Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10103 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f, przy czym f(0)=-2 i f(-4)=0.

Wykres funkcji określonej wzorem g(x)=ax+b jest symetryczny do wykresu funkcji f względem prostej o równaniu y=x.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10815 ⋅ Poprawnie: 534/805 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja liniowa f określona jest wzorem f(x)=mx+n. Funkcja ta spełnia warunek f(-5)=4, a jej wykres zawiera punkt (-4,-3).

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10912 ⋅ Poprawnie: 99/174 [56%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja f(x)=\left(-2m-\frac{7}{3}\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 4 B. +\infty
C. -\infty D. -7
E. -6 F. -12
Zadanie 4.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(-\frac{7}{9}-\frac{\sqrt{3}}{3}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. -\frac{14}{9}
C. -\frac{7}{27} D. \frac{7}{27}
E. \frac{7}{18} F. \frac{7}{6}
Zadanie 5.  1 pkt ⋅ Numer: pp-10737 ⋅ Poprawnie: 117/206 [56%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 « Dana jest funkcja określona wzorem f(x)=\frac{7}{4}x+3.

Funkcja ta wartości ujemne przyjmuje dla argumentów z pewnego przedziału.

Podaj ten koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. +\infty B. -7
C. 7 D. -4
E. 4 F. -\infty
Zadanie 6.  2 pkt ⋅ Numer: pp-20845 ⋅ Poprawnie: 54/94 [57%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Liczba b spełnia równanie (b+2-\sqrt{2})^2-(b+2-2\sqrt{2})^2=-6.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=-9x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Funkcja f określona jest wzorem: f(x)= \begin{cases} |x| \text{, dla } x \leqslant 2 \\ x-2 \text{, dla } x > 2 \end{cases}. Funkcja g określona jest wzorem g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań równania g(x)=m w zależności od parametru m.

Podaj największą możliwą wartość m, dla której równanie to ma trzy rozwiązania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszą wartość m, dla której równanie ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Rozwiąż równanie \frac{9x-6}{6x+5}=-\frac{7}{2} .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20299 ⋅ Poprawnie: 60/114 [52%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Suma cyfr liczby dwucyfrowej jest równa 9. Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o 63 większą.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30059 ⋅ Poprawnie: 99/146 [67%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Suma dwóch liczb wynosi s. Jeśli jedną z nich zwiększymy o 20%, a drugą zmniejszymy o 10%, to ich suma zwiększy się o p. Jakie to liczby?

Podaj mniejszą z tych liczb.

Dane
s=247
p=14
Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (2 pkt)
 Podaj większą z tych liczb.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm