Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 289/476 [60%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=4x-\frac{1}{2} dla każdej liczby z przedziału \langle -5,5\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10793 ⋅ Poprawnie: 523/662 [79%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba ......... jest miejscem zerowym funkcji określonej wzorem f(x)=\frac{7}{4}x-2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10900 ⋅ Poprawnie: 131/209 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
T/N : y=\frac{\sqrt{10}}{10}x T/N : y=\frac{x}{\sqrt{10}}
T/N : y=\frac{49}{x}  
Zadanie 4.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(\frac{7}{10}-\frac{\sqrt{3}}{3}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\frac{7}{30} B. \frac{7}{30}
C. -\frac{21}{20} D. \frac{7}{5}
E. -\infty F. \frac{21}{20}
Zadanie 5.  1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/70 [74%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt o współrzędnych P=\left(\sqrt{7}, 5\right) należy do wykresu funkcji liniowej y=-3\sqrt{7}x+2\cdot ......-4.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 202/650 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane są punkty A=(7, -108) i B=(9, -142). Wyznacz równanie prostej AB.

Podaj współczynnik kierunkowy tej prostej.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz odciętą punktu przecięcia prostej AB z osią Ox.
Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20298 ⋅ Poprawnie: 223/631 [35%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja liniowa f określona jest wzorem f(x)=mx-n. Wiadomo, że f(-1)=3, oraz, że do wykresu funkcji f należy punkt P=(-6,-2).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Wyznacz n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/85 [28%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx-4ab należy punkt P=(b, 16a^2-4ab) oraz h(b-4a)\neq 48a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20300 ⋅ Poprawnie: 121/175 [69%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Suma cyfr liczby dwucyfrowej jest równa 12. Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o 54 mniejszą.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30048 ⋅ Poprawnie: 14/58 [24%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność\frac{x+13}{2}-\frac{-6-x}{3}\cdot \left(\frac{41}{2}+\frac{3}{2}x\right)\leqslant \frac{(x+10)^2}{2}+3\frac{1}{6}.

Ile liczb postaci 3p+1, gdzie p\in\mathbb{N}, należy do zbioru rozwiazań tej nierówności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm