Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 224/426 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(-6,-3) i B=(-1,2) określona jest równaniem 5x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10795 ⋅ Poprawnie: 453/761 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja liniowa określona wzorem y=mx+n, wartości ujemne przyjmuje tylko w przedziale (-4,+\infty). Wykres tej funkcji przecina oś Oy w punkcie (0,-6).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10906 ⋅ Poprawnie: 54/153 [35%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=-5x-4a przecina oś Oy poniżej punktu (0,7) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj ten z końców tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 7 B. -\infty
C. 2 D. -3
E. 6 F. +\infty
Zadanie 4.  1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji liniowej y=2^{12}x-2^{19} przechodzi przez ćwiartki układu współrzędnych:
Odpowiedzi:
A. I, II i III B. I, III i IV
C. II, III, IV D. I, II i IV
Zadanie 5.  1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od 16. Do jej wykresu należy punkt \left(4,\frac{3}{2}\right).

Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20334 ⋅ Poprawnie: 31/131 [23%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 «« Zbadaj monotoniczność funkcji f(x)=(4-\sqrt{7}m)x+2 dla m=\frac{3}{2}\sqrt{7}-1.

O ile rośnie lub maleje wartość tej funkcji jeśli argument rośnie o 1?

Odpowiedź:
\frac{a+b\sqrt{c}}{d}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20845 ⋅ Poprawnie: 54/94 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Liczba b spełnia równanie (b+2-\sqrt{2})^2-(b+2-2\sqrt{2})^2=-6.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=-7x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20298 ⋅ Poprawnie: 211/615 [34%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Funkcja liniowa f określona jest wzorem f(x)=mx-n. Wiadomo, że f(-8)=5, oraz, że do wykresu funkcji f należy punkt P=(2,-5).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Rozwiąż równanie \frac{-6x-4}{8x+8}=3 .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20304 ⋅ Poprawnie: 14/75 [18%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Punkt P=(0,4) jest punktem przecięcia się prostych k i l. Prosta k wraz z osiami układu ogranicza trójkąt o polu równym 12, a prosta l trójkąt o polu równym 22. Oblicz pole trójkąta, którego wierzchołkami są: punkt P oraz punkty przecięcia obu prostych z osią Ox.

Podaj najmniejsze możliwe pole powierzchni tego trójkąta.

Odpowiedź:
P_{min}= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu współrzędnych Ox.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30047 ⋅ Poprawnie: 40/168 [23%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Dana jest funkcja f(x)=-3x-\frac{3}{2}. Dla jakich argumentów funkcja przyjmuje wartości ujemne?

Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Rozwiąż nierówność f(x+1)\geqslant 3x-6.

Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30036 ⋅ Poprawnie: 18/64 [28%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Pewna firma zajmuje się dystrybucją filmów w internecie. Korzystając z usług tej firmy, za obejrzenie filmu bez kopiowania go na twardy dysk należało zapłacić 4 zł, zaś za skopiowanie go na twardy dysk 8 zł. W ciągu tygodnia film pobrało 2500 internautów, przy czym 90\% skopiowało film na twardy dysk.

Oblicz, jaki tygodniowy zysk miała firma z dystrybucji filmu, jeśli koszty działalności były równe 33\% przychodu (zysk = przychód - koszty).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
 Oblicz, o ile zł należało podwyższyć cenę kopiowania filmu na twardy dysk, aby przychód z tego tygodnia był równy 39250.00 zł?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 O ile procent zwiększyłby się zysk tej firmy z danego tygodnia, gdyby opłata za kopiowanie filmu była wyższa o kwotę z punktu b), a wysokość kosztów z punktu a) w złotych, by się nie zmieniła? Wynik podaj z dokładnością do 1%.
Odpowiedź:
[\%]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm