Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 433/606 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkty
A=(3,-2) i
B=(-9,18) należą do prostej o równaniu
5x+by+c=0 .
Wyznacz liczby b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11503 ⋅ Poprawnie: 661/948 [69%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcje liniowe określone wzorami
f(x)=\frac{5}{7}x-5 oraz
g(x)=mx+2 mają wspólne miejsce zerowe.
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10749 ⋅ Poprawnie: 118/142 [83%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja
f opisana jest wzorem:
f(x)=-\frac{3}{7}x+3 . Jeśli argument funkcji
f wzrośnie o
5 , to wartość
tej funkcji:
Odpowiedzi:
A. wzrośnie o \frac{15}{7}
B. zmaleje o \frac{15}{7}
C. zmaleje o \frac{18}{7}
D. zmaleje o \frac{12}{7}
Zadanie 4. 1 pkt ⋅ Numer: pp-10908 ⋅ Poprawnie: 91/133 [68%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Funkcja liniowa
f(x)=(2-m)x+(m+1)^2-5 jest rosnąca
i jej wykres przecina oś rzędnych w punkcie
P=(0,31) .
Wyznacz m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10938 ⋅ Poprawnie: 121/181 [66%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
A=(m^2+1,-3) należy do wykresu funkcji liniowej
określonej wzorem
g(x)=97-2x :
Odpowiedzi:
A. tylko dla m=-14
B. dla m\in\emptyset
C. dla m\in\mathbb{R}
D. tylko dla m=-7
E. dla m\in\{-7,7\}
F. tylko dla m=7
Zadanie 6. 2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 201/649 [30%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dane są punkty
A=(9, 93) i
B=(4, 43) . Wyznacz równanie prostej
AB .
Podaj współczynnik kierunkowy tej prostej.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz odciętą punktu przecięcia prostej
AB
z osią
Ox .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20846 ⋅ Poprawnie: 143/220 [65%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Liczba
b spełnia równanie
(b+5)(b-1)=(b+2)(b+11)-3(b+3) .
Podaj miejsce zerowe funkcji f(x)=-5x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20298 ⋅ Poprawnie: 211/615 [34%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Funkcja liniowa
f określona jest wzorem
f(x)=mx-n . Wiadomo, że
f(6)=-7 , oraz, że do wykresu funkcji
f należy punkt
P=(2,-3) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Rozwiąż równanie
2x-2=\sqrt{2}x+3 .
Podaj rozwiązanie.
Odpowiedź:
Zadanie 10. 2 pkt ⋅ Numer: pp-20301 ⋅ Poprawnie: 150/366 [40%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Trójkąt ograniczony osiami układu i prostą o równaniu
-4y=8x+8 ma pole powierzchni równe
P .
Oblicz P .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30049 ⋅ Poprawnie: 38/68 [55%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Rozwiąż nierówność
\frac{(x-1)^2}{3}-\frac{27}{2}<=\frac{16}{9}x-\frac{1-x}{2}\cdot \left(\frac{2}{3}x+3\right) .
Podaj najmniejszą liczbe spęłniającą tę nierówność.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Najmniejszą liczbę spęłniającą tę nierówność zapisz w postaci ułamka
nieskracalnego o dodatnim mianowniku.
Podaj mianownik tego ułamka.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12. 4 pkt ⋅ Numer: pp-30056 ⋅ Poprawnie: 26/66 [39%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Z miejscowości
A wyjechał autobus osobowy i dotarł
do miejscowości
B po
t godzinach jazdy. Godzinę póżniej od autobusu
osobowego na tę samą trasę wyjechał autobus pospieszny i dotarł do miejscowości
B o godzinę wcześniej niż autobus osobowy.
Po ilu godzinach swojej jazdy autobus pospieszny wyprzedził autobus osobowy?
Dane
t=6
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż