Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10936 ⋅ Poprawnie: 848/1226 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dana jest funkcja liniowa określona wzorem f(x)=3x-6.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wykres tej funkcji przecina oś rzędnych w punkcie (0,-6) T/N : funkcja f rośnie w \mathbb{R}
T/N : miejscem zerowym tej funkcji jest liczba 2  
Zadanie 2.  1 pkt ⋅ Numer: pp-10945 ⋅ Poprawnie: 78/136 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Miejscem zerowym funkcji określonej wzorem f(x)=5\sqrt{2}x-\frac{\sqrt{14}}{2} jest liczba \frac{\sqrt{2\cdot 14}}{......}.

Podaj brakującą liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 121/205 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-49\right)x+2 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10885 ⋅ Poprawnie: 112/182 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji liniowej f określonej wzorem f(x)=ax+b nie przechodzi tylko przez ćwiartkę układu współrzędnych o numerze 2.

Wówczas:

Odpowiedzi:
A. a>0 \wedge b>0 B. a\lessdot 0 \wedge b>0
C. a>0 \wedge b\lessdot 0 D. a\lessdot 0 \wedge b<0
Zadanie 5.  1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 69/123 [56%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres funkcji f(x)=-2x+3m przecina oś Oy w punkcie o rzędnej 30. Wykres funkcji g(x)=-10x+4m przecina oś Ox w punkcie o odciętej ......... .

Podaj brakującą liczbę.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20334 ⋅ Poprawnie: 31/131 [23%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 «« Zbadaj monotoniczność funkcji f(x)=(4-\sqrt{7}m)x+2 dla m=\frac{13}{2}\sqrt{7}-1.

O ile rośnie lub maleje wartość tej funkcji jeśli argument rośnie o 1?

Odpowiedź:
\frac{a+b\sqrt{c}}{d}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20846 ⋅ Poprawnie: 143/220 [65%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Liczba b spełnia równanie (b+5)(b-1)=(b+2)(b+11)-3(b+3).

Podaj miejsce zerowe funkcji f(x)=-3x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20847 ⋅ Poprawnie: 156/296 [52%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Liczba b spełnia równanie (b+2)(2-b)+(1+b)^2=0.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=-3x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż równanie \frac{3x-4}{10x-4}=-4 .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20303 ⋅ Poprawnie: 87/136 [63%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Zależność temperatury w skali Fahrenheita \ ^{\circ}{F} od temperatury w skali Celsjusza \ ^{\circ}{C} wyraża wzór f(c)=32+1,8\cdot c, gdzie f – temperatura w skali Fahrenheita, zaś c – temperatura w skali Celsjusza.

Oblicz, w jakiej temperaturze w skali Fahrenheita zażywasz kąpieli, jeśli termometr wskazuje, że temperatura wody wynosi wtedy 41^{\circ}C.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 W czajniku znajduje się woda o temperaturze 114^{\circ}F.

Jaką temperaturę w stopniach Celsjusza ma ta woda?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30049 ⋅ Poprawnie: 38/68 [55%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Rozwiąż nierówność\frac{(x-1)^2}{3}-\frac{19}{2}<=\frac{16}{9}x-\frac{1-x}{2}\cdot \left(\frac{2}{3}x+3\right).

Podaj najmniejszą liczbe spęłniającą tę nierówność.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Najmniejszą liczbę spęłniającą tę nierówność zapisz w postaci ułamka nieskracalnego o dodatnim mianowniku.

Podaj mianownik tego ułamka.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30037 ⋅ Poprawnie: 106/239 [44%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Wypożyczenie skutera śnieżnego kosztuje 50 zł dziennie plus dodatkowo 1,5 złotego za każdy przejechany nim kilometr. Funkcja y=f(n)=an+b opisuje zależność pomiędzy ilością przejechanych kilometrów a kosztem wypożyczenia skutera na pięć kolejnych dni.

Podaj a+b.

Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Kamil dysponuje kwotą 745.00 zł i zamierza wypożyczyć skuter na pięć dni.

Ile kilometrów może w tym czasie przejechać wypożyczonym skutertem?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm