Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10807 ⋅ Poprawnie: 530/709 [74%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Współczynnik kierunkowy prostej, do której należą punkty A=(64,19) i B=(67,58) jest równy m.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 288/475 [60%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=-3x-\frac{1}{2} dla każdej liczby z przedziału \langle -2,1\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10903 ⋅ Poprawnie: 211/346 [60%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Funkcja liniowa f(x)=(-6-4m)x+1-6m jest rosnąca, gdy parametr m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -1 B. 11
C. +\infty D. -4
E. -5 F. -\infty
Zadanie 4.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/297 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=x+\frac{5}{4} i g(x)=8 opisują proste:
Odpowiedzi:
A. pokrywające się B. przecinające się pod kątem różnym od 90^{\circ}
C. przecinające się pod kątem o mierze 90^{\circ} D. równoległe i różne
Zadanie 5.  1 pkt ⋅ Numer: pr-10099 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
» Na rysunku
przedstawiony jest zbiór wszystkich punktów płaszczyzny, których współrzędne spełniają nierówność:
Odpowiedzi:
A. x-y-2\geqslant 0 B. x-y+2\leqslant 0
C. x+y+2\geqslant 0 D. x+y-2\leqslant 0
Zadanie 6.  2 pkt ⋅ Numer: pp-20309 ⋅ Poprawnie: 230/297 [77%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Oblicz miejsce zerowe funkcji f(x)= \begin{cases} 5+2x \text{, dla } x\leqslant 2 \\ x \text{, dla } x > 2 \end{cases} .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20450 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dane są funkcje f(x)= \begin{cases} -2\text{, dla }x\leqslant 2 \\ x+2\text{, dla }x > 2 \end{cases} oraz g(x)=-f(-x).

Oblicz 100\cdot \left|g(-\sqrt{5})\cdot g(-\sqrt{3})\cdot g(-\sqrt{2})\right| .

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/85 [28%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx+4ab należy punkt P=(b, 16a^2+4ab) oraz h(b+4a)\neq 48a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20305 ⋅ Poprawnie: 94/131 [71%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Miara kąta wewnętrznego wielokąta foremnego jest równa 162 stopnie.

Ile wierzchołków ma ten wielokąt?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30045 ⋅ Poprawnie: 42/113 [37%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Dana jest funkcja f(x)=x+3, której dziedziną jest zbiór rozwiązań nierówności (2\sqrt{5}-x)^2\geqslant (x+\sqrt{5})^2. Wyznacz ZW_f.

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Ile liczb naturalnych należy do tego zbioru wartości?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm