Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 558/824 [67%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=mx+n. Funkcja ta spełnia warunek f(-6)=-2, a jej wykres zawiera punkt (1,6).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10809 ⋅ Poprawnie: 98/159 [61%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Punkt o współrzędnych (9-3t, 2t-8), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem 2x+by=c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 147/264 [55%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=2x-6a przecina oś Oy powyżej punktu (0,11) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 2 B. -\infty
C. -3 D. -1
E. 1 F. +\infty
Zadanie 4.  1 pkt ⋅ Numer: pp-10889 ⋅ Poprawnie: 39/63 [61%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla której z podanych wartości m funkcja liniowa określona wzorem f(x)=-4x+m^2-9+m^4 x jest malejąca:
Odpowiedzi:
A. m=2 B. m=\sqrt{2}+1
C. m=-\frac{\sqrt{2}}{2} D. m=-2\sqrt{2}
Zadanie 5.  1 pkt ⋅ Numer: pp-10801 ⋅ Poprawnie: 162/256 [63%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Dana jest funkcja f(x)=-6x-2.

Zbiór rozwiązań nierówności 1\leqslant f(x)\leqslant 9 jest przedziałem \langle a, b\rangle.

Odpowiedź:
a=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 202/650 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane są punkty A=(-1, -14) i B=(-10, -185). Wyznacz równanie prostej AB.

Podaj współczynnik kierunkowy tej prostej.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz odciętą punktu przecięcia prostej AB z osią Ox.
Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Funkcja f określona jest wzorem: f(x)= \begin{cases} |x| \text{, dla } x \leqslant 1 \\ x-2 \text{, dla } x > 1 \end{cases}. Funkcja g określona jest wzorem g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań równania g(x)=m w zależności od parametru m.

Podaj największą możliwą wartość m, dla której równanie to ma trzy rozwiązania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszą wartość m, dla której równanie ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Rozwiąż równanie \frac{10x+3}{-x-10}=9 .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20328 ⋅ Poprawnie: 206/372 [55%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Kinga i Kamil są małżeństwem od 24 lat. W dniu ślubu mieli razem 54 lata, z za 1 lat Kinga będzie dwa razy starsza niż w dniu ślubu.

Ile lat ma teraz Kinga?

Odpowiedź:
wiek\ Kingi= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30045 ⋅ Poprawnie: 42/113 [37%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dana jest funkcja f(x)=6x-4, której dziedziną jest zbiór rozwiązań nierówności (3\sqrt{5}-x)^2\geqslant (x-2\sqrt{5})^2. Wyznacz ZW_f.

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Ile liczb naturalnych należy do tego zbioru wartości?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm