Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 274/459 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=3x-\frac{1}{2} dla każdej liczby z przedziału \langle -3,4\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11431 ⋅ Poprawnie: 306/496 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba -1 jest miejscem zerowym funkcji liniowej f(x)=.....\cdot x+b, a punkt M=(-3,-12) należy do wykresu tej funkcji.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10912 ⋅ Poprawnie: 99/174 [56%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja f(x)=\left(-2m+\frac{4}{3}\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 10 B. -\infty
C. 9 D. -4
E. -10 F. +\infty
Zadanie 4.  1 pkt ⋅ Numer: pp-10919 ⋅ Poprawnie: 219/321 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja f jest liniowa oraz f(-4)=5 i f(-3)=4.

Oblicz f(0).

Odpowiedź:
f(0)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10938 ⋅ Poprawnie: 121/181 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt A=(m^2+1,-3) należy do wykresu funkcji liniowej określonej wzorem g(x)=71-2x:
Odpowiedzi:
A. tylko dla m=6 B. dla m\in\{-6,6\}
C. dla m\in\mathbb{R} D. tylko dla m=-6
E. tylko dla m=-12 F. dla m\in\emptyset
Zadanie 6.  2 pkt ⋅ Numer: pp-20309 ⋅ Poprawnie: 230/297 [77%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Oblicz miejsce zerowe funkcji f(x)= \begin{cases} 5+2x \text{, dla } x\leqslant 2 \\ x \text{, dla } x > 2 \end{cases} .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20298 ⋅ Poprawnie: 211/615 [34%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja liniowa f określona jest wzorem f(x)=mx-n. Wiadomo, że f(5)=4, oraz, że do wykresu funkcji f należy punkt P=(-3,8).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Wyznacz n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx-3ab należy punkt P=(b, 9a^2-3ab) oraz h(b-3a)\neq 27a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20301 ⋅ Poprawnie: 150/366 [40%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Trójkąt ograniczony osiami układu i prostą o równaniu -y=x-4 ma pole powierzchni równe P.

Oblicz P.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30042 ⋅ Poprawnie: 54/113 [47%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Funkcja liniowa g(x)=(4m+3)x-2 spełnia warunek g\left(\frac{1}{2}\right)=0.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Rozwiąż nierówność g(x) \lessdot h(x), gdzie h(x)=6+2x. Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm