Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10818 ⋅ Poprawnie: 189/332 [56%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji liniowej
f należą punkty
A=(2, 0) i
B=(0,5) .
Wykres funkcji liniowej
g określonej wzorem
g(x)=mx+n jest symetryczny do wykresu
funkcji
f względem osi
Ox .
Wyznacz współczynniki m i n .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10818 ⋅ Poprawnie: 189/332 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Do wykresu funkcji liniowej
f należą punkty
A=(2, 0) i
B=(0,5) .
Wykres funkcji liniowej
g określonej wzorem
g(x)=mx+n jest symetryczny do wykresu
funkcji
f względem osi
Ox .
Wyznacz współczynniki m i n .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 243/364 [66%]
Rozwiąż
Podpunkt 3.1 (0.8 pkt)
Funkcja liniowa określona wzorem
f(x)=5+3x-12mx jest malejąca, wtedy i tylko wtedy,
gdy liczba
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 2
B. 5
C. +\infty
D. 1
E. -7
F. -8
Zadanie 4. 1 pkt ⋅ Numer: pp-10882 ⋅ Poprawnie: 217/415 [52%]
Rozwiąż
Podpunkt 4.1 (0.8 pkt)
Funkcja liniowa określona wzorem
f(x)=\left(4+\frac{5}{2}m\right)x+5
jest rosnąca, gdy
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -11
B. -6
C. +\infty
D. -\infty
E. 4
F. 10
Zadanie 5. 1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 68/122 [55%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wykres funkcji
f(x)=3x-4m przecina oś
Oy w punkcie o rzędnej
18 .
Wykres funkcji
g(x)=-8x-6m przecina oś
Ox w punkcie o odciętej
......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20309 ⋅ Poprawnie: 230/297 [77%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Oblicz miejsce zerowe funkcji
f(x)=
\begin{cases}
-4+2x \text{, dla } x\leqslant 2 \\
x \text{, dla } x > 2
\end{cases}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20032 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=ax+b . Dla
a=698
i
b=699 oblicz
\frac{f(699)}{699^2} .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Narysuj w układzie współrzędnych zbiór
A=\left\{(x,y): x\in\langle 1,3\rangle \wedge y=-\frac{1}{2}x+b \wedge b\in\langle -7,1\rangle\right\}
.
Podaj współrzędną y tego punktu należącego do zbioru
A , który jest najbardziej oddalony od początku układu
współrzędnych.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu nie stałej funkcji liniowej
h(x)=bx+3ab
należy punkt
P=(b, 9a^2+3ab) oraz
h(b+3a)\neq 27a^2 .
Oblicz wartość ilorazu \frac{a}{b} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20299 ⋅ Poprawnie: 60/114 [52%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Suma cyfr liczby dwucyfrowej jest równa
9 .
Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o
27 większą.
Wyznacz tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30049 ⋅ Poprawnie: 38/68 [55%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiąż nierówność
\frac{(x-1)^2}{3}-\frac{27}{2}<=\frac{16}{9}x-\frac{1-x}{2}\cdot \left(\frac{2}{3}x+3\right) .
Podaj najmniejszą liczbe spęłniającą tę nierówność.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Najmniejszą liczbę spęłniającą tę nierówność zapisz w postaci ułamka
nieskracalnego o dodatnim mianowniku.
Podaj mianownik tego ułamka.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż