Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 434/607 [71%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkty A=(-3,8) i B=(3,-2) należą do prostej o równaniu 5x+by+c=0.

Wyznacz liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pr-10104 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 2.1 (1 pkt)
Na rysunku poniżej przedstawiony jest fragment wykresu funkcji liniowej y=ax+b.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : a > -1 \wedge b \lessdot -1 T/N : a \lessdot -1 \wedge b \lessdot -1
Zadanie 3.  1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 82/137 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Funkcja liniowa określona wzorem f(x)=ax+b jest malejąca i ma miejsce zerowe \frac{\sqrt{98}-10}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a \lessdot 0 \wedge b > 0 B. a \lessdot 0 \wedge b < 0
C. a > 0 \wedge b > 0 D. a > 0 \wedge b \lessdot 0
Zadanie 4.  1 pkt ⋅ Numer: pp-10882 ⋅ Poprawnie: 217/415 [52%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=\left(-\frac{2}{5}+2m\right)x+5 jest rosnąca, gdy m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 3 B. -10
C. -5 D. -\infty
E. +\infty F. -9
Zadanie 5.  1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do wykresu funkcji y=-\frac{7}{2}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(\frac{16}{7},-10\right) B. \left(-\frac{5}{7},1\right)
C. \left(\frac{9}{7},-7\right) D. \left(\frac{2}{7},-5\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20307 ⋅ Poprawnie: 44/104 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Funkcja liniowa określona wzorem g(x)=ax+b spełnia warunki: \begin{cases} g(-2)=24 \\ g(x)\lessdot 0 \iff x\in(2,+\infty) \end{cases} .

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20449 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wyznacz współczynnik kierunkowy m prostej przechodzącej przez punkty A=(4-\sqrt{5},2-4\sqrt{5}) oraz B=(\sqrt{5}-2,3).

Podaj m.

Odpowiedź:
m= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx-4ab należy punkt P=(b, 16a^2-4ab) oraz h(b-4a)\neq 48a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20839 ⋅ Poprawnie: 17/35 [48%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Prosta k jest równoległa do prostej AB wyznaczonej przez punkty punkty A=(1,-5) i B=(-2,4) i przecina oś Oy w punkcie o rzędnej równej 2. Dla jakiej wartości parametru k punkt C=(-2k+18, 5k-40) należy do prostej k?

Podaj k.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30047 ⋅ Poprawnie: 40/168 [23%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 «« Dana jest funkcja f(x)=-2x+\frac{1}{3}. Dla jakich argumentów funkcja przyjmuje wartości ujemne?

Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Rozwiąż nierówność f(x+1)\geqslant 3x-5.

Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm