Do wykresu funkcji liniowej f należą punkty
A=(2, 0) i B=(0,1).
Wykres funkcji liniowej g określonej wzorem
g(x)=mx+n jest symetryczny do wykresu
funkcji f względem osi Ox.
Wyznacz współczynniki m i n.
Odpowiedzi:
m
=
(dwie liczby całkowite)
n
=
(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 76/139 [54%]
« Funkcja liniowa f określona wzorem
f(x)=mx+n wartości nieujemne przyjmuje tylko
w przedziale (-\infty, 2\rangle oraz zachodzi
warunek f(-1)=27. Wyznacz wartości współczynników
m i n.
Podaj m.
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0
«« Funkcja f określona jest wzorem:
f(x)=
\begin{cases}
|x| \text{, dla } x \leqslant 5 \\
x-2 \text{, dla } x > 5
\end{cases}.
Funkcja g określona jest wzorem
g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań
równania g(x)=m w zależności od parametru
m.
Podaj największą możliwą wartość m, dla której równanie to ma
trzy rozwiązania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszą wartość m, dla której równanie
ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%]
Zależność temperatury w skali Fahrenheita \ ^{\circ}{F}
od temperatury w skali Celsjusza \ ^{\circ}{C} wyraża
wzór f(c)=32+1,8\cdot c, gdzie
f – temperatura w skali Fahrenheita, zaś
c – temperatura w skali Celsjusza.
Oblicz, w jakiej temperaturze w skali Fahrenheita zażywasz kąpieli, jeśli
termometr wskazuje, że temperatura wody wynosi wtedy
40^{\circ}C.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
W czajniku znajduje się woda o temperaturze
111^{\circ}F.
Jaką temperaturę w stopniach Celsjusza ma ta woda?
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pp-30058 ⋅ Poprawnie: 41/63 [65%]