Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 515/715 [72%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do prostej o równaniu y=ax+b należą punkty P=(-5,-4) i Q=(8,5).

Wyznacz współczynnik a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 115/192 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-2x oblicz h\left(\frac{3\sqrt{3}-3}{2}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest pierwsza T/N : liczba ta jest niewymierna
Zadanie 3.  1 pkt ⋅ Numer: pp-10893 ⋅ Poprawnie: 460/598 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Które z poniższych wzorów opisują funkcję malejącą?
Odpowiedzi:
T/N : y=\left(6-2\sqrt{6}\right)x+\sqrt{6} T/N : y=\left(7-4\sqrt{3}\right)x+2\sqrt{3}
T/N : y=\left(9-6\sqrt{2}\right)x+\sqrt{2}  
Zadanie 4.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(-\frac{5}{7}-\frac{\sqrt{3}}{6}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\frac{10}{21} B. \frac{10}{21}
C. +\infty D. -\infty
E. \frac{5}{7} F. -\frac{20}{7}
Zadanie 5.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=-\frac{2}{5}x-5.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 2 B. +\infty
C. 5 D. -\infty
E. -5 F. -2
Zadanie 6.  2 pkt ⋅ Numer: pp-20334 ⋅ Poprawnie: 31/131 [23%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 «« Zbadaj monotoniczność funkcji f(x)=(4-\sqrt{2}m)x+2 dla m=\frac{5}{2}\sqrt{2}-1.

O ile rośnie lub maleje wartość tej funkcji jeśli argument rośnie o 1?

Odpowiedź:
\frac{a+b\sqrt{c}}{d}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20449 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wyznacz współczynnik kierunkowy m prostej przechodzącej przez punkty A=(-5-\sqrt{5},-3-4\sqrt{5}) oraz B=(\sqrt{5}-2,3).

Podaj m.

Odpowiedź:
m= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/85 [28%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx+4ab należy punkt P=(b, 16a^2+4ab) oraz h(b+4a)\neq 48a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20328 ⋅ Poprawnie: 206/372 [55%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Kinga i Kamil są małżeństwem od 24 lat. W dniu ślubu mieli razem 54 lata, z za 1 lat Kinga będzie dwa razy starsza niż w dniu ślubu.

Ile lat ma teraz Kinga?

Odpowiedź:
wiek\ Kingi= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30048 ⋅ Poprawnie: 14/58 [24%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność\frac{x-13}{2}-\frac{20-x}{3}\cdot \left(-\frac{37}{2}+\frac{3}{2}x\right)\leqslant \frac{(x-16)^2}{2}+3\frac{1}{6}.

Ile liczb postaci 3p+1, gdzie p\in\mathbb{N}, należy do zbioru rozwiazań tej nierówności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm