Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 435/608 [71%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkty
A=(-3,8) i
B=(3,-2) należą do prostej o równaniu
5x+by+c=0 .
Wyznacz liczby b i c .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 664/981 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja liniowa
f(x)=-3x+2 .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2)
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{1}{3},1\right)
T/N : funkcja f jest malejąca w zbiorze \mathbb{R}
Zadanie 3. 1 pkt ⋅ Numer: pp-10749 ⋅ Poprawnie: 118/142 [83%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Funkcja
f opisana jest wzorem:
f(x)=-\frac{7}{5}x+3 . Jeśli argument funkcji
f wzrośnie o
4 , to wartość
tej funkcji:
Odpowiedzi:
A. wzrośnie o \frac{28}{5}
B. zmaleje o 7
C. zmaleje o \frac{21}{5}
D. zmaleje o \frac{28}{5}
Zadanie 4. 1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wykres funkcji liniowej
y=2^{16}x+2^{23} przechodzi przez
ćwiartki układu współrzędnych:
Odpowiedzi:
A. I, II i III
B. I, II i IV
C. II, III, IV
D. I, III i IV
Zadanie 5. 1 pkt ⋅ Numer: pp-10939 ⋅ Poprawnie: 101/204 [49%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dla argumentu
x_0 wartości funkcji określonych wzorami
f(x)=-3x+3 i
g(x)=-6x-6
są sobie równe i obie równe
y_0 .
Wyznacz y_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20847 ⋅ Poprawnie: 156/296 [52%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Liczba
b spełnia równanie
(b+2)(2-b)+(1+b)^2=0 .
Podaj miejsce zerowe funkcji określonej wzorem f(x)=-3x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20450 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Dane są funkcje
f(x)=
\begin{cases}
-1\text{, dla }x\leqslant 2 \\
x+1\text{, dla }x > 2
\end{cases}
oraz
g(x)=-f(-x) .
Oblicz
100\cdot \left|g(-\sqrt{5})\cdot g(-\sqrt{3})\cdot g(-\sqrt{2})\right|
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/85 [28%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu nie stałej funkcji liniowej
h(x)=bx+2ab
należy punkt
P=(b, 4a^2+2ab) oraz
h(b+2a)\neq 12a^2 .
Oblicz wartość ilorazu \frac{a}{b} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20303 ⋅ Poprawnie: 87/135 [64%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Zależność temperatury w skali Fahrenheita
\ ^{\circ}{F}
od temperatury w skali Celsjusza
\ ^{\circ}{C} wyraża
wzór
f(c)=32+1,8\cdot c , gdzie
f – temperatura w skali Fahrenheita, zaś
c – temperatura w skali Celsjusza.
Oblicz, w jakiej temperaturze w skali Fahrenheita zażywasz kąpieli, jeśli
termometr wskazuje, że temperatura wody wynosi wtedy
40^{\circ}C .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
W czajniku znajduje się woda o temperaturze
113^{\circ}F .
Jaką temperaturę w stopniach Celsjusza ma ta woda?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30059 ⋅ Poprawnie: 99/146 [67%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Suma dwóch liczb wynosi
s . Jeśli jedną z nich
zwiększymy o
20 %, a drugą zmniejszymy o
10 %, to ich suma zwiększy się o
p . Jakie to liczby?
Podaj mniejszą z tych liczb.
Dane
s=219
p=18
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
Podaj większą z tych liczb.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż