Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pr-10103 ⋅ Poprawnie: 1/2 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f, przy czym f(0)=-2 i f(-4)=0.

Wykres funkcji określonej wzorem g(x)=ax+b jest symetryczny do wykresu funkcji f względem prostej o równaniu y=x.

Wyznacz współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 289/476 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=2x-\frac{1}{2} dla każdej liczby z przedziału \langle 0,6\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10906 ⋅ Poprawnie: 54/153 [35%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=-5x-5a przecina oś Oy poniżej punktu (0,9) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj ten z końców tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 8 B. 1
C. -6 D. -5
E. -\infty F. +\infty
Zadanie 4.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(-\frac{3}{4}-\frac{\sqrt{3}}{9}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. \frac{27}{8}
C. -\frac{27}{8} D. \frac{3}{4}
E. \frac{9}{8} F. +\infty
Zadanie 5.  1 pkt ⋅ Numer: pp-10926 ⋅ Poprawnie: 88/132 [66%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt M=\left(\frac{1}{2},7\right) należy do wykresu funkcji liniowej określonej wzorem f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20333 ⋅ Poprawnie: 108/289 [37%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wykres funkcji rosnącej g(x)=(6m+7)x+6m+5 nie przechodzi przez drugą ćwiartkę układu współrzędnych. Wyznacz zbiór wszystkich możliwych wartości parametru m\in\mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich z konców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największy z wszystkich konców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20450 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dane są funkcje f(x)= \begin{cases} -1\text{, dla }x\leqslant 2 \\ x+1\text{, dla }x > 2 \end{cases} oraz g(x)=-f(-x).

Oblicz 100\cdot \left|g(-\sqrt{5})\cdot g(-\sqrt{3})\cdot g(-\sqrt{2})\right| .

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Rozwiąż równanie \frac{10x-4}{10x-8}=10 .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20300 ⋅ Poprawnie: 121/175 [69%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » Suma cyfr liczby dwucyfrowej jest równa 7. Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o 9 mniejszą.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30036 ⋅ Poprawnie: 18/64 [28%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Pewna firma zajmuje się dystrybucją filmów w internecie. Korzystając z usług tej firmy, za obejrzenie filmu bez kopiowania go na twardy dysk należało zapłacić 4 zł, zaś za skopiowanie go na twardy dysk 8 zł. W ciągu tygodnia film pobrało 1900 internautów, przy czym 80\% skopiowało film na twardy dysk.

Oblicz, jaki tygodniowy zysk miała firma z dystrybucji filmu, jeśli koszty działalności były równe 25\% przychodu (zysk = przychód - koszty).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Oblicz, o ile zł należało podwyższyć cenę kopiowania filmu na twardy dysk, aby przychód z tego tygodnia był równy 30400.00 zł?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.3 (2 pkt)
 O ile procent zwiększyłby się zysk tej firmy z danego tygodnia, gdyby opłata za kopiowanie filmu była wyższa o kwotę z punktu b), a wysokość kosztów z punktu a) w złotych, by się nie zmieniła? Wynik podaj z dokładnością do 1%.
Odpowiedź:
[\%]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm