Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 106/165 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt o współrzędnych (2t-3, 4t), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem y=2x+b.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11406 ⋅ Poprawnie: 495/686 [72%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Miejscem zerowym funkcji liniowej f(x)=3(x+5)-6\sqrt{3} jest liczba a+b\sqrt{3}.

Podaj a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10906 ⋅ Poprawnie: 54/153 [35%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=-5x-6a przecina oś Oy poniżej punktu (0,4) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj ten z końców tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. -4
C. -6 D. 7
E. -8 F. +\infty
Zadanie 4.  1 pkt ⋅ Numer: pp-10885 ⋅ Poprawnie: 102/162 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji liniowej f określonej wzorem f(x)=ax+b nie przechodzi tylko przez ćwiartkę układu współrzędnych o numerze 3.

Wówczas:

Odpowiedzi:
A. a>0 \wedge b>0 B. a\lessdot 0 \wedge b>0
C. a\lessdot 0 \wedge b<0 D. a>0 \wedge b\lessdot 0
Zadanie 5.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=-\frac{3}{4}x+1.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 6 B. -\infty
C. +\infty D. -8
E. 8 F. -6
Zadanie 6.  2 pkt ⋅ Numer: pp-20840 ⋅ Poprawnie: 156/279 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Funkcja liniowa f określona wzorem f(x)=mx+n wartości nieujemne przyjmuje tylko w przedziale (-\infty, 2\rangle oraz zachodzi warunek f(-1)=6. Wyznacz wartości współczynników m i n.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20845 ⋅ Poprawnie: 54/94 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Liczba b spełnia równanie (b+2-\sqrt{2})^2-(b+2-2\sqrt{2})^2=-6.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=-9x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20298 ⋅ Poprawnie: 218/623 [34%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Funkcja liniowa f określona jest wzorem f(x)=mx-n. Wiadomo, że f(-5)=-2, oraz, że do wykresu funkcji f należy punkt P=(5,8).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż równanie \frac{-10x-6}{4x+10}=9 .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20839 ⋅ Poprawnie: 17/35 [48%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Prosta k jest równoległa do prostej AB wyznaczonej przez punkty punkty A=(1,-5) i B=(-2,4) i przecina oś Oy w punkcie o rzędnej równej 2. Dla jakiej wartości parametru k punkt C=(-2k-18, 5k+50) należy do prostej k?

Podaj k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30053 ⋅ Poprawnie: 38/222 [17%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=-\sqrt{3}x+am+b.

Wyznacz te wartości m, dla których miejscem zerowym funkcji jest liczba \sqrt{3}.

Dane
a=2
b=-5
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Dla jakich wartosci m wykres przecina oś Oy w punkcie o rzędnej 2?
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (2 pkt)
 Dla m=-2 wyznacz współrzędne punktów przecięcia wykresu z osiami układu.

Ile wynosi suma czterech otrzymanych współrzędnych?

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30035 ⋅ Poprawnie: 31/98 [31%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Koszt dostarczenia przesyłki pocztą kurierską w danym mieście wynosił 5 zł, a poza granicami miasta 10 zł. W ciągu tygodnia jeden kurier dostarcza średnio 2800 przesyłek, przy czym 55\% tych przesyłek dostarcza poza granice miasta.

Oblicz, jaki tygodniowy zysk miała firma kurierska zatrudniająca 10 kurierów, jeśli jej tygodniowe koszty były następujące: na reklamę firma przeznaczała 25\% przychodów, a na płace 8600 zł (zysk = przychód - koszty).

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Oblicz, o ile złotych podwyższono cenę za jedną przesyłkę poza miasto, jeśli przychód tygodniowy po tej podwyżce był równy 494200.00 zł.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 O ile procent zwiększył się tygodniowy zysk firmy po podwyższeniu opłaty za przesyłki poza granice miasta o kwotę z punktu b). Wynik podaj z dokładnością do 1%.
Odpowiedź:
[\%]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm