Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10944 ⋅ Poprawnie: 273/458 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja f jest określona wzorem f(x)=-3x-\frac{1}{2} dla każdej liczby z przedziału \langle 0,4\rangle. Zbiorem wartości tej funkcji jest przedział \langle p, q\rangle.

Podaj liczby p i q.

Odpowiedzi:
p= (dwie liczby całkowite)

q= (dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-10802 ⋅ Poprawnie: 433/606 [71%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkty A=(0,3) i B=(6,-7) należą do prostej o równaniu 5x+by+c=0.

Wyznacz liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10916 ⋅ Poprawnie: 115/207 [55%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja liniowa y=ax+b ma ujemne miejsce zerowe, a jej wykres przecina oś Oy powyżej punktu (0,0).

Wówczas:

Odpowiedzi:
A. a > 0 \wedge b > 0 B. a > 0 \wedge b \lessdot 0
C. a \lessdot 0 \wedge b > 0 D. a \lessdot 0 \wedge b \lessdot 0
Zadanie 4.  1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji liniowej y=2^{20}x+2^{25} przechodzi przez ćwiartki układu współrzędnych:
Odpowiedzi:
A. I, III i IV B. I, II i III
C. I, II i IV D. II, III, IV
Zadanie 5.  1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 «« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od 12. Do jej wykresu należy punkt \left(5,\frac{7}{2}\right).

Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.

Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20309 ⋅ Poprawnie: 230/297 [77%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Oblicz miejsce zerowe funkcji f(x)= \begin{cases} -3+2x \text{, dla } x\leqslant 2 \\ x \text{, dla } x > 2 \end{cases} .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Funkcja f określona jest wzorem: f(x)= \begin{cases} |x| \text{, dla } x \leqslant 6 \\ x-2 \text{, dla } x > 6 \end{cases}. Funkcja g określona jest wzorem g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań równania g(x)=m w zależności od parametru m.

Podaj największą możliwą wartość m, dla której równanie to ma trzy rozwiązania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszą wartość m, dla której równanie ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Rozwiąż równanie 2x-5=\sqrt{5}x+6.

Podaj rozwiązanie.

Odpowiedź:
x= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20304 ⋅ Poprawnie: 14/75 [18%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Punkt P=(0,4) jest punktem przecięcia się prostych k i l. Prosta k wraz z osiami układu ogranicza trójkąt o polu równym 20, a prosta l trójkąt o polu równym 24. Oblicz pole trójkąta, którego wierzchołkami są: punkt P oraz punkty przecięcia obu prostych z osią Ox.

Podaj najmniejsze możliwe pole powierzchni tego trójkąta.

Odpowiedź:
P_{min}= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu współrzędnych Ox.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30049 ⋅ Poprawnie: 38/68 [55%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Rozwiąż nierówność\frac{(x-1)^2}{3}-\frac{21}{2}<=\frac{16}{9}x-\frac{1-x}{2}\cdot \left(\frac{2}{3}x+3\right).

Podaj najmniejszą liczbe spęłniającą tę nierówność.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Najmniejszą liczbę spęłniającą tę nierówność zapisz w postaci ułamka nieskracalnego o dodatnim mianowniku.

Podaj mianownik tego ułamka.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm