Funkcja liniowa określona wzorem y=mx+n, wartości ujemne
przyjmuje tylko w przedziale (-7,+\infty). Wykres tej funkcji
przecina oś Oy w punkcie (0,-5).
Wyznacz współczynniki m i n.
Odpowiedzi:
m
=
(dwie liczby całkowite)
n
=
(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 243/364 [66%]
« Wykres funkcji rosnącej g(x)=(3m+7)x+6m-5 nie
przechodzi przez drugą ćwiartkę układu współrzędnych. Wyznacz zbiór wszystkich możliwych wartości
parametru m\in\mathbb{R}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich z konców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największy z wszystkich konców liczbowych
tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20846 ⋅ Poprawnie: 143/220 [65%]
« Punkt P=(0,4) jest punktem przecięcia się
prostych k i l.
Prosta k wraz z osiami układu ogranicza trójkąt
o polu równym 44, a prosta
l trójkąt o polu równym 56.
Oblicz pole trójkąta, którego wierzchołkami są: punkt
P oraz punkty przecięcia obu prostych z osią
Ox.
Podaj najmniejsze możliwe pole powierzchni tego trójkąta.
Odpowiedź:
P_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu
współrzędnych Ox.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30047 ⋅ Poprawnie: 40/168 [23%]
Wypożyczenie skutera śnieżnego kosztuje 67 zł
dziennie plus dodatkowo 1,5 złotego za każdy
przejechany nim kilometr. Funkcja y=f(n)=an+b opisuje
zależność pomiędzy ilością przejechanych kilometrów a kosztem wypożyczenia
skutera na pięć kolejnych dni.
Podaj a+b.
Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Kamil dysponuje kwotą 785.00 zł i zamierza wypożyczyć
skuter na pięć dni.
Ile kilometrów może w tym czasie przejechać wypożyczonym skutertem?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat