Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-8x oblicz h\left(\frac{3\sqrt{3}-5}{8}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest złożona T/N : liczba ta jest niewymierna
Zadanie 2.  1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 67/119 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Miejscem zerowym funkcji określonej wzorem f(x)=9\sqrt{5}x-\frac{\sqrt{55}}{2} jest liczba \frac{\sqrt{5\cdot 55}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{64}\right)x+4096 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10924 ⋅ Poprawnie: 50/67 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=ax+b i spełnia warunek f(7)-f(4)=33.

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10800 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Nierówności \left(8+\sqrt{65}\right)\left(\sqrt{65}-8\right)x > 2x-4 oraz (-1-3x)^2+3x\leqslant (3x-1)^2-5x+4 są spełnione przez każdą liczbę z pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 0 B. +\infty
C. -4 D. -\infty
Zadanie 6.  2 pkt ⋅ Numer: pp-20308 ⋅ Poprawnie: 227/413 [54%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Miejscem zerowym funkcji f(x)=\frac{2-7m}{2}x+2 jest liczba \frac{1}{24}.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20298 ⋅ Poprawnie: 211/615 [34%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja liniowa f określona jest wzorem f(x)=mx-n. Wiadomo, że f(-4)=-4, oraz, że do wykresu funkcji f należy punkt P=(6,6).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Wyznacz n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx-3ab należy punkt P=(b, 9a^2-3ab) oraz h(b-3a)\neq 27a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20301 ⋅ Poprawnie: 150/366 [40%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Trójkąt ograniczony osiami układu i prostą o równaniu 2y=2x-8 ma pole powierzchni równe P.

Oblicz P.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30053 ⋅ Poprawnie: 38/222 [17%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=-\sqrt{3}x+am+b.

Wyznacz te wartości m, dla których miejscem zerowym funkcji jest liczba \sqrt{3}.

Dane
a=5
b=-2
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Dla jakich wartosci m wykres przecina oś Oy w punkcie o rzędnej 2?
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (2 pkt)
 Dla m=-2 wyznacz współrzędne punktów przecięcia wykresu z osiami układu.

Ile wynosi suma czterech otrzymanych współrzędnych?

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm