Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 662/979 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Dana jest funkcja liniowa
f(x)=-4x+2 .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : funkcja f jest malejąca w zbiorze \mathbb{R}
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{2},0\right)
T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2)
Zadanie 2. 1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 125/214 [58%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dane są funkcje
f(x)=-2x-3 oraz
g(x)=f(x-2)-4 . Zapisz wzór funkcji
g
w postaci
g(x)=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 492/694 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do prostej o równaniu
y=ax+b
należą punkty
P=(-7,4) i
Q=(2,-4) .
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10940 ⋅ Poprawnie: 39/65 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wykres funkcji liniowej
h(x)=(p-9)x+2 przechodzi
przez punkt
S , którego obie współrzędne są
nieparzyste.
Liczba p może być równa:
Odpowiedzi:
A. -7
B. -5
C. 7
D. -3
E. 3
F. -10
Zadanie 5. 1 pkt ⋅ Numer: pp-10795 ⋅ Poprawnie: 453/761 [59%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcja liniowa określona wzorem
y=mx+n , wartości ujemne
przyjmuje tylko w przedziale
(-6,+\infty) . Wykres tej funkcji
przecina oś
Oy w punkcie
(0,-1) .
Wyznacz współczynniki m i n .
Odpowiedzi:
Zadanie 6. 1 pkt ⋅ Numer: pp-10923 ⋅ Poprawnie: 157/248 [63%]
Rozwiąż
Podpunkt 6.1 (0.2 pkt)
Miejsce zerowe funkcji liniowej określonej wzorem
f(x)=2x-9m
jest większe od
2 dla każdej liczby
m należącej do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,q\rangle
B. (p,+\infty)
C. \langle p,+\infty)
D. (-\infty,q)
E. (-\infty,q\rangle
F. (p,q)
Podpunkt 6.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-10796 ⋅ Poprawnie: 152/254 [59%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Liczba
-\frac{4}{3} jest miejscem zerowym funkcji określonej wzorem
f(x)=\left(1+\frac{a}{8}\right)x+2 .
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10899 ⋅ Poprawnie: 81/113 [71%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Punkty o współrzędnych
(500,900) oraz
(700,-700) należą do wykresu funkcji liniowej
y=mx+n .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : z treści wynika, że n=0
T/N : z treści wynika, że m > 0
T/N : z treści wynika, że n \lessdot 0
Zadanie 9. 1 pkt ⋅ Numer: pp-10897 ⋅ Poprawnie: 60/101 [59%]
Rozwiąż
Podpunkt 9.1 (0.5 pkt)
Wyznacz te wartości parametru
m , dla których funkcja liniowa
f(x)=(12-m^2)x-5 jest rosnąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Liczba
p jest najmniejszym z końców liczbowych tych przedziałów,
a liczba
q jest ilością liczb całkowitych należących do
rozwiązania.
Podaj liczbę p .
Odpowiedź:
p=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
Odpowiedź:
q=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m , dla których
funkcja liniowa określona wzorem
f(x)=\left(m^2-\frac{1}{49}\right)x+2401
jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 11. 1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 243/364 [66%]
Rozwiąż
Podpunkt 11.1 (0.8 pkt)
Funkcja liniowa określona wzorem
f(x)=9+7x-12mx jest malejąca, wtedy i tylko wtedy,
gdy liczba
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 7
B. 2
C. 5
D. -\infty
E. -8
F. +\infty
Zadanie 12. 1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%]
Rozwiąż
Podpunkt 12.1 (0.8 pkt)
Wykres funkcji liniowej
f(x)=2x-7a przecina oś
Oy powyżej punktu
(0,4)
wtedy i tylko wtedy, gdy parametr
a należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -5
B. -2
C. 7
D. 0
E. -\infty
F. +\infty
Zadanie 13. 1 pkt ⋅ Numer: pp-10749 ⋅ Poprawnie: 118/142 [83%]
Rozwiąż
Podpunkt 13.1 (1 pkt)
Funkcja
f opisana jest wzorem:
f(x)=-\frac{3}{8}x+3 . Jeśli argument funkcji
f wzrośnie o
5 , to wartość
tej funkcji:
Odpowiedzi:
A. zmaleje o \frac{3}{2}
B. zmaleje o \frac{15}{8}
C. zmaleje o \frac{9}{4}
D. wzrośnie o \frac{15}{8}
Zadanie 14. 1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%]
Rozwiąż
Podpunkt 14.1 (1 pkt)
Do wykresu funkcji liniowej
y=ax+b należą punkty
(2, 0) i
(0, -5) .
Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")
Odpowiedzi:
T/N : a > 0 \wedge b \lessdot 0
T/N : a \lessdot 0 \wedge b > 0
T/N : a > 0 \wedge b > 0
Zadanie 15. 1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%]
Rozwiąż
Podpunkt 15.1 (1 pkt)
Wykres funkcji liniowej
y=2^{11}x-2^{27} przechodzi przez
ćwiartki układu współrzędnych:
Odpowiedzi:
A. I, II i IV
B. I, II i III
C. I, III i IV
D. II, III, IV
Zadanie 16. 1 pkt ⋅ Numer: pp-10929 ⋅ Poprawnie: 57/99 [57%]
Rozwiąż
Podpunkt 16.1 (0.8 pkt)
Wykres funkcji liniowej określonej wzorem
y=\frac{1}{10}(x-4)+4m-1
przecina dodatnią półoś
Oy wtedy i tylko wtedy, gdy
parametr
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 16.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 4
B. -2
C. 6
D. +\infty
E. 12
F. -\infty
Zadanie 17. 1 pkt ⋅ Numer: pp-10939 ⋅ Poprawnie: 101/204 [49%]
Rozwiąż
Podpunkt 17.1 (1 pkt)
« Dla argumentu
x_0 wartości funkcji określonych wzorami
f(x)=3x-7 i
g(x)=7x-1
są sobie równe i obie równe
y_0 .
Wyznacz y_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 18. 1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/69 [75%]
Rozwiąż
Podpunkt 18.1 (1 pkt)
Punkt o współrzędnych
P=\left(\sqrt{7}, 2\right)
należy do wykresu funkcji liniowej
y=-3\sqrt{7}x+2\cdot ......-4 .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 19. 1 pkt ⋅ Numer: pp-10798 ⋅ Poprawnie: 36/81 [44%]
Rozwiąż
Podpunkt 19.1 (1 pkt)
Trójkąt o bokach długości
5 ,
2p+1 ,
p-1 jest
równoramienny.
Wyznacz p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 20. 1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%]
Rozwiąż
Podpunkt 20.1 (0.8 pkt)
« Dana jest funkcja określona wzorem
f(x)=\frac{2}{7}x-1 .
Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.
Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 20.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty
B. 7
C. 2
D. -7
E. +\infty
F. -2
Rozwiąż