Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 107/166 [64%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Punkt o współrzędnych (2t-3, 4t+8), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem y=2x+b.

Wyznacz współczynnik b.

Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 127/217 [58%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Dane są funkcje f(x)=-2x-3 oraz g(x)=f(x+1)-3. Zapisz wzór funkcji g w postaci g(x)=ax+b.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 77/140 [55%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Wyznacz przedział tych wszystkich wartości m, dla których funkcja liniowa f(x)=\left(-\frac{6}{5}m-5\right)x-m jest rosnąca.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -10 B. 8
C. -\infty D. 4
E. 6 F. +\infty
Zadanie 4.  1 pkt ⋅ Numer: pp-10919 ⋅ Poprawnie: 219/321 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja f jest liniowa oraz f(-4)=-2 i f(-3)=-5.

Oblicz f(0).

Odpowiedź:
f(0)= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10930 ⋅ Poprawnie: 111/144 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcje określone wzorami f(x)=\frac{1}{3}x-4 i g(x)=-\frac{2}{3}x+1 przyjmują równą wartość dla argumentu x_0.

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 202/650 [31%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dane są punkty A=(3, -59) i B=(6, -116). Wyznacz równanie prostej AB.

Podaj współczynnik kierunkowy tej prostej.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wyznacz odciętą punktu przecięcia prostej AB z osią Ox.
Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20845 ⋅ Poprawnie: 54/94 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Liczba b spełnia równanie (b+2-\sqrt{2})^2-(b+2-2\sqrt{2})^2=-6.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=10x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20032 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=ax+b. Dla a=5998 i b=5999 oblicz \frac{f(5999)}{5999^2}.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Narysuj w układzie współrzędnych zbiór A=\left\{(x,y): x\in\langle 1,3\rangle \wedge y=-\frac{1}{2}x+b \wedge b\in\langle -4,1\rangle\right\} .

Podaj współrzędną y tego punktu należącego do zbioru A, który jest najbardziej oddalony od początku układu współrzędnych.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Rozwiąż równanie 2x-11=\sqrt{11}x-1.

Podaj rozwiązanie.

Odpowiedź:
x= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20301 ⋅ Poprawnie: 162/378 [42%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Trójkąt ograniczony osiami układu i prostą o równaniu -2y=-8x+8 ma pole powierzchni równe P.

Oblicz P.

Odpowiedź:
P_{\triangle}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30044 ⋅ Poprawnie: 37/109 [33%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dana jest funkcja f(x)=5x-5, której dziedziną jest zbiór rozwiązań nierówności (4x-7)^2 \lessdot 16(x-2)^2. Wyznacz ZW_f.

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Ile liczb naturalnych należy do tego zbioru wartości?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pp-30035 ⋅ Poprawnie: 31/98 [31%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Koszt dostarczenia przesyłki pocztą kurierską w danym mieście wynosił 5 zł, a poza granicami miasta 10 zł. W ciągu tygodnia jeden kurier dostarcza średnio 2000 przesyłek, przy czym 80\% tych przesyłek dostarcza poza granice miasta.

Oblicz, jaki tygodniowy zysk miała firma kurierska zatrudniająca 10 kurierów, jeśli jej tygodniowe koszty były następujące: na reklamę firma przeznaczała 25\% przychodów, a na płace 8800 zł (zysk = przychód - koszty).

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Oblicz, o ile złotych podwyższono cenę za jedną przesyłkę poza miasto, jeśli przychód tygodniowy po tej podwyżce był równy 228000.00 zł.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 O ile procent zwiększył się tygodniowy zysk firmy po podwyższeniu opłaty za przesyłki poza granice miasta o kwotę z punktu b). Wynik podaj z dokładnością do 1%.
Odpowiedź:
[\%]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm