Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10811 ⋅ Poprawnie: 492/694 [70%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do prostej o równaniu
y=ax+b
należą punkty
P=(4,2) i
Q=(-1,5) .
Wyznacz współczynnik a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 224/426 [52%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Prosta wyznaczona przez punkty
A=(-2,-6) i
B=(1,-3) określona jest równaniem
3x+by+c=0 .
Podaj liczby b i c .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10892 ⋅ Poprawnie: 243/364 [66%]
Rozwiąż
Podpunkt 3.1 (0.8 pkt)
Funkcja liniowa określona wzorem
f(x)=5+3x-12mx jest malejąca, wtedy i tylko wtedy,
gdy liczba
m należy do pewnego przedziału.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 6
B. 8
C. +\infty
D. -\infty
E. 7
F. -5
Zadanie 4. 1 pkt ⋅ Numer: pp-10898 ⋅ Poprawnie: 71/119 [59%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wykres funkcji liniowej
y=2^{26}x-2^{24} przechodzi przez
ćwiartki układu współrzędnych:
Odpowiedzi:
A. II, III, IV
B. I, II i IV
C. I, II i III
D. I, III i IV
Zadanie 5. 1 pkt ⋅ Numer: pp-10932 ⋅ Poprawnie: 68/122 [55%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wykres funkcji
f(x)=-3x-8m przecina oś
Oy w punkcie o rzędnej
24 .
Wykres funkcji
g(x)=2x-5m przecina oś
Ox w punkcie o odciętej
......... .
Podaj brakującą liczbę.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 201/649 [30%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dane są punkty
A=(-2, 4) i
B=(5, 60) . Wyznacz równanie prostej
AB .
Podaj współczynnik kierunkowy tej prostej.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz odciętą punktu przecięcia prostej
AB
z osią
Ox .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20846 ⋅ Poprawnie: 143/220 [65%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Liczba
b spełnia równanie
(b+5)(b-1)=(b+2)(b+11)-3(b+3) .
Podaj miejsce zerowe funkcji f(x)=-4x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20032 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=ax+b . Dla
a=98
i
b=99 oblicz
\frac{f(99)}{99^2} .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Narysuj w układzie współrzędnych zbiór
A=\left\{(x,y): x\in\langle 1,3\rangle \wedge y=-\frac{1}{2}x+b \wedge b\in\langle -5,1\rangle\right\}
.
Podaj współrzędną y tego punktu należącego do zbioru
A , który jest najbardziej oddalony od początku układu
współrzędnych.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Rozwiąż równanie
\frac{4x+10}{-2x+5}=-\frac{5}{2}
.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20304 ⋅ Poprawnie: 14/75 [18%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Punkt
P=(0,4) jest punktem przecięcia się
prostych
k i
l .
Prosta
k wraz z osiami układu ogranicza trójkąt
o polu równym
20 , a prosta
l trójkąt o polu równym
22 .
Oblicz pole trójkąta, którego wierzchołkami są: punkt
P oraz punkty przecięcia obu prostych z osią
Ox .
Podaj najmniejsze możliwe pole powierzchni tego trójkąta.
Odpowiedź:
P_{min}=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu
współrzędnych
Ox .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30046 ⋅ Poprawnie: 56/187 [29%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
Dana jest funkcja
f(x)=-\frac{4}{7}x-8 . Naszkicuj jej wykres.
Dla jakich argumentów funkcja ta przyjmuje wartości dodatnie?
Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Rozwiąż nierówność
f(1-x)\leqslant 2x+2 .
Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców
liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30034 ⋅ Poprawnie: 92/188 [48%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Za kwotę
2000 zł Kamil kupił od kolegi
telefon i konsolę. Po kilku miesiącach sprzedał telefon z
dwudziestoprocentowym zyskiem, a następnęgo dnia sprzedał konsolę z
dziesięcioprocentową stratą. Wówczas okazało się, że na obu tych przedmiotach
zarobił
p %.
Za jaką cenę Kamil zakupił telefon?
Dane
p=8
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Za jaką kwotę Kamil sprzedał konsolę?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Rozwiąż