Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10807 ⋅ Poprawnie: 513/692 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Współczynnik kierunkowy prostej, do której należą punkty A=(46,58) i B=(25,16) jest równy m.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 115/192 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-5x oblicz h\left(\frac{3\sqrt{3}-9}{5}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest niewymierna T/N : liczba ta jest pierwsza
Zadanie 3.  1 pkt ⋅ Numer: pp-10920 ⋅ Poprawnie: 78/133 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja określona wzorem f(x)=\left(m^2+6m\right)x+5 spełnia warunek f(-6)=f(6).

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10884 ⋅ Poprawnie: 141/181 [77%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=2^{12}x+2^{17}.

Prosta będąca wykresem funkcji f nie przechodzi przez ćwiartkę układu:

Odpowiedzi:
A. czwartą B. trzecią
C. pierwszą D. drugą
Zadanie 5.  1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do wykresu funkcji y=-\frac{4}{5}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(\frac{3}{2},-\frac{11}{5}\right) B. \left(\frac{7}{2},-\frac{29}{5}\right)
C. \left(\frac{9}{2},-\frac{28}{5}\right) D. \left(\frac{5}{2},-6\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20844 ⋅ Poprawnie: 112/328 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Punkt K=(-2,6) należy do wykresu funkcji liniowej określonej wzorem f(x)=(-1-m)x+4.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wykresy funkcji f i funkcji określonej wzorem h(x)=2-2x przecinają oś Ox w tym samym punkcie.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Funkcja f określona jest wzorem: f(x)= \begin{cases} |x| \text{, dla } x \leqslant 7 \\ x-2 \text{, dla } x > 7 \end{cases}. Funkcja g określona jest wzorem g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań równania g(x)=m w zależności od parametru m.

Podaj największą możliwą wartość m, dla której równanie to ma trzy rozwiązania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszą wartość m, dla której równanie ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx-4ab należy punkt P=(b, 16a^2-4ab) oraz h(b-4a)\neq 48a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20839 ⋅ Poprawnie: 17/35 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Prosta k jest równoległa do prostej AB wyznaczonej przez punkty punkty A=(1,-5) i B=(-2,4) i przecina oś Oy w punkcie o rzędnej równej 2. Dla jakiej wartości parametru k punkt C=(-2k-2, 5k+10) należy do prostej k?

Podaj k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30042 ⋅ Poprawnie: 54/113 [47%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Funkcja liniowa g(x)=(-m+5)x+4 spełnia warunek g\left(\frac{1}{2}\right)=0.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Rozwiąż nierówność g(x) \lessdot h(x), gdzie h(x)=4-5x. Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm