Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10104 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
Na rysunku poniżej przedstawiony jest fragment wykresu funkcji liniowej y=ax+b.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : a > -1 \wedge b > -1 T/N : a \lessdot -1 \wedge b > -1
Zadanie 2.  1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 534/805 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=mx+n. Funkcja ta spełnia warunek f(1)=-6, a jej wykres zawiera punkt (-2,5).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 240/447 [53%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-11-m)x+2m jest malejąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. \frac{1}{11}
C. -\frac{1}{11} D. +\infty
E. \frac{2}{11} F. -\frac{2}{11}
Zadanie 4.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/296 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=3x+\frac{5}{4} i g(x)=9 opisują proste:
Odpowiedzi:
A. przecinające się pod kątem o mierze 90^{\circ} B. równoległe i różne
C. pokrywające się D. przecinające się pod kątem różnym od 90^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pp-10801 ⋅ Poprawnie: 152/244 [62%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Dana jest funkcja f(x)=x-6.

Zbiór rozwiązań nierówności -2\leqslant f(x)\leqslant 8 jest przedziałem \langle a, b\rangle.

Odpowiedź:
a=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 201/649 [30%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane są punkty A=(3, 6) i B=(-8, 50). Wyznacz równanie prostej AB.

Podaj współczynnik kierunkowy tej prostej.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz odciętą punktu przecięcia prostej AB z osią Ox.
Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20450 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dane są funkcje f(x)= \begin{cases} 1\text{, dla }x\leqslant 2 \\ x-3\text{, dla }x > 2 \end{cases} oraz g(x)=-f(-x).

Oblicz 100\cdot \left|g(-\sqrt{5})\cdot g(-\sqrt{3})\cdot g(-\sqrt{2})\right| .

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Rozwiąż równanie 2x-7=\sqrt{7}x+7.

Podaj rozwiązanie.

Odpowiedź:
x= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20299 ⋅ Poprawnie: 60/114 [52%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Suma cyfr liczby dwucyfrowej jest równa 13. Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o 45 większą.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30053 ⋅ Poprawnie: 38/222 [17%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=-\sqrt{3}x+am+b.

Wyznacz te wartości m, dla których miejscem zerowym funkcji jest liczba \sqrt{3}.

Dane
a=2
b=-7
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Dla jakich wartosci m wykres przecina oś Oy w punkcie o rzędnej 2?
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (2 pkt)
 Dla m=-2 wyznacz współrzędne punktów przecięcia wykresu z osiami układu.

Ile wynosi suma czterech otrzymanych współrzędnych?

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm