Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 171/287 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(1,1) i B=(4,-2) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 127/217 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dane są funkcje f(x)=-2x-3 oraz g(x)=f(x-3)+2. Zapisz wzór funkcji g w postaci g(x)=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10900 ⋅ Poprawnie: 124/199 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
T/N : y=\frac{\sqrt{8}}{8}x T/N : y=\frac{x}{\sqrt{8}}
T/N : y=\frac{\sqrt{x}}{x+6}  
Zadanie 4.  1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
« Proste p i q są równoległe, a punkt O(0,0) leży pomiędzy nimi.

Zatem:

Odpowiedzi:
A. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0 B. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
C. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0 D. a\cdot m > 0 \ \wedge\ b\cdot n > 0
Zadanie 5.  1 pkt ⋅ Numer: pp-10934 ⋅ Poprawnie: 84/157 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 O funkcji f określonej wzorem f(x)=\frac{9-m}{m+5}x+2 wiadomo, że f(-1)=0.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20307 ⋅ Poprawnie: 44/104 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Funkcja liniowa określona wzorem g(x)=ax+b spełnia warunki: \begin{cases} g(-2)=24 \\ g(x)\lessdot 0 \iff x\in(2,+\infty) \end{cases} .

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20032 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=ax+b. Dla a=7998 i b=7999 oblicz \frac{f(7999)}{7999^2}.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Narysuj w układzie współrzędnych zbiór A=\left\{(x,y): x\in\langle 1,3\rangle \wedge y=-\frac{1}{2}x+b \wedge b\in\langle -6,1\rangle\right\} .

Podaj współrzędną y tego punktu należącego do zbioru A, który jest najbardziej oddalony od początku układu współrzędnych.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/85 [28%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx-4ab należy punkt P=(b, 16a^2-4ab) oraz h(b-4a)\neq 48a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20299 ⋅ Poprawnie: 60/114 [52%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Suma cyfr liczby dwucyfrowej jest równa 15. Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o 27 większą.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30057 ⋅ Poprawnie: 57/103 [55%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dwie maszyny mają wytworzyć 4440 sztuk produktu. Pierwsza z nich w ciągu dnia wytwarza x sztuk tego produktu, druga y sztuk, przy czym x \lessdot y. Przy takim tempie produkcji zlecenie zostałoby wykonane w 24 dni. Jednak po pierwszym dniu maszyna pierwsza uległa awarii i pozostałe do wytworzenia sztuki wykonała maszyna druga, ale cały proces produkcji zajął 38 dni.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm