Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 171/287 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(-2,11) i B=(0,9) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 435/608 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(-6,13) i B=(0,3) należą do prostej o równaniu 5x+by+c=0.

Wyznacz liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-16\right)x+2 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji liniowej y=2^{21}x-2^{24} przechodzi przez ćwiartki układu współrzędnych:
Odpowiedzi:
A. I, III i IV B. I, II i III
C. II, III, IV D. I, II i IV
Zadanie 5.  1 pkt ⋅ Numer: pp-10929 ⋅ Poprawnie: 57/99 [57%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Wykres funkcji liniowej określonej wzorem y=\frac{1}{10}(x+6)+4m-1 przecina dodatnią półoś Oy wtedy i tylko wtedy, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -11
C. 3 D. -1
E. -\infty F. -12
Zadanie 6.  2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 201/649 [30%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane są punkty A=(-1, 12) i B=(4, 2). Wyznacz równanie prostej AB.

Podaj współczynnik kierunkowy tej prostej.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz odciętą punktu przecięcia prostej AB z osią Ox.
Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20032 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=ax+b. Dla a=2998 i b=2999 oblicz \frac{f(2999)}{2999^2}.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Narysuj w układzie współrzędnych zbiór A=\left\{(x,y): x\in\langle 1,3\rangle \wedge y=-\frac{1}{2}x+b \wedge b\in\langle -5,1\rangle\right\} .

Podaj współrzędną y tego punktu należącego do zbioru A, który jest najbardziej oddalony od początku układu współrzędnych.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Rozwiąż równanie 2x-7=\sqrt{7}x+4.

Podaj rozwiązanie.

Odpowiedź:
x= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20301 ⋅ Poprawnie: 150/366 [40%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Trójkąt ograniczony osiami układu i prostą o równaniu 7y=7x-7 ma pole powierzchni równe P.

Oblicz P.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30057 ⋅ Poprawnie: 57/102 [55%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dwie maszyny mają wytworzyć 4466 sztuk produktu. Pierwsza z nich w ciągu dnia wytwarza x sztuk tego produktu, druga y sztuk, przy czym x \lessdot y. Przy takim tempie produkcji zlecenie zostałoby wykonane w 22 dni. Jednak po pierwszym dniu maszyna pierwsza uległa awarii i pozostałe do wytworzenia sztuki wykonała maszyna druga, ale cały proces produkcji zajął 30 dni.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm