Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10806 ⋅ Poprawnie: 280/548 [51%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja liniowa f(x)=(m+2)x-(m+1)^2+87 jest malejąca i jej wykres przecina oś rzędnych w punkcie P=(0,-57).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 289/476 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=-3x-\frac{1}{2} dla każdej liczby z przedziału \langle 0,5\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10902 ⋅ Poprawnie: 242/449 [53%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-8-m)x+2m jest malejąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą całkowitą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\frac{1}{8} B. +\infty
C. \frac{1}{4} D. -\frac{1}{4}
E. -\infty F. \frac{1}{8}
Zadanie 4.  1 pkt ⋅ Numer: pp-10878 ⋅ Poprawnie: 216/407 [53%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Funkcja określona wzorem f(x)=\left(-\frac{3}{7}-\frac{\sqrt{3}}{5}m\right)x+2 jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą niewymierną.

Odpowiedź:
\frac{k\sqrt{n}}{p}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. \frac{5}{14} B. \frac{15}{14}
C. -\frac{5}{21} D. -\frac{15}{14}
E. -\infty F. +\infty
Zadanie 5.  1 pkt ⋅ Numer: pp-10938 ⋅ Poprawnie: 122/182 [67%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt A=(m^2+1,-3) należy do wykresu funkcji liniowej określonej wzorem g(x)=31-2x:
Odpowiedzi:
A. dla m\in\emptyset B. tylko dla m=-4
C. dla m\in\mathbb{R} D. tylko dla m=-8
E. dla m\in\{-4,4\} F. tylko dla m=4
Zadanie 6.  2 pkt ⋅ Numer: pp-20844 ⋅ Poprawnie: 112/328 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Punkt K=(-2,6) należy do wykresu funkcji liniowej określonej wzorem f(x)=(-7-m)x+4.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wykresy funkcji f i funkcji określonej wzorem h(x)=2-2x przecinają oś Ox w tym samym punkcie.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pr-20449 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Wyznacz współczynnik kierunkowy m prostej przechodzącej przez punkty A=(-4-\sqrt{5},-4-4\sqrt{5}) oraz B=(\sqrt{5}-2,3).

Podaj m.

Odpowiedź:
m= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Rozwiąż równanie 2x-3=\sqrt{3}x+5.

Podaj rozwiązanie.

Odpowiedź:
x= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20304 ⋅ Poprawnie: 14/75 [18%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Punkt P=(0,4) jest punktem przecięcia się prostych k i l. Prosta k wraz z osiami układu ogranicza trójkąt o polu równym 14, a prosta l trójkąt o polu równym 18. Oblicz pole trójkąta, którego wierzchołkami są: punkt P oraz punkty przecięcia obu prostych z osią Ox.

Podaj najmniejsze możliwe pole powierzchni tego trójkąta.

Odpowiedź:
P_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu współrzędnych Ox.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30058 ⋅ Poprawnie: 41/63 [65%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 » Pan Kowalski wykonuje pewną pracę w ciągu p godzin. Tę samą pracę pan Nowak wykonuje w ciągu q godzin.

Ile godzin potrzeba, aby panowie pracując razem wykonali tę samą pracę.

Dane
p=18
q=9
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm