Do wykresu funkcji liniowej f należą punkty
A=(5, 0) i B=(0,7).
Wykres funkcji liniowej g określonej wzorem
g(x)=mx+n jest symetryczny do wykresu
funkcji f względem osi Ox.
Wyznacz współczynniki m i n.
Odpowiedzi:
m
=
(dwie liczby całkowite)
n
=
(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-10897 ⋅ Poprawnie: 60/101 [59%]
Wyznacz te wartości parametru m, dla których funkcja liniowa
f(x)=(12-m^2)x+5 jest rosnąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Liczba p jest najmniejszym z końców liczbowych tych przedziałów,
a liczba q jest ilością liczb całkowitych należących do
rozwiązania.
Podaj liczbę p.
Odpowiedź:
p=\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
Podaj liczbę q.
Odpowiedź:
q=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-10919 ⋅ Poprawnie: 219/321 [68%]
Zależność temperatury w skali Fahrenheita \ ^{\circ}{F}
od temperatury w skali Celsjusza \ ^{\circ}{C} wyraża
wzór f(c)=32+1,8\cdot c, gdzie
f – temperatura w skali Fahrenheita, zaś
c – temperatura w skali Celsjusza.
Oblicz, w jakiej temperaturze w skali Fahrenheita zażywasz kąpieli, jeśli
termometr wskazuje, że temperatura wody wynosi wtedy
46^{\circ}C.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (1 pkt)
W czajniku znajduje się woda o temperaturze
128^{\circ}F.
Jaką temperaturę w stopniach Celsjusza ma ta woda?
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10.4 pkt ⋅ Numer: pp-30056 ⋅ Poprawnie: 26/66 [39%]
« Z miejscowości A wyjechał autobus osobowy i dotarł
do miejscowości B po
t godzinach jazdy. Godzinę póżniej od autobusu
osobowego na tę samą trasę wyjechał autobus pospieszny i dotarł do miejscowości
B o godzinę wcześniej niż autobus osobowy.
Po ilu godzinach swojej jazdy autobus pospieszny wyprzedził autobus osobowy?
Dane
t=11
Odpowiedź:
t\ [h]=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat