Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 325/483 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji liniowej
y=-\frac{2}{5}x+4 przecina osie
układu współrzędnych w punktach
A i
B .
Oblicz pole powierzchni trójkąta AOB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10941 ⋅ Poprawnie: 163/214 [76%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja liniowa określona wzorem
g(x)=(\sqrt{8}+\sqrt{7})x-1
.
Miejscem zerowym funkcji
g jest liczba
\frac{\sqrt{7}-\sqrt{8}}{......} .
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10899 ⋅ Poprawnie: 81/113 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
(300,400) oraz
(600,-300) należą do wykresu funkcji liniowej
y=mx+n .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : z treści wynika, że n=0
T/N : z treści wynika, że m \lessdot 0
T/N : z treści wynika, że m > 0
Zadanie 4. 1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%]
Rozwiąż
Podpunkt 4.1 (0.8 pkt)
Funkcja określona wzorem
f(x)=\left(-\frac{1}{2}-\frac{\sqrt{3}}{3}m\right)x+2 jest rosnąca,
gdy parametr
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą niewymierną.
Odpowiedź:
Podpunkt 4.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty
B. +\infty
C. \frac{3}{4}
D. -\frac{1}{6}
E. -1
F. \frac{1}{4}
Zadanie 5. 1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%]
Rozwiąż
Podpunkt 5.1 (0.8 pkt)
« Dana jest funkcja określona wzorem
f(x)=-\frac{3}{5}x+1 .
Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.
Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty
B. -\infty
C. 5
D. 3
E. -5
F. -3
Zadanie 6. 2 pkt ⋅ Numer: pp-20309 ⋅ Poprawnie: 230/297 [77%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Oblicz miejsce zerowe funkcji
f(x)=
\begin{cases}
-1+2x \text{, dla } x\leqslant 2 \\
x \text{, dla } x > 2
\end{cases}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20844 ⋅ Poprawnie: 112/328 [34%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Punkt
K=(-2,6) należy do wykresu funkcji
liniowej określonej wzorem
f(x)=(-1-m)x+4 .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wykresy funkcji
f i funkcji określonej wzorem
h(x)=2-2x przecinają oś
Ox w tym samym punkcie.
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/85 [28%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu nie stałej funkcji liniowej
h(x)=bx+1ab
należy punkt
P=(b, 1a^2+ab) oraz
h(b+a)\neq 3a^2 .
Oblicz wartość ilorazu \frac{a}{b} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20839 ⋅ Poprawnie: 28/47 [59%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Prosta
k jest równoległa do prostej
AB wyznaczonej przez punkty punkty
A=(1,-5) i
B=(-2,4)
i przecina oś
Oy w punkcie o rzędnej równej
2 . Dla jakiej wartości parametru
k punkt
C=(-2k-2, 5k+10)
należy do prostej
k ?
Podaj k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30047 ⋅ Poprawnie: 56/189 [29%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
«« Dana jest funkcja
f(x)=x-\frac{3}{2} .
Dla jakich argumentów funkcja przyjmuje wartości ujemne?
Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Rozwiąż nierówność
f(x+1)\geqslant 3x-3 .
Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż