Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10818  
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji liniowej f należą punkty A=(1, 0) i B=(0,3). Wykres funkcji liniowej g określonej wzorem g(x)=mx+n jest symetryczny do wykresu funkcji f względem osi Ox.

Wyznacz współczynniki m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10813  
Podpunkt 2.1 (1 pkt)
Proste pokazane na rysunku
określone są równaniami 2x-4y=a, 3x+y=b i 3x+8y=c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10881  
Podpunkt 3.1 (1 pkt)
 Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{16}\right)x+256 jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (dwie liczby całkowite)

max= (dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10882  
Podpunkt 4.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=\left(\frac{1}{5}+\frac{1}{6}m\right)x+5 jest rosnąca, gdy m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 3 B. +\infty
C. -\infty D. 12
E. 1 F. 8
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10926  
Podpunkt 5.1 (1 pkt)
 Punkt M=\left(\frac{1}{2},-1\right) należy do wykresu funkcji liniowej określonej wzorem f(x)=\left(3-\frac{2}{3}\cdot ......\right)x+2.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20847  
Podpunkt 6.1 (2 pkt)
 « Liczba b spełnia równanie (b+2)(2-b)+(1+b)^2=0.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=-5x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20450  
Podpunkt 7.1 (2 pkt)
 « Dane są funkcje f(x)= \begin{cases} -2\text{, dla }x\leqslant 2 \\ x-2\text{, dla }x > 2 \end{cases} oraz g(x)=-f(-x).

Oblicz 100\cdot \left|g(-\sqrt{5})\cdot g(-\sqrt{3})\cdot g(-\sqrt{2})\right| .

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20335  
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx+2ab należy punkt P=(b, 4a^2+2ab) oraz h(b+2a)\neq 12a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20328  
Podpunkt 9.1 (2 pkt)
 « Kinga i Kamil są małżeństwem od 24 lat. W dniu ślubu mieli razem 54 lata, z za 3 lat Kinga będzie dwa razy starsza niż w dniu ślubu.

Ile lat ma teraz Kinga?

Odpowiedź:
wiek\ Kingi= (wpisz liczbę całkowitą)
Zadanie 10.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30037  
Podpunkt 10.1 (2 pkt)
 Wypożyczenie skutera śnieżnego kosztuje 48 zł dziennie plus dodatkowo 1,5 złotego za każdy przejechany nim kilometr. Funkcja y=f(n)=an+b opisuje zależność pomiędzy ilością przejechanych kilometrów a kosztem wypożyczenia skutera na pięć kolejnych dni.

Podaj a+b.

Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (2 pkt)
 Kamil dysponuje kwotą 615.00 zł i zamierza wypożyczyć skuter na pięć dni.

Ile kilometrów może w tym czasie przejechać wypożyczonym skutertem?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm