Wyznacz zbiór tych wszystkich wartości parametru m, dla których
funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{49}\right)x+2401
jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min
=
(dwie liczby całkowite)
max
=
(dwie liczby całkowite)
Zadanie 4.1 pkt ⋅ Numer: pp-10901 ⋅ Poprawnie: 79/140 [56%]
« Wykres funkcji rosnącej g(x)=(5m+2)x+4m-2 nie
przechodzi przez drugą ćwiartkę układu współrzędnych. Wyznacz zbiór wszystkich możliwych wartości
parametru m\in\mathbb{R}.
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich z konców
liczbowych tych przedziałów.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj największy z wszystkich konców liczbowych
tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pr-20450 ⋅ Poprawnie: 0/1 [0%]
« Punkt P=(0,4) jest punktem przecięcia się
prostych k i l.
Prosta k wraz z osiami układu ogranicza trójkąt
o polu równym 34, a prosta
l trójkąt o polu równym 38.
Oblicz pole trójkąta, którego wierzchołkami są: punkt
P oraz punkty przecięcia obu prostych z osią
Ox.
Podaj najmniejsze możliwe pole powierzchni tego trójkąta.
Odpowiedź:
P_{min}=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu
współrzędnych Ox.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pp-30046 ⋅ Poprawnie: 59/199 [29%]