Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10936 ⋅ Poprawnie: 847/1225 [69%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Dana jest funkcja liniowa określona wzorem
f(x)=4x-8 .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : funkcja f rośnie w \mathbb{R}
T/N : miejscem zerowym tej funkcji jest liczba 2
T/N : do jej wykresu należy punkt (-1,12)
Zadanie 2. 1 pkt ⋅ Numer: pp-10792 ⋅ Poprawnie: 206/278 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wykres funkcji
g(x)=(m-2)x+15 przecina oś
Ox w punkcie o odciętej równej
\frac{\log_{2}{8}}{3^0} .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10899 ⋅ Poprawnie: 81/113 [71%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Punkty o współrzędnych
(500,400) oraz
(600,-700) należą do wykresu funkcji liniowej
y=mx+n .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : z treści wynika, że n \lessdot 0
T/N : z treści wynika, że n=0
T/N : z treści wynika, że m > 0
Zadanie 4. 1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji liniowej
y=ax+b należą punkty
(3, 0) i
(0, -6) .
Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")
Odpowiedzi:
T/N : a > 0 \wedge b > 0
T/N : a \lessdot 0 \wedge b < 0
T/N : a \lessdot 0 \wedge b > 0
Zadanie 5. 1 pkt ⋅ Numer: pp-10798 ⋅ Poprawnie: 36/81 [44%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Trójkąt o bokach długości
5 ,
2p+7 ,
p+2 jest
równoramienny.
Wyznacz p .
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20309 ⋅ Poprawnie: 230/297 [77%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Oblicz miejsce zerowe funkcji
f(x)=
\begin{cases}
-1+2x \text{, dla } x\leqslant 2 \\
x \text{, dla } x > 2
\end{cases}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20844 ⋅ Poprawnie: 112/328 [34%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Punkt
K=(-2,6) należy do wykresu funkcji
liniowej określonej wzorem
f(x)=(-2-m)x+4 .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wykresy funkcji
f i funkcji określonej wzorem
h(x)=2-2x przecinają oś
Ox w tym samym punkcie.
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20298 ⋅ Poprawnie: 211/615 [34%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Funkcja liniowa
f określona jest wzorem
f(x)=mx-n . Wiadomo, że
f(7)=-1 , oraz, że do wykresu funkcji
f należy punkt
P=(-3,4) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Rozwiąż równanie
2x-6=\sqrt{6}x+1 .
Podaj rozwiązanie.
Odpowiedź:
Zadanie 10. 2 pkt ⋅ Numer: pp-20300 ⋅ Poprawnie: 121/174 [69%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Suma cyfr liczby dwucyfrowej jest równa
9 .
Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o
9 mniejszą.
Wyznacz tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30042 ⋅ Poprawnie: 54/113 [47%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Funkcja liniowa
g(x)=(-m+2)x+2 spełnia warunek
g\left(\frac{1}{2}\right)=0 .
Podaj m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Rozwiąż nierówność
g(x) \lessdot h(x) ,
gdzie
h(x)=-3+3x .
Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30037 ⋅ Poprawnie: 98/227 [43%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
Wypożyczenie skutera śnieżnego kosztuje
54 zł
dziennie plus dodatkowo
1,5 złotego za każdy
przejechany nim kilometr. Funkcja
y=f(n)=an+b opisuje
zależność pomiędzy ilością przejechanych kilometrów a kosztem wypożyczenia
skutera na pięć kolejnych dni.
Podaj a+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Kamil dysponuje kwotą
690.00 zł i zamierza wypożyczyć
skuter na pięć dni.
Ile kilometrów może w tym czasie przejechać wypożyczonym skutertem?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż