Prosta wyznaczona przez punkty A=(-3,3) i
B=(4,-1) określona jest równaniem
-4x+by+c=0.
Podaj liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 2.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10941
Podpunkt 2.1 (1 pkt)
Dana jest funkcja liniowa określona wzorem
g(x)=(\sqrt{10}+\sqrt{5})x-5
.
Miejscem zerowym funkcji g jest liczba
\frac{\sqrt{5}-\sqrt{10}}{......}.
Podaj brakującą liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10912
Podpunkt 3.1 (0.8 pkt)
Wyznacz przedział tych wszystkich wartości m, dla których funkcja f(x)=\left(-2m-\frac{3}{2}\right)x-m
jest rosnąca.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A.-7
B.5
C.0
D.-\infty
E.-3
F.+\infty
Zadanie 4.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10921
Podpunkt 4.1 (1 pkt)
» Wykresy funkcji f(x)=-4x-mx-3 i
y=4x+7 nie mają punktów wspólnych.
Wyznacz m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Zadanie 5.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10737
Podpunkt 5.1 (0.8 pkt)
« Dana jest funkcja określona wzorem f(x)=\frac{3}{5}x-4.
Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.
Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A.3
B.-\infty
C.+\infty
D.-3
E.-5
F.5
Zadanie 6.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20333
Podpunkt 6.1 (1 pkt)
« Wykres funkcji rosnącej g(x)=(4m+4)x+8m-2 nie
przechodzi przez drugą ćwiartkę układu współrzędnych. Wyznacz zbiór wszystkich możliwych wartości
parametru m\in\mathbb{R}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich z konców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największy z wszystkich konców liczbowych
tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 7.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20844
Podpunkt 7.1 (1 pkt)
« Punkt K=(-2,6) należy do wykresu funkcji
liniowej określonej wzorem f(x)=(-5-m)x+4.
Wyznacz m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wykresy funkcji f i funkcji określonej wzorem
h(x)=2-2x przecinają oś
Ox w tym samym punkcie.
Podaj m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Zadanie 8.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20298
Podpunkt 8.1 (1 pkt)
« Funkcja liniowa f określona jest wzorem
f(x)=mx-n. Wiadomo, że
f(-6)=4, oraz, że do wykresu funkcji
f należy punkt P=(6,7).
Wyznacz m.
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Wyznacz n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 9.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20310
Podpunkt 9.1 (2 pkt)
Rozwiąż równanie
\frac{5x-4}{-6x+2}=2
.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 10.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20304
Podpunkt 10.1 (1 pkt)
« Punkt P=(0,4) jest punktem przecięcia się
prostych k i l.
Prosta k wraz z osiami układu ogranicza trójkąt
o polu równym 18, a prosta
l trójkąt o polu równym 34.
Oblicz pole trójkąta, którego wierzchołkami są: punkt
P oraz punkty przecięcia obu prostych z osią
Ox.
Podaj najmniejsze możliwe pole powierzchni tego trójkąta.
Odpowiedź:
P_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu
współrzędnych Ox.
Podaj najmniejszą liczbe spęłniającą tę nierówność.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Najmniejszą liczbę spęłniającą tę nierówność zapisz w postaci ułamka
nieskracalnego o dodatnim mianowniku.
Podaj mianownik tego ułamka.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-30035
Podpunkt 12.1 (1 pkt)
« Koszt dostarczenia przesyłki pocztą kurierską w danym mieście wynosił
5 zł, a poza granicami miasta 10 zł. W ciągu tygodnia jeden kurier dostarcza
średnio 3000 przesyłek, przy czym 90\% tych przesyłek dostarcza poza granice
miasta.
Oblicz, jaki tygodniowy zysk miała firma kurierska zatrudniająca 10 kurierów,
jeśli jej tygodniowe koszty były następujące: na reklamę firma przeznaczała
25\% przychodów, a na płace 8200 zł (zysk = przychód - koszty).
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Oblicz, o ile złotych podwyższono cenę za jedną przesyłkę poza miasto, jeśli przychód
tygodniowy po tej podwyżce był równy 798000.00 zł.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
O ile procent zwiększył się tygodniowy zysk firmy po podwyższeniu opłaty za
przesyłki poza granice miasta o kwotę z punktu b). Wynik podaj z dokładnością do 1%.
Odpowiedź:
[\%]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat