Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 662/979 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-4x+2.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{2},0\right) T/N : funkcja f jest malejąca w zbiorze \mathbb{R}
T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2)  
Zadanie 2.  1 pkt ⋅ Numer: pp-10805 ⋅ Poprawnie: 274/540 [50%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja liniowa spełnia warunki f(-\sqrt{2})=1 i f(10\sqrt{2})=-9.

Wynika z tego, że jej wykres przechodzi przez ćwiartki układu:

Odpowiedzi:
A. I, II i IV B. I, II i III
C. I, III i IV D. II, III i IV
Zadanie 3.  1 pkt ⋅ Numer: pp-10749 ⋅ Poprawnie: 118/142 [83%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja f opisana jest wzorem: f(x)=\frac{4}{5}x+3. Jeśli argument funkcji f wzrośnie o 3, to wartość tej funkcji:
Odpowiedzi:
A. zmaleje o \frac{12}{5} B. wzrośnie o \frac{8}{5}
C. wzrośnie o \frac{12}{5} D. wzrośnie o \frac{16}{5}
Zadanie 4.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(\frac{3}{8}-\frac{\sqrt{3}}{6}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\frac{3}{8} B. -\infty
C. -\frac{1}{4} D. \frac{1}{4}
E. \frac{9}{8} F. -\frac{9}{8}
Zadanie 5.  1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Zbiorem wszystkich rozwiązań nierówności \left(\sqrt{84}-\frac{46}{5}\right)(5+4x) > 0 jest pewien przedział.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. +\infty
C. 8 D. -8
E. -2 F. -3
Zadanie 6.  2 pkt ⋅ Numer: pp-20308 ⋅ Poprawnie: 227/413 [54%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Miejscem zerowym funkcji f(x)=\frac{2-7m}{2}x+2 jest liczba \frac{1}{24}.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20846 ⋅ Poprawnie: 143/220 [65%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Liczba b spełnia równanie (b+5)(b-1)=(b+2)(b+11)-3(b+3).

Podaj miejsce zerowe funkcji f(x)=4x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20847 ⋅ Poprawnie: 156/295 [52%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Liczba b spełnia równanie (b+2)(2-b)+(1+b)^2=0.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=4x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Rozwiąż równanie 2x-8=2\sqrt{2}x-4.

Podaj rozwiązanie.

Odpowiedź:
x= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20839 ⋅ Poprawnie: 17/35 [48%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Prosta k jest równoległa do prostej AB wyznaczonej przez punkty punkty A=(1,-5) i B=(-2,4) i przecina oś Oy w punkcie o rzędnej równej 2. Dla jakiej wartości parametru k punkt C=(-2k+10, 5k-20) należy do prostej k?

Podaj k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30053 ⋅ Poprawnie: 38/222 [17%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=-\sqrt{3}x+am+b.

Wyznacz te wartości m, dla których miejscem zerowym funkcji jest liczba \sqrt{3}.

Dane
a=3
b=4
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Dla jakich wartosci m wykres przecina oś Oy w punkcie o rzędnej 2?
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (2 pkt)
 Dla m=-2 wyznacz współrzędne punktów przecięcia wykresu z osiami układu.

Ile wynosi suma czterech otrzymanych współrzędnych?

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30056 ⋅ Poprawnie: 26/66 [39%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Z miejscowości A wyjechał autobus osobowy i dotarł do miejscowości B po t godzinach jazdy. Godzinę póżniej od autobusu osobowego na tę samą trasę wyjechał autobus pospieszny i dotarł do miejscowości B o godzinę wcześniej niż autobus osobowy.

Po ilu godzinach swojej jazdy autobus pospieszny wyprzedził autobus osobowy?

Dane
t=10
Odpowiedź:
t\ [h]=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm