Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 515/715 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(3,4) i Q=(8,1).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcje liniowe określone wzorami f(x)=\frac{3}{7}x-5 oraz g(x)=mx+2 mają wspólne miejsce zerowe.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10891 ⋅ Poprawnie: 83/139 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa f(x)=\frac{\left(121-m^2\right)}{4}x-9 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p, a ilość liczb całkowitych należących do rozwiązania jest równa q.

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10889 ⋅ Poprawnie: 39/62 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla której z podanych wartości m funkcja liniowa określona wzorem f(x)=-49x+m^2-9+m^4 x jest malejąca:
Odpowiedzi:
A. m=-2\sqrt{7} B. m=\sqrt{7}+1
C. m=-\frac{\sqrt{7}}{7} D. m=7
Zadanie 5.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=\frac{8}{9}x+1.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -8 B. 9
C. -\infty D. -9
E. +\infty F. 8
Zadanie 6.  2 pkt ⋅ Numer: pp-20334 ⋅ Poprawnie: 31/131 [23%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 «« Zbadaj monotoniczność funkcji f(x)=(4-\sqrt{7}m)x+2 dla m=\frac{1}{2}\sqrt{7}-1.

O ile rośnie lub maleje wartość tej funkcji jeśli argument rośnie o 1?

Odpowiedź:
\frac{a+b\sqrt{c}}{d}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20844 ⋅ Poprawnie: 112/328 [34%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Punkt K=(-2,6) należy do wykresu funkcji liniowej określonej wzorem f(x)=(5-m)x+4.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wykresy funkcji f i funkcji określonej wzorem h(x)=2-2x przecinają oś Ox w tym samym punkcie.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20298 ⋅ Poprawnie: 222/629 [35%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Funkcja liniowa f określona jest wzorem f(x)=mx-n. Wiadomo, że f(2)=-1, oraz, że do wykresu funkcji f należy punkt P=(7,-6).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż równanie \frac{-10x-2}{-3x-10}=\frac{2}{3} .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20303 ⋅ Poprawnie: 87/135 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Zależność temperatury w skali Fahrenheita \ ^{\circ}{F} od temperatury w skali Celsjusza \ ^{\circ}{C} wyraża wzór f(c)=32+1,8\cdot c, gdzie f – temperatura w skali Fahrenheita, zaś c – temperatura w skali Celsjusza.

Oblicz, w jakiej temperaturze w skali Fahrenheita zażywasz kąpieli, jeśli termometr wskazuje, że temperatura wody wynosi wtedy 46^{\circ}C.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 W czajniku znajduje się woda o temperaturze 128^{\circ}F.

Jaką temperaturę w stopniach Celsjusza ma ta woda?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30043 ⋅ Poprawnie: 25/99 [25%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dana jest funkcja f(x)=5x+4, której dziedziną jest zbiór rozwiązań nierówności (2x-3)(3+2x)\leqslant (2x-5)^2. Wyznacz ZW_f.

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Ile liczb naturalnych należy do tego zbioru wartości?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30037 ⋅ Poprawnie: 100/232 [43%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 Wypożyczenie skutera śnieżnego kosztuje 61 zł dziennie plus dodatkowo 1,5 złotego za każdy przejechany nim kilometr. Funkcja y=f(n)=an+b opisuje zależność pomiędzy ilością przejechanych kilometrów a kosztem wypożyczenia skutera na pięć kolejnych dni.

Podaj a+b.

Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Kamil dysponuje kwotą 860.00 zł i zamierza wypożyczyć skuter na pięć dni.

Ile kilometrów może w tym czasie przejechać wypożyczonym skutertem?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm