Do wykresu funkcji liniowej f należą punkty
A=(6, 0) i B=(0,7).
Wykres funkcji liniowej g określonej wzorem
g(x)=mx+n jest symetryczny do wykresu
funkcji f względem osi Ox.
Wyznacz współczynniki m i n.
Odpowiedzi:
m
=
(dwie liczby całkowite)
n
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 663/980 [67%]
«« Funkcja f określona jest wzorem:
f(x)=
\begin{cases}
|x| \text{, dla } x \leqslant 15 \\
x-2 \text{, dla } x > 15
\end{cases}.
Funkcja g określona jest wzorem
g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań
równania g(x)=m w zależności od parametru
m.
Podaj największą możliwą wartość m, dla której równanie to ma
trzy rozwiązania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Podaj najmniejszą wartość m, dla której równanie
ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%]
« Koszt dostarczenia przesyłki pocztą kurierską w danym mieście wynosił
5 zł, a poza granicami miasta 10 zł. W ciągu tygodnia jeden kurier dostarcza
średnio 2600 przesyłek, przy czym 85\% tych przesyłek dostarcza poza granice
miasta.
Oblicz, jaki tygodniowy zysk miała firma kurierska zatrudniająca 10 kurierów,
jeśli jej tygodniowe koszty były następujące: na reklamę firma przeznaczała
25\% przychodów, a na płace 8000 zł (zysk = przychód - koszty).
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Oblicz, o ile złotych podwyższono cenę za jedną przesyłkę poza miasto, jeśli przychód
tygodniowy po tej podwyżce był równy 682500.00 zł.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 10.3 (2 pkt)
O ile procent zwiększył się tygodniowy zysk firmy po podwyższeniu opłaty za
przesyłki poza granice miasta o kwotę z punktu b). Wynik podaj z dokładnością do 1%.
Odpowiedź:
[\%]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat