Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 125/214 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dane są funkcje f(x)=-2x-3 oraz g(x)=f(x-1)+2. Zapisz wzór funkcji g w postaci g(x)=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 170/286 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(2,7) i B=(-3,12) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11429 ⋅ Poprawnie: 413/556 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=-\frac{1}{3}x-2 i przecina oś Oy w punkcie P.

Które z poniższych zdań są prawdziwe?

Odpowiedzi:
T/N : funkcja ta jest malejąca i P=\left(0,-2\right) T/N : funkcja ta jest malejąca i P=\left(0,\frac{2}{3}\right)
T/N : funkcja ta jest malejąca i P=\left(0,2\right)  
Zadanie 4.  1 pkt ⋅ Numer: pp-10901 ⋅ Poprawnie: 79/140 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
A. y=\frac{9}{x} B. y=6x^2
C. y=\frac{\sqrt{3}x}{3} D. y=\frac{3}{\sqrt{3}x}
Zadanie 5.  1 pkt ⋅ Numer: pp-10925 ⋅ Poprawnie: 66/91 [72%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres funkcji liniowej f(x)=\left(\frac{1}{2}m-6\right)x+\frac{1}{2}m-1 zawiera punkt M=(0,1).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20844 ⋅ Poprawnie: 112/328 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Punkt K=(-2,6) należy do wykresu funkcji liniowej określonej wzorem f(x)=(2-m)x+4.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wykresy funkcji f i funkcji określonej wzorem h(x)=2-2x przecinają oś Ox w tym samym punkcie.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Funkcja f określona jest wzorem: f(x)= \begin{cases} |x| \text{, dla } x \leqslant 10 \\ x-2 \text{, dla } x > 10 \end{cases}. Funkcja g określona jest wzorem g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań równania g(x)=m w zależności od parametru m.

Podaj największą możliwą wartość m, dla której równanie to ma trzy rozwiązania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszą wartość m, dla której równanie ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Rozwiąż równanie \frac{10x+4}{8x+9}=\frac{3}{2} .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20304 ⋅ Poprawnie: 14/75 [18%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Punkt P=(0,4) jest punktem przecięcia się prostych k i l. Prosta k wraz z osiami układu ogranicza trójkąt o polu równym 32, a prosta l trójkąt o polu równym 48. Oblicz pole trójkąta, którego wierzchołkami są: punkt P oraz punkty przecięcia obu prostych z osią Ox.

Podaj najmniejsze możliwe pole powierzchni tego trójkąta.

Odpowiedź:
P_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu współrzędnych Ox.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30042 ⋅ Poprawnie: 54/113 [47%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Funkcja liniowa g(x)=(m+3)x-4 spełnia warunek g\left(\frac{1}{2}\right)=0.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Rozwiąż nierówność g(x) \lessdot h(x), gdzie h(x)=-6+5x. Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm