Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10813 ⋅ Poprawnie: 211/389 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Proste pokazane na rysunku
określone są równaniami 2x-4y=a, 3x+y=b i 3x+8y=c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 170/286 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(-1,3) i B=(-3,5) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=2x-4a przecina oś Oy powyżej punktu (0,6) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 0 B. 3
C. -2 D. -1
E. +\infty F. -\infty
Zadanie 4.  1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji liniowej y=2^{10}x+2^{17} przechodzi przez ćwiartki układu współrzędnych:
Odpowiedzi:
A. II, III, IV B. I, III i IV
C. I, II i III D. I, II i IV
Zadanie 5.  1 pkt ⋅ Numer: pr-10099 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
» Na rysunku
przedstawiony jest zbiór wszystkich punktów płaszczyzny, których współrzędne spełniają nierówność:
Odpowiedzi:
A. x+y-2\leqslant 0 B. x-y+2\leqslant 0
C. x+y+2\geqslant 0 D. x-y-2\geqslant 0
Zadanie 6.  2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 201/649 [30%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane są punkty A=(6, 126) i B=(4, 86). Wyznacz równanie prostej AB.

Podaj współczynnik kierunkowy tej prostej.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz odciętą punktu przecięcia prostej AB z osią Ox.
Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Funkcja f określona jest wzorem: f(x)= \begin{cases} |x| \text{, dla } x \leqslant 1 \\ x-2 \text{, dla } x > 1 \end{cases}. Funkcja g określona jest wzorem g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań równania g(x)=m w zależności od parametru m.

Podaj największą możliwą wartość m, dla której równanie to ma trzy rozwiązania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszą wartość m, dla której równanie ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx+5ab należy punkt P=(b, 25a^2+5ab) oraz h(b+5a)\neq 75a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20303 ⋅ Poprawnie: 87/134 [64%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Zależność temperatury w skali Fahrenheita \ ^{\circ}{F} od temperatury w skali Celsjusza \ ^{\circ}{C} wyraża wzór f(c)=32+1,8\cdot c, gdzie f – temperatura w skali Fahrenheita, zaś c – temperatura w skali Celsjusza.

Oblicz, w jakiej temperaturze w skali Fahrenheita zażywasz kąpieli, jeśli termometr wskazuje, że temperatura wody wynosi wtedy 36^{\circ}C.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
 W czajniku znajduje się woda o temperaturze 100^{\circ}F.

Jaką temperaturę w stopniach Celsjusza ma ta woda?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30049 ⋅ Poprawnie: 38/68 [55%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność\frac{(x-1)^2}{3}-\frac{41}{2}<=\frac{16}{9}x-\frac{1-x}{2}\cdot \left(\frac{2}{3}x+3\right).

Podaj najmniejszą liczbe spęłniającą tę nierówność.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Najmniejszą liczbę spęłniającą tę nierówność zapisz w postaci ułamka nieskracalnego o dodatnim mianowniku.

Podaj mianownik tego ułamka.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm