Nierówności \left(6+\sqrt{37}\right)\left(\sqrt{37}-6\right)x > 2x-4
oraz (2-3x)^2+3x\leqslant (3x+2)^2-5x+4 są spełnione
przez każdą liczbę z pewnego przedziału.
Podaj lewy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A.-\infty
B.-2
C.0
D.4
Zadanie 6.2 pkt ⋅ Numer: pp-20333 ⋅ Poprawnie: 108/288 [37%]
« Wykres funkcji rosnącej g(x)=(6m+2)x+7m-5 nie
przechodzi przez drugą ćwiartkę układu współrzędnych. Wyznacz zbiór wszystkich możliwych wartości
parametru m\in\mathbb{R}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich z konców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największy z wszystkich konców liczbowych
tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20844 ⋅ Poprawnie: 112/328 [34%]
« Punkt P=(0,4) jest punktem przecięcia się
prostych k i l.
Prosta k wraz z osiami układu ogranicza trójkąt
o polu równym 30, a prosta
l trójkąt o polu równym 44.
Oblicz pole trójkąta, którego wierzchołkami są: punkt
P oraz punkty przecięcia obu prostych z osią
Ox.
Podaj najmniejsze możliwe pole powierzchni tego trójkąta.
Odpowiedź:
P_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu
współrzędnych Ox.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30048 ⋅ Poprawnie: 14/58 [24%]