Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 492/694 [70%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do prostej o równaniu
y=ax+b
należą punkty
P=(4,-2) i
Q=(-1,-4) .
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 300/461 [65%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wykres funkcji liniowej
y=-\frac{1}{4}x+4 przecina osie
układu współrzędnych w punktach
A i
B .
Oblicz pole powierzchni trójkąta AOB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 413/556 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja liniowa
f określona jest wzorem
f(x)=-\frac{1}{2}x-4 i przecina oś
Oy w punkcie
P .
Które z poniższych zdań są prawdziwe?
Odpowiedzi:
T/N : funkcja ta jest rosnąca i P=\left(0,-2\right)
T/N : funkcja ta jest malejąca i P=\left(0,2\right)
T/N : funkcja ta jest malejąca i P=\left(0,4\right)
Zadanie 4. 1 pkt ⋅ Numer: pp-10921 ⋅ Poprawnie: 196/343 [57%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Wykresy funkcji
f(x)=-2x-mx-3 i
y=4x+7 nie mają punktów wspólnych.
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 68/122 [55%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wykres funkcji
f(x)=-2x+4m przecina oś
Oy w punkcie o rzędnej
30 .
Wykres funkcji
g(x)=-5x-4m przecina oś
Ox w punkcie o odciętej
......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 201/649 [30%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dane są punkty
A=(5, 15) i
B=(4, 10) . Wyznacz równanie prostej
AB .
Podaj współczynnik kierunkowy tej prostej.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz odciętą punktu przecięcia prostej
AB
z osią
Ox .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20846 ⋅ Poprawnie: 143/220 [65%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Liczba
b spełnia równanie
(b+5)(b-1)=(b+2)(b+11)-3(b+3) .
Podaj miejsce zerowe funkcji f(x)=-3x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20847 ⋅ Poprawnie: 156/295 [52%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Liczba
b spełnia równanie
(b+2)(2-b)+(1+b)^2=0 .
Podaj miejsce zerowe funkcji określonej wzorem f(x)=-3x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Do wykresu nie stałej funkcji liniowej
h(x)=bx+1ab
należy punkt
P=(b, 1a^2+ab) oraz
h(b+a)\neq 3a^2 .
Oblicz wartość ilorazu \frac{a}{b} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20300 ⋅ Poprawnie: 121/174 [69%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Suma cyfr liczby dwucyfrowej jest równa
15 .
Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o
27 mniejszą.
Wyznacz tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30048 ⋅ Poprawnie: 14/58 [24%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Rozwiąż nierówność
\frac{x-4}{2}-\frac{11-x}{3}\cdot \left(-5+\frac{3}{2}x\right)\leqslant \frac{(x-7)^2}{2}+3\frac{1}{6} .
Ile liczb postaci 3p+1 , gdzie
p\in\mathbb{N} , należy do zbioru rozwiazań
tej nierówności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Podaj największą z tych liczb.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30056 ⋅ Poprawnie: 26/66 [39%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Z miejscowości
A wyjechał autobus osobowy i dotarł
do miejscowości
B po
t godzinach jazdy. Godzinę póżniej od autobusu
osobowego na tę samą trasę wyjechał autobus pospieszny i dotarł do miejscowości
B o godzinę wcześniej niż autobus osobowy.
Po ilu godzinach swojej jazdy autobus pospieszny wyprzedził autobus osobowy?
Dane
t=7
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż