Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 226/428 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(4,2) i B=(-3,-6) określona jest równaniem -8x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 171/287 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(-1,9) i B=(-3,11) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 147/264 [55%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=2x-8a przecina oś Oy powyżej punktu (0,9) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 5 B. +\infty
C. -4 D. 4
E. -\infty F. 1
Zadanie 4.  1 pkt ⋅ Numer: pp-10887 ⋅ Poprawnie: 214/297 [72%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykresy funkcji liniowych opisanych wzorami f(x)=3x+\frac{5}{4} i g(x)=4 opisują proste:
Odpowiedzi:
A. pokrywające się B. przecinające się pod kątem różnym od 90^{\circ}
C. równoległe i różne D. przecinające się pod kątem o mierze 90^{\circ}
Zadanie 5.  1 pkt ⋅ Numer: pr-10099 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
» Na rysunku
przedstawiony jest zbiór wszystkich punktów płaszczyzny, których współrzędne spełniają nierówność:
Odpowiedzi:
A. x-y+2\leqslant 0 B. x-y-2\geqslant 0
C. x+y+2\geqslant 0 D. x+y-2\leqslant 0
Zadanie 6.  2 pkt ⋅ Numer: pp-20333 ⋅ Poprawnie: 108/289 [37%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wykres funkcji rosnącej g(x)=(8m+3)x+4m-8 nie przechodzi przez drugą ćwiartkę układu współrzędnych. Wyznacz zbiór wszystkich możliwych wartości parametru m\in\mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich z konców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największy z wszystkich konców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Funkcja f określona jest wzorem: f(x)= \begin{cases} |x| \text{, dla } x \leqslant 8 \\ x-2 \text{, dla } x > 8 \end{cases}. Funkcja g określona jest wzorem g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań równania g(x)=m w zależności od parametru m.

Podaj największą możliwą wartość m, dla której równanie to ma trzy rozwiązania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Podaj najmniejszą wartość m, dla której równanie ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/85 [28%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx+2ab należy punkt P=(b, 4a^2+2ab) oraz h(b+2a)\neq 12a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20301 ⋅ Poprawnie: 162/378 [42%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Trójkąt ograniczony osiami układu i prostą o równaniu -4y=-9x+6 ma pole powierzchni równe P.

Oblicz P.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30056 ⋅ Poprawnie: 26/66 [39%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « Z miejscowości A wyjechał autobus osobowy i dotarł do miejscowości B po t godzinach jazdy. Godzinę póżniej od autobusu osobowego na tę samą trasę wyjechał autobus pospieszny i dotarł do miejscowości B o godzinę wcześniej niż autobus osobowy.

Po ilu godzinach swojej jazdy autobus pospieszny wyprzedził autobus osobowy?

Dane
t=8
Odpowiedź:
t\ [h]=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm