Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10818 ⋅ Poprawnie: 196/339 [57%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji liniowej
f należą punkty
A=(1, 0) i
B=(0,5) .
Wykres funkcji liniowej
g określonej wzorem
g(x)=mx+n jest symetryczny do wykresu
funkcji
f względem osi
Ox .
Wyznacz współczynniki m i n .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10805 ⋅ Poprawnie: 276/542 [50%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja liniowa spełnia warunki
f(-\sqrt{2})=1 i
f(6\sqrt{2})=-5 .
Wynika z tego, że jej wykres przechodzi przez ćwiartki układu:
Odpowiedzi:
A. I, III i IV
B. II, III i IV
C. I, II i IV
D. I, II i III
Zadanie 3. 1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 83/138 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Funkcja liniowa określona wzorem
f(x)=ax+b jest malejąca i ma
miejsce zerowe
\frac{\sqrt{98}-10}{2} .
Wynika z tego, że:
Odpowiedzi:
A. a \lessdot 0 \wedge b > 0
B. a > 0 \wedge b \lessdot 0
C. a > 0 \wedge b > 0
D. a \lessdot 0 \wedge b < 0
Zadanie 4. 1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji liniowej
y=ax+b należą punkty
(-5, 0) i
(0, 3) .
Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")
Odpowiedzi:
T/N : a > 0 \wedge b \lessdot 0
T/N : a > 0 \wedge b > 0
T/N : a \lessdot 0 \wedge b < 0
Zadanie 5. 1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od
14 . Do jej wykresu należy punkt
\left(5,\frac{3}{2}\right) .
Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20308 ⋅ Poprawnie: 232/418 [55%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Miejscem zerowym funkcji
f(x)=\frac{2-7m}{2}x+2 jest
liczba
\frac{1}{3} .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20845 ⋅ Poprawnie: 54/94 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Liczba
b spełnia równanie
(b+2-\sqrt{2})^2-(b+2-2\sqrt{2})^2=-6 .
Podaj miejsce zerowe funkcji określonej wzorem f(x)=-8x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20847 ⋅ Poprawnie: 156/296 [52%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Liczba
b spełnia równanie
(b+2)(2-b)+(1+b)^2=0 .
Podaj miejsce zerowe funkcji określonej wzorem f(x)=-8x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/85 [28%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Do wykresu nie stałej funkcji liniowej
h(x)=bx+4ab
należy punkt
P=(b, 16a^2+4ab) oraz
h(b+4a)\neq 48a^2 .
Oblicz wartość ilorazu \frac{a}{b} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20328 ⋅ Poprawnie: 206/372 [55%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Kinga i Kamil są małżeństwem od
24 lat. W dniu ślubu
mieli razem
54 lata, z za
2
lat Kinga będzie dwa razy starsza niż w dniu ślubu.
Ile lat ma teraz Kinga?
Odpowiedź:
wiek\ Kingi=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30047 ⋅ Poprawnie: 56/189 [29%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Dana jest funkcja
f(x)=8x+\frac{2}{7} .
Dla jakich argumentów funkcja przyjmuje wartości ujemne?
Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Rozwiąż nierówność
f(x+1)\geqslant 3x-6 .
Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30058 ⋅ Poprawnie: 41/63 [65%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
» Pan Kowalski wykonuje pewną pracę w ciągu
p
godzin. Tę samą pracę pan Nowak wykonuje w ciągu
q
godzin.
Ile godzin potrzeba, aby panowie pracując razem wykonali tę samą pracę.
Dane
p=30
q=15
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż