 465/602 [77%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Które z poniższych wzorów opisują funkcję malejącą?
Odpowiedzi:
T/N : y=\left(12-6\sqrt{3}\right)x+2\sqrt{3} T/N : y=\left(8-5\sqrt{2}\right)x+\sqrt{2}
T/N : y=\left(4-3\sqrt{2}\right)x+\sqrt{2}  
Zadanie 9.  1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa f(x)=\frac{\left(64-m^2\right)}{4}x-9 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p, a ilość liczb całkowitych należących do rozwiązania jest równa q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10880 ⋅ Poprawnie: 106/191 [55%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(49-m^2\right)x+2 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 254/377 [67%] Rozwiąż 
Podpunkt 11.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=7+5x-12mx jest malejąca, wtedy i tylko wtedy, gdy liczba m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 0 B. 4
C. 2 D. +\infty
E. -2 F. 6
Zadanie 12.  1 pkt ⋅ Numer: pp-10903 ⋅ Poprawnie: 211/346 [60%] Rozwiąż 
Podpunkt 12.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-2+4m)x+1-6m jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. -4
C. 6 D. 3
E. +\infty F. 5
Zadanie 13.  1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 83/138 [60%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Funkcja liniowa określona wzorem f(x)=ax+b jest malejąca i ma miejsce zerowe \frac{\sqrt{66}-8}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a \lessdot 0 \wedge b < 0 B. a > 0 \wedge b \lessdot 0
C. a > 0 \wedge b > 0 D. a \lessdot 0 \wedge b > 0
Zadanie 14.  1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Do wykresu funkcji liniowej y=ax+b należą punkty (3, 0) i (0, -1).

Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")

Odpowiedzi:
T/N : a > 0 \wedge b > 0 T/N : a \lessdot 0 \wedge b > 0
T/N : a \lessdot 0 \wedge b < 0  
Zadanie 15.  1 pkt ⋅ Numer: pp-10885 ⋅ Poprawnie: 104/168 [61%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Wykres funkcji liniowej f określonej wzorem f(x)=ax+b nie przechodzi tylko przez ćwiartkę układu współrzędnych o numerze 3.

Wówczas:

Odpowiedzi:
A. a\lessdot 0 \wedge b>0 B. a>0 \wedge b>0
C. a>0 \wedge b\lessdot 0 D. a\lessdot 0 \wedge b<0
Zadanie 16.  1 pkt ⋅ Numer: pp-10929 ⋅ Poprawnie: 57/99 [57%] Rozwiąż 
Podpunkt 16.1 (0.8 pkt)
 Wykres funkcji liniowej określonej wzorem y=\frac{1}{10}(x-6)+4m-1 przecina dodatnią półoś Oy wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -\infty
C. 1 D. -11
E. -12 F. -8
Zadanie 17.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 138/236 [58%] Rozwiąż 
Podpunkt 17.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=\frac{5}{2}+\frac{3}{4}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 17.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 3
C. -\infty D. 1
E. -8 F. -6
Zadanie 18.  1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/70 [74%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Punkt o współrzędnych P=\left(\sqrt{7}, -2\right) należy do wykresu funkcji liniowej y=-3\sqrt{7}x+2\cdot ......-4.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 19.  1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%] Rozwiąż 
Podpunkt 19.1 (0.8 pkt)
 Rozwiąż nierówność -\frac{1}{3}x\leqslant -\frac{1}{2}x+\frac{3}{4}.

Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 19.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -1 B. +\infty
C. 1 D. -3
E. -\infty F. 6
Zadanie 20.  1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 «« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od 12. Do jej wykresu należy punkt \left(3,\frac{11}{2}\right).

Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm