Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10936 ⋅ Poprawnie: 848/1226 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dana jest funkcja liniowa określona wzorem f(x)=4x-8.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : do jej wykresu należy punkt (-1,12) T/N : wykres tej funkcji przecina oś rzędnych w punkcie (0,-8)
T/N : miejscem zerowym tej funkcji jest liczba 2  
Zadanie 2.  1 pkt ⋅ Numer: pp-10793 ⋅ Poprawnie: 511/654 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Liczba ......... jest miejscem zerowym funkcji określonej wzorem f(x)=-\frac{1}{2}x-\frac{5}{3}.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 247/369 [66%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=6+4x-12mx jest malejąca, wtedy i tylko wtedy, gdy liczba m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -2 B. +\infty
C. 5 D. 1
E. -4 F. -1
Zadanie 4.  1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
« Proste p i q są równoległe, a punkt O(0,0) leży pomiędzy nimi.

Zatem:

Odpowiedzi:
A. a\cdot m > 0 \ \wedge\ b\cdot n > 0 B. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0
C. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0 D. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
Zadanie 5.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 129/229 [56%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=-\frac{4}{3}-\frac{1}{5}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. 0
C. 1 D. -\infty
E. -9 F. -2
Zadanie 6.  2 pkt ⋅ Numer: pp-20308 ⋅ Poprawnie: 232/418 [55%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Miejscem zerowym funkcji f(x)=\frac{2-7m}{2}x+2 jest liczba \frac{1}{17}.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20845 ⋅ Poprawnie: 54/94 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Liczba b spełnia równanie (b+2-\sqrt{2})^2-(b+2-2\sqrt{2})^2=-6.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=-2x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20847 ⋅ Poprawnie: 156/296 [52%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Liczba b spełnia równanie (b+2)(2-b)+(1+b)^2=0.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=-2x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/85 [28%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx+1ab należy punkt P=(b, 1a^2+ab) oraz h(b+a)\neq 3a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20303 ⋅ Poprawnie: 87/135 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Zależność temperatury w skali Fahrenheita \ ^{\circ}{F} od temperatury w skali Celsjusza \ ^{\circ}{C} wyraża wzór f(c)=32+1,8\cdot c, gdzie f – temperatura w skali Fahrenheita, zaś c – temperatura w skali Celsjusza.

Oblicz, w jakiej temperaturze w skali Fahrenheita zażywasz kąpieli, jeśli termometr wskazuje, że temperatura wody wynosi wtedy 41^{\circ}C.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 W czajniku znajduje się woda o temperaturze 116^{\circ}F.

Jaką temperaturę w stopniach Celsjusza ma ta woda?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30053 ⋅ Poprawnie: 38/222 [17%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=-\sqrt{3}x+am+b.

Wyznacz te wartości m, dla których miejscem zerowym funkcji jest liczba \sqrt{3}.

Dane
a=-1
b=-8
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Dla jakich wartosci m wykres przecina oś Oy w punkcie o rzędnej 2?
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (2 pkt)
 Dla m=-2 wyznacz współrzędne punktów przecięcia wykresu z osiami układu.

Ile wynosi suma czterech otrzymanych współrzędnych?

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30034 ⋅ Poprawnie: 92/188 [48%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Za kwotę 2000 zł Kamil kupił od kolegi telefon i konsolę. Po kilku miesiącach sprzedał telefon z dwudziestoprocentowym zyskiem, a następnęgo dnia sprzedał konsolę z dziesięcioprocentową stratą. Wówczas okazało się, że na obu tych przedmiotach zarobił p%.

Za jaką cenę Kamil zakupił telefon?

Dane
p=9
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Za jaką kwotę Kamil sprzedał konsolę?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm