Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 171/287 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Punkty
A=(-4,15) i
B=(0,11) należą do prostej
k .
Prosta
l symetryczna do prostej
k względem początku układu współrzędnych
ma równanie
y=ax+b .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 226/428 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta wyznaczona przez punkty
A=(-2,1) i
B=(5,5) określona jest równaniem
4x+by+c=0 .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10880 ⋅ Poprawnie: 102/185 [55%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wyznacz zbiór tych wszystkich wartości parametru
m , dla których
funkcja liniowa określona wzorem
f(x)=\left(36-m^2\right)x+2 jest malejąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10910 ⋅ Poprawnie: 407/672 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Do wykresu funkcji liniowej
y=ax+b należą punkty
(3, 0) i
(0, -6) .
Oceń prawdziwość poniższych koniunkcji:
(znak \wedge oznacza spójnik "i")
Odpowiedzi:
T/N : a \lessdot 0 \wedge b < 0
T/N : a \lessdot 0 \wedge b > 0
T/N : a > 0 \wedge b \lessdot 0
Zadanie 5. 1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%]
Rozwiąż
Podpunkt 5.1 (0.8 pkt)
Dana jest funkcja liniowa
g(x)=-\frac{2}{9}+\frac{1}{3}x
.
Funkcja
g przyjmuje wartości ujemne dla argumentów
należących do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty
B. -7
C. -3
D. 1
E. 6
F. -\infty
Zadanie 6. 2 pkt ⋅ Numer: pp-20847 ⋅ Poprawnie: 156/295 [52%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Liczba
b spełnia równanie
(b+2)(2-b)+(1+b)^2=0 .
Podaj miejsce zerowe funkcji określonej wzorem f(x)=5x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20449 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Wyznacz współczynnik kierunkowy
m prostej przechodzącej przez
punkty
A=(3-\sqrt{5},-6-4\sqrt{5}) oraz
B=(\sqrt{5}-2,3) .
Podaj m .
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu nie stałej funkcji liniowej
h(x)=bx-3ab
należy punkt
P=(b, 9a^2-3ab) oraz
h(b-3a)\neq 27a^2 .
Oblicz wartość ilorazu \frac{a}{b} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20300 ⋅ Poprawnie: 121/174 [69%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» Suma cyfr liczby dwucyfrowej jest równa
8 .
Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o
54 mniejszą.
Wyznacz tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30053 ⋅ Poprawnie: 38/222 [17%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Funkcja
f określona jest wzorem
f(x)=-\sqrt{3}x+am+b .
Wyznacz te wartości m , dla których miejscem zerowym
funkcji jest liczba \sqrt{3} .
Dane
a=4
b=-8
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Dla jakich wartosci
m wykres przecina oś
Oy w punkcie o rzędnej
2 ?
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (2 pkt)
Dla
m=-2 wyznacz współrzędne punktów przecięcia
wykresu z osiami układu.
Ile wynosi suma czterech otrzymanych współrzędnych?
Odpowiedź:
Rozwiąż