Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 224/426 [52%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Prosta wyznaczona przez punkty
A=(-6,1) i
B=(-2,-4) określona jest równaniem
-5x+by+c=0 .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10793 ⋅ Poprawnie: 482/632 [76%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Liczba
......... jest miejscem zerowym funkcji określonej wzorem
f(x)=-\frac{8}{7}x-\frac{2}{5} .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10749 ⋅ Poprawnie: 118/142 [83%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja
f opisana jest wzorem:
f(x)=-\frac{5}{4}x+3 . Jeśli argument funkcji
f wzrośnie o
4 , to wartość
tej funkcji:
Odpowiedzi:
A. wzrośnie o 5
B. zmaleje o 5
C. wzrośnie o \frac{25}{4}
D. zmaleje o \frac{15}{4}
Zadanie 4. 1 pkt ⋅ Numer: pp-10921 ⋅ Poprawnie: 196/343 [57%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Wykresy funkcji
f(x)=4x-mx-3 i
y=-4x+7 nie mają punktów wspólnych.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/69 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt o współrzędnych
P=\left(\sqrt{7}, 3\right)
należy do wykresu funkcji liniowej
y=-3\sqrt{7}x+2\cdot ......-4 .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 201/649 [30%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dane są punkty
A=(-1, 20) i
B=(6, -57) . Wyznacz równanie prostej
AB .
Podaj współczynnik kierunkowy tej prostej.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz odciętą punktu przecięcia prostej
AB
z osią
Ox .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20847 ⋅ Poprawnie: 156/295 [52%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Liczba
b spełnia równanie
(b+2)(2-b)+(1+b)^2=0 .
Podaj miejsce zerowe funkcji określonej wzorem f(x)=5x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Rozwiąż równanie
2x-9=3x+4 .
Podaj rozwiązanie.
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20304 ⋅ Poprawnie: 14/75 [18%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
« Punkt
P=(0,4) jest punktem przecięcia się
prostych
k i
l .
Prosta
k wraz z osiami układu ogranicza trójkąt
o polu równym
38 , a prosta
l trójkąt o polu równym
44 .
Oblicz pole trójkąta, którego wierzchołkami są: punkt
P oraz punkty przecięcia obu prostych z osią
Ox .
Podaj najmniejsze możliwe pole powierzchni tego trójkąta.
Odpowiedź:
P_{min}=
(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu
współrzędnych
Ox .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30048 ⋅ Poprawnie: 14/58 [24%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiąż nierówność
\frac{x+8}{2}-\frac{-1-x}{3}\cdot \left(13+\frac{3}{2}x\right)\leqslant \frac{(x+5)^2}{2}+3\frac{1}{6} .
Ile liczb postaci 3p+1 , gdzie
p\in\mathbb{N} , należy do zbioru rozwiazań
tej nierówności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj największą z tych liczb.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż