Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 435/608 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkty
A=(-9,18) i
B=(6,-7) należą do prostej o równaniu
5x+by+c=0 .
Wyznacz liczby b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcje liniowe określone wzorami
f(x)=\frac{6}{7}x-5 oraz
g(x)=mx+2 mają wspólne miejsce zerowe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 82/137 [59%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Funkcja liniowa określona wzorem
f(x)=ax+b jest malejąca i ma
miejsce zerowe
\frac{\sqrt{47}-7}{2} .
Wynika z tego, że:
Odpowiedzi:
A. a > 0 \wedge b \lessdot 0
B. a \lessdot 0 \wedge b < 0
C. a \lessdot 0 \wedge b > 0
D. a > 0 \wedge b > 0
Zadanie 4. 1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Proste
p i
q są
równoległe, a punkt
O(0,0) leży pomiędzy nimi.
Zatem:
Odpowiedzi:
A. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0
B. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
C. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0
D. a\cdot m > 0 \ \wedge\ b\cdot n > 0
Zadanie 5. 1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%]
Rozwiąż
Podpunkt 5.1 (0.8 pkt)
Zbiorem wszystkich rozwiązań nierówności
\left(\sqrt{108}-\frac{52}{5}\right)(9+7x) > 0 jest pewien przedział.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -7
B. 2
C. +\infty
D. -4
E. 5
F. -\infty
Zadanie 6. 2 pkt ⋅ Numer: pp-20307 ⋅ Poprawnie: 44/104 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Funkcja liniowa określona wzorem
g(x)=ax+b spełnia warunki:
\begin{cases}
g(-2)=24 \\
g(x)\lessdot 0 \iff x\in(2,+\infty)
\end{cases}
.
Podaj a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20844 ⋅ Poprawnie: 112/328 [34%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Punkt
K=(-2,6) należy do wykresu funkcji
liniowej określonej wzorem
f(x)=(10-m)x+4 .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Wykresy funkcji
f i funkcji określonej wzorem
h(x)=2-2x przecinają oś
Ox w tym samym punkcie.
Podaj m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20298 ⋅ Poprawnie: 218/624 [34%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Funkcja liniowa
f określona jest wzorem
f(x)=mx-n . Wiadomo, że
f(-1)=-8 , oraz, że do wykresu funkcji
f należy punkt
P=(8,1) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/85 [28%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Do wykresu nie stałej funkcji liniowej
h(x)=bx-5ab
należy punkt
P=(b, 25a^2-5ab) oraz
h(b-5a)\neq 75a^2 .
Oblicz wartość ilorazu \frac{a}{b} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20303 ⋅ Poprawnie: 87/135 [64%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Zależność temperatury w skali Fahrenheita
\ ^{\circ}{F}
od temperatury w skali Celsjusza
\ ^{\circ}{C} wyraża
wzór
f(c)=32+1,8\cdot c , gdzie
f – temperatura w skali Fahrenheita, zaś
c – temperatura w skali Celsjusza.
Oblicz, w jakiej temperaturze w skali Fahrenheita zażywasz kąpieli, jeśli
termometr wskazuje, że temperatura wody wynosi wtedy
49^{\circ}C .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
W czajniku znajduje się woda o temperaturze
139^{\circ}F .
Jaką temperaturę w stopniach Celsjusza ma ta woda?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30043 ⋅ Poprawnie: 25/99 [25%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dana jest funkcja
f(x)=6x+6 , której dziedziną
jest zbiór rozwiązań nierówności
(9x-3)(3+9x)\leqslant (9x-5)^2 . Wyznacz
ZW_f .
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Ile liczb naturalnych należy do tego zbioru wartości?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30056 ⋅ Poprawnie: 26/66 [39%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Z miejscowości
A wyjechał autobus osobowy i dotarł
do miejscowości
B po
t godzinach jazdy. Godzinę póżniej od autobusu
osobowego na tę samą trasę wyjechał autobus pospieszny i dotarł do miejscowości
B o godzinę wcześniej niż autobus osobowy.
Po ilu godzinach swojej jazdy autobus pospieszny wyprzedził autobus osobowy?
Dane
t=13
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż