Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10808 ⋅ Poprawnie: 198/382 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na rysunku przedstawiono wykres funkcji y=f(x):
Wskaż wzór tej funkcji:
Odpowiedzi:
A. y=-\sqrt{3}x+1 B. y=-\frac{\sqrt{3}}{3}x+1
C. y=\sqrt{3}x+1 D. y=\frac{1}{\sqrt{3}}x+1
Zadanie 2.  1 pkt ⋅ Numer: pp-10813 ⋅ Poprawnie: 211/390 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Proste pokazane na rysunku
określone są równaniami 2x-4y=a, 3x+y=b i 3x+8y=c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 192/248 [77%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{49}\right)x+2401 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10901 ⋅ Poprawnie: 79/140 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
A. y=\frac{\sqrt{3}x}{3} B. y=6x^2
C. y=\frac{3}{\sqrt{3}x} D. y=\frac{9}{x}
Zadanie 5.  1 pkt ⋅ Numer: pp-10931 ⋅ Poprawnie: 132/190 [69%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do wykresu funkcji y=\frac{3}{4}x-4 należy punkt o współrzędnych:
Odpowiedzi:
A. \left(\frac{5}{3},\frac{1}{4}\right) B. \left(\frac{14}{3},\frac{3}{2}\right)
C. \left(\frac{8}{3},-2\right) D. \left(\frac{11}{3},-\frac{1}{4}\right)
Zadanie 6.  2 pkt ⋅ Numer: pp-20333 ⋅ Poprawnie: 108/289 [37%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wykres funkcji rosnącej g(x)=(5m+2)x+4m-2 nie przechodzi przez drugą ćwiartkę układu współrzędnych. Wyznacz zbiór wszystkich możliwych wartości parametru m\in\mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich z konców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największy z wszystkich konców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20450 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dane są funkcje f(x)= \begin{cases} 1\text{, dla }x\leqslant 2 \\ x-3\text{, dla }x > 2 \end{cases} oraz g(x)=-f(-x).

Oblicz 100\cdot \left|g(-\sqrt{5})\cdot g(-\sqrt{3})\cdot g(-\sqrt{2})\right| .

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Rozwiąż równanie 2x-8=2\sqrt{2}x+7.

Podaj rozwiązanie.

Odpowiedź:
x= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20304 ⋅ Poprawnie: 14/75 [18%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Punkt P=(0,4) jest punktem przecięcia się prostych k i l. Prosta k wraz z osiami układu ogranicza trójkąt o polu równym 34, a prosta l trójkąt o polu równym 38. Oblicz pole trójkąta, którego wierzchołkami są: punkt P oraz punkty przecięcia obu prostych z osią Ox.

Podaj najmniejsze możliwe pole powierzchni tego trójkąta.

Odpowiedź:
P_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu współrzędnych Ox.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30046 ⋅ Poprawnie: 59/199 [29%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Dana jest funkcja f(x)=-\frac{3}{7}x+4. Naszkicuj jej wykres. Dla jakich argumentów funkcja ta przyjmuje wartości dodatnie?

Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Rozwiąż nierówność f(1-x)\leqslant 2x+2.

Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm