Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10809 ⋅ Poprawnie: 98/159 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
« Punkt o współrzędnych
(9-3t, 2t+4) , gdzie
t\in\mathbb{R} , należy do prostej określonej
równaniem
2x+by=c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10809 ⋅ Poprawnie: 98/159 [61%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Punkt o współrzędnych
(9-3t, 2t+4) , gdzie
t\in\mathbb{R} , należy do prostej określonej
równaniem
2x+by=c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 77/140 [55%]
Rozwiąż
Podpunkt 3.1 (0.8 pkt)
Wyznacz przedział tych wszystkich wartości
m , dla których funkcja liniowa
f(x)=\left(-\frac{10}{3}m-3\right)x-m
jest rosnąca.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty
B. 10
C. 12
D. -6
E. 11
F. -\infty
Zadanie 4. 1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Proste
p i
q są
równoległe, a punkt
O(0,0) leży pomiędzy nimi.
Zatem:
Odpowiedzi:
A. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0
B. a\cdot m > 0 \ \wedge\ b\cdot n > 0
C. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0
D. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
Zadanie 5. 1 pkt ⋅ Numer: pp-10939 ⋅ Poprawnie: 101/204 [49%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dla argumentu
x_0 wartości funkcji określonych wzorami
f(x)=4x-3 i
g(x)=x-8
są sobie równe i obie równe
y_0 .
Wyznacz y_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 202/650 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dane są punkty
A=(-1, 16) i
B=(10, -83) . Wyznacz równanie prostej
AB .
Podaj współczynnik kierunkowy tej prostej.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz odciętą punktu przecięcia prostej
AB
z osią
Ox .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20032 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=ax+b . Dla
a=3998
i
b=3999 oblicz
\frac{f(3999)}{3999^2} .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Narysuj w układzie współrzędnych zbiór
A=\left\{(x,y): x\in\langle 1,3\rangle \wedge y=-\frac{1}{2}x+b \wedge b\in\langle -5,1\rangle\right\}
.
Podaj współrzędną y tego punktu należącego do zbioru
A , który jest najbardziej oddalony od początku układu
współrzędnych.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Rozwiąż równanie
\frac{-4x+4}{-x+10}=-6
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20839 ⋅ Poprawnie: 28/47 [59%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Prosta
k jest równoległa do prostej
AB wyznaczonej przez punkty punkty
A=(1,-5) i
B=(-2,4)
i przecina oś
Oy w punkcie o rzędnej równej
2 . Dla jakiej wartości parametru
k punkt
C=(-2k+14, 5k-30)
należy do prostej
k ?
Podaj k .
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30043 ⋅ Poprawnie: 25/99 [25%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Dana jest funkcja
f(x)=5x-1 , której dziedziną
jest zbiór rozwiązań nierówności
(2x-3)(3+2x)\leqslant (2x-9)^2 . Wyznacz
ZW_f .
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Ile liczb naturalnych należy do tego zbioru wartości?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż