Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 301/462 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wykres funkcji liniowej y=\frac{1}{2}x+8 przecina osie układu współrzędnych w punktach A i B.

Oblicz pole powierzchni trójkąta AOB.

Odpowiedź:
P_{AOB}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 171/287 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(0,3) i B=(-1,4) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{9}\right)x+81 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10889 ⋅ Poprawnie: 39/62 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dla której z podanych wartości m funkcja liniowa określona wzorem f(x)=-9x+m^2-9+m^4 x jest malejąca:
Odpowiedzi:
A. m=-2\sqrt{3} B. m=\sqrt{3}+1
C. m=3 D. m=-\frac{\sqrt{3}}{3}
Zadanie 5.  1 pkt ⋅ Numer: pp-10801 ⋅ Poprawnie: 152/244 [62%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Dana jest funkcja f(x)=-5x-5.

Zbiór rozwiązań nierówności -8\leqslant f(x)\leqslant 8 jest przedziałem \langle a, b\rangle.

Odpowiedź:
a=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj liczbę b.
Odpowiedź:
b=\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20847 ⋅ Poprawnie: 156/295 [52%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 « Liczba b spełnia równanie (b+2)(2-b)+(1+b)^2=0.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=-7x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20449 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wyznacz współczynnik kierunkowy m prostej przechodzącej przez punkty A=(-1-\sqrt{5},3-4\sqrt{5}) oraz B=(\sqrt{5}-2,3).

Podaj m.

Odpowiedź:
m= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx+4ab należy punkt P=(b, 16a^2+4ab) oraz h(b+4a)\neq 48a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20301 ⋅ Poprawnie: 150/366 [40%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Trójkąt ograniczony osiami układu i prostą o równaniu 6y=4x-8 ma pole powierzchni równe P.

Oblicz P.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30035 ⋅ Poprawnie: 31/98 [31%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Koszt dostarczenia przesyłki pocztą kurierską w danym mieście wynosił 5 zł, a poza granicami miasta 10 zł. W ciągu tygodnia jeden kurier dostarcza średnio 2800 przesyłek, przy czym 80\% tych przesyłek dostarcza poza granice miasta.

Oblicz, jaki tygodniowy zysk miała firma kurierska zatrudniająca 10 kurierów, jeśli jej tygodniowe koszty były następujące: na reklamę firma przeznaczała 25\% przychodów, a na płace 9500 zł (zysk = przychód - koszty).

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Oblicz, o ile złotych podwyższono cenę za jedną przesyłkę poza miasto, jeśli przychód tygodniowy po tej podwyżce był równy 655200.00 zł.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.3 (2 pkt)
 O ile procent zwiększył się tygodniowy zysk firmy po podwyższeniu opłaty za przesyłki poza granice miasta o kwotę z punktu b). Wynik podaj z dokładnością do 1%.
Odpowiedź:
[\%]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm