Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 533/804 [66%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja liniowa
f określona jest wzorem
f(x)=mx+n . Funkcja ta spełnia warunek
f(-5)=6 , a jej wykres zawiera punkt
(-6,3) .
Wyznacz współczynniki m i n .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10923 ⋅ Poprawnie: 157/248 [63%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Miejsce zerowe funkcji liniowej określonej wzorem
f(x)=6x-7m
jest większe od
2 dla każdej liczby
m należącej do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,+\infty)
B. \langle p,q\rangle
C. (p,+\infty)
D. (-\infty,q)
E. (p,q)
F. (-\infty,q\rangle
Podpunkt 2.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10899 ⋅ Poprawnie: 81/113 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
(200,100) oraz
(900,-700) należą do wykresu funkcji liniowej
y=mx+n .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : z treści wynika, że n=0
T/N : z treści wynika, że m \lessdot 0
T/N : z treści wynika, że n \lessdot 0
Zadanie 4. 1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/296 [72%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wykresy funkcji liniowych opisanych wzorami
f(x)=x+\frac{5}{4} i
g(x)=9 opisują proste:
Odpowiedzi:
A. równoległe i różne
B. pokrywające się
C. przecinające się pod kątem różnym od 90^{\circ}
D. przecinające się pod kątem o mierze 90^{\circ}
Zadanie 5. 1 pkt ⋅ Numer: pp-10797 ⋅ Poprawnie: 171/231 [74%]
Rozwiąż
Podpunkt 5.1 (0.8 pkt)
Rozwiąż nierówność
-\frac{1}{2}x\leqslant -\frac{2}{3}x+\frac{3}{4} .
Rozwiązanie zapisz w postaci przedziału. Podaj ten koniec przedział, który
jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -6
B. 6
C. -\infty
D. -2
E. +\infty
F. 5
Zadanie 6. 2 pkt ⋅ Numer: pp-20309 ⋅ Poprawnie: 230/297 [77%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Oblicz miejsce zerowe funkcji
f(x)=
\begin{cases}
8+2x \text{, dla } x\leqslant 2 \\
x \text{, dla } x > 2
\end{cases}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20844 ⋅ Poprawnie: 112/328 [34%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Punkt
K=(-2,6) należy do wykresu funkcji
liniowej określonej wzorem
f(x)=(-8-m)x+4 .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wykresy funkcji
f i funkcji określonej wzorem
h(x)=2-2x przecinają oś
Ox w tym samym punkcie.
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu nie stałej funkcji liniowej
h(x)=bx+4ab
należy punkt
P=(b, 16a^2+4ab) oraz
h(b+4a)\neq 48a^2 .
Oblicz wartość ilorazu \frac{a}{b} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20839 ⋅ Poprawnie: 17/35 [48%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Prosta
k jest równoległa do prostej
AB wyznaczonej przez punkty punkty
A=(1,-5) i
B=(-2,4)
i przecina oś
Oy w punkcie o rzędnej równej
2 . Dla jakiej wartości parametru
k punkt
C=(-2k-18, 5k+50)
należy do prostej
k ?
Podaj k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30034 ⋅ Poprawnie: 92/188 [48%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Za kwotę
2000 zł Kamil kupił od kolegi
telefon i konsolę. Po kilku miesiącach sprzedał telefon z
dwudziestoprocentowym zyskiem, a następnęgo dnia sprzedał konsolę z
dziesięcioprocentową stratą. Wówczas okazało się, że na obu tych przedmiotach
zarobił
p %.
Za jaką cenę Kamil zakupił telefon?
Dane
p=5
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Za jaką kwotę Kamil sprzedał konsolę?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż