Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10809 ⋅ Poprawnie: 97/158 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt o współrzędnych
(9-3t, 2t+1) , gdzie
t\in\mathbb{R} , należy do prostej określonej
równaniem
2x+by=c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10923 ⋅ Poprawnie: 157/248 [63%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Miejsce zerowe funkcji liniowej określonej wzorem
f(x)=4x-9m
jest większe od
2 dla każdej liczby
m należącej do pewnego przedziału.
Przedział ten ma postać:
Odpowiedzi:
A. \langle p,+\infty)
B. (-\infty,q)
C. (p,+\infty)
D. \langle p,q\rangle
E. (-\infty,q\rangle
F. (p,q)
Podpunkt 2.2 (0.8 pkt)
Podaj mniejszy z końców liczbowych tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 413/556 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja liniowa
f określona jest wzorem
f(x)=-\frac{1}{2}x-8 i przecina oś
Oy w punkcie
P .
Które z poniższych zdań są prawdziwe?
Odpowiedzi:
T/N : funkcja ta jest malejąca i P=\left(0,8\right)
T/N : funkcja ta jest malejąca i P=\left(0,-8\right)
T/N : funkcja ta jest rosnąca i P=\left(0,-4\right)
Zadanie 4. 1 pkt ⋅ Numer: pp-10889 ⋅ Poprawnie: 39/62 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dla której z podanych wartości
m funkcja liniowa
określona wzorem
f(x)=-36x+m^2-9+m^4 x jest malejąca:
Odpowiedzi:
A. m=\sqrt{6}+1
B. m=-\frac{\sqrt{6}}{6}
C. m=-2\sqrt{6}
D. m=6
Zadanie 5. 1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Do wykresu funkcji
y=\frac{4}{3}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(\frac{1}{4},-\frac{8}{3}\right)
B. \left(-\frac{3}{4},-5\right)
C. \left(-\frac{7}{4},-\frac{10}{3}\right)
D. \left(\frac{5}{4},-\frac{1}{3}\right)
Zadanie 6. 2 pkt ⋅ Numer: pp-20334 ⋅ Poprawnie: 31/131 [23%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
«« Zbadaj monotoniczność funkcji
f(x)=(4-\sqrt{13}m)x+2 dla
m=\frac{9}{2}\sqrt{13}-1 .
O ile rośnie lub maleje wartość tej funkcji jeśli argument rośnie o
1 ?
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20845 ⋅ Poprawnie: 54/94 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Liczba
b spełnia równanie
(b+2-\sqrt{2})^2-(b+2-2\sqrt{2})^2=-6 .
Podaj miejsce zerowe funkcji określonej wzorem f(x)=2x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20298 ⋅ Poprawnie: 211/615 [34%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Funkcja liniowa
f określona jest wzorem
f(x)=mx-n . Wiadomo, że
f(-6)=-7 , oraz, że do wykresu funkcji
f należy punkt
P=(-1,-2) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Rozwiąż równanie
\frac{-5x-8}{9x+8}=-4
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20305 ⋅ Poprawnie: 94/131 [71%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Miara kąta wewnętrznego wielokąta foremnego jest równa
144 stopnie.
Ile wierzchołków ma ten wielokąt?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30045 ⋅ Poprawnie: 42/113 [37%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dana jest funkcja
f(x)=5x-6 , której dziedziną
jest zbiór rozwiązań nierówności
(3\sqrt{3}-x)^2\geqslant (x+2\sqrt{3})^2 . Wyznacz
ZW_f .
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
Podpunkt 11.2 (2 pkt)
Ile liczb naturalnych należy do tego zbioru wartości?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 4 pkt ⋅ Numer: pp-30034 ⋅ Poprawnie: 92/188 [48%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Za kwotę
2000 zł Kamil kupił od kolegi
telefon i konsolę. Po kilku miesiącach sprzedał telefon z
dwudziestoprocentowym zyskiem, a następnęgo dnia sprzedał konsolę z
dziesięcioprocentową stratą. Wówczas okazało się, że na obu tych przedmiotach
zarobił
p %.
Za jaką cenę Kamil zakupił telefon?
Dane
p=12
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Za jaką kwotę Kamil sprzedał konsolę?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż