Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 273/458 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=-3x-\frac{1}{2} dla każdej liczby z przedziału \langle 3,5\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 662/979 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dana jest funkcja liniowa f(x)=-3x+2.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : funkcja f jest malejąca w zbiorze \mathbb{R} T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{3},1\right)
T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2)  
Zadanie 3.  1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-16\right)x+2 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10884 ⋅ Poprawnie: 141/181 [77%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=2^{18}x-2^{16}.

Prosta będąca wykresem funkcji f nie przechodzi przez ćwiartkę układu:

Odpowiedzi:
A. czwartą B. pierwszą
C. trzecią D. drugą
Zadanie 5.  1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do wykresu funkcji y=\frac{5}{6}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(-\frac{1}{5},-3\right) B. \left(-\frac{6}{5},-5\right)
C. \left(-\frac{11}{5},-3\right) D. \left(\frac{4}{5},-1\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20308 ⋅ Poprawnie: 227/413 [54%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Miejscem zerowym funkcji f(x)=\frac{2-7m}{2}x+2 jest liczba \frac{1}{17}.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Funkcja f określona jest wzorem: f(x)= \begin{cases} |x| \text{, dla } x \leqslant 7 \\ x-2 \text{, dla } x > 7 \end{cases}. Funkcja g określona jest wzorem g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań równania g(x)=m w zależności od parametru m.

Podaj największą możliwą wartość m, dla której równanie to ma trzy rozwiązania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszą wartość m, dla której równanie ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx+1ab należy punkt P=(b, 1a^2+ab) oraz h(b+a)\neq 3a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20300 ⋅ Poprawnie: 121/174 [69%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Suma cyfr liczby dwucyfrowej jest równa 11. Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o 45 mniejszą.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30048 ⋅ Poprawnie: 14/58 [24%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność\frac{x-2}{2}-\frac{9-x}{3}\cdot \left(-2+\frac{3}{2}x\right)\leqslant \frac{(x-5)^2}{2}+3\frac{1}{6}.

Ile liczb postaci 3p+1, gdzie p\in\mathbb{N}, należy do zbioru rozwiazań tej nierówności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj największą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm