Funkcja f jest określona wzorem
f(x)=4x-\frac{1}{2} dla każdej liczby z przedziału
\langle 0,4\rangle. Zbiorem wartości tej funkcji jest przedział
\langle p, q\rangle.
Podaj liczby p i q.
Odpowiedzi:
p
=
(dwie liczby całkowite)
q
=
(dwie liczby całkowite)
Zadanie 3.1 pkt ⋅ Numer: pp-10917 ⋅ Poprawnie: 97/189 [51%]
« Wykres funkcji rosnącej g(x)=(9m-4)x+3m-2 nie
przechodzi przez drugą ćwiartkę układu współrzędnych. Wyznacz zbiór wszystkich możliwych wartości
parametru m\in\mathbb{R}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich z konców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największy z wszystkich konców liczbowych
tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0
«« Funkcja f określona jest wzorem:
f(x)=
\begin{cases}
|x| \text{, dla } x \leqslant 14 \\
x-2 \text{, dla } x > 14
\end{cases}.
Funkcja g określona jest wzorem
g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań
równania g(x)=m w zależności od parametru
m.
Podaj największą możliwą wartość m, dla której równanie to ma
trzy rozwiązania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszą wartość m, dla której równanie
ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/85 [28%]
« Dwie maszyny mają wytworzyć 3192 sztuk produktu.
Pierwsza z nich w ciągu dnia wytwarza x sztuk tego
produktu, druga y sztuk, przy czym x \lessdot y.
Przy takim tempie produkcji
zlecenie zostałoby wykonane w 19 dni. Jednak po
pierwszym dniu maszyna pierwsza uległa awarii i pozostałe do wytworzenia sztuki
wykonała maszyna druga, ale cały proces produkcji zajął
28 dni.
Podaj x.
Odpowiedź:
x=(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj y.
Odpowiedź:
y=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat