Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-10814 ⋅ Poprawnie: 266/526 [50%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Na rysunku przedstawiono wykres prostej:
Prosta symetryczna do tej prostej względem osi
Ox
określona jest równaniem
ax+by=4 .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-10809 ⋅ Poprawnie: 98/159 [61%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Punkt o współrzędnych
(9-3t, 2t-6) , gdzie
t\in\mathbb{R} , należy do prostej określonej
równaniem
2x+by=c .
Wyznacz współczynniki b i c .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wyznacz zbiór tych wszystkich wartości parametru
m , dla których
funkcja liniowa określona wzorem
f(x)=\left(m^2-\frac{1}{9}\right)x+81
jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10909 ⋅ Poprawnie: 98/225 [43%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wskaż prostą prostopadłą do osi
Ox :
Odpowiedzi:
A. -4y+2=0
B. 2y=x
C. -4x+2=0
D. x-2=y
E. -2x+y=0
F. 2y=0
Zadanie 5. 1 pkt ⋅ Numer: pp-10930 ⋅ Poprawnie: 99/132 [75%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcje określone wzorami
f(x)=\frac{1}{2}x+4 i
g(x)=3x-3 przyjmują równą wartość dla argumentu
x_0 .
Wyznacz x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20840 ⋅ Poprawnie: 156/279 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Funkcja liniowa
f określona wzorem
f(x)=mx+n wartości nieujemne przyjmuje tylko
w przedziale
(-\infty, 4\rangle oraz zachodzi
warunek
f(-4)=24 . Wyznacz wartości współczynników
m i
n .
Podaj m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pr-20032 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 7.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=ax+b . Dla
a=798
i
b=799 oblicz
\frac{f(799)}{799^2} .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Narysuj w układzie współrzędnych zbiór
A=\left\{(x,y): x\in\langle 1,3\rangle \wedge y=-\frac{1}{2}x+b \wedge b\in\langle -5,1\rangle\right\}
.
Podaj współrzędną y tego punktu należącego do zbioru
A , który jest najbardziej oddalony od początku układu
współrzędnych.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu nie stałej funkcji liniowej
h(x)=bx+4ab
należy punkt
P=(b, 16a^2+4ab) oraz
h(b+4a)\neq 48a^2 .
Oblicz wartość ilorazu \frac{a}{b} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20305 ⋅ Poprawnie: 94/131 [71%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Miara kąta wewnętrznego wielokąta foremnego jest równa
160 stopnie.
Ile wierzchołków ma ten wielokąt?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30049 ⋅ Poprawnie: 38/68 [55%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Rozwiąż nierówność
\frac{(x-1)^2}{3}-\frac{31}{2}<=\frac{16}{9}x-\frac{1-x}{2}\cdot \left(\frac{2}{3}x+3\right) .
Podaj najmniejszą liczbe spęłniającą tę nierówność.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
Najmniejszą liczbę spęłniającą tę nierówność zapisz w postaci ułamka
nieskracalnego o dodatnim mianowniku.
Podaj mianownik tego ułamka.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż