Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10814 ⋅ Poprawnie: 267/526 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Na rysunku przedstawiono wykres prostej:
Prosta symetryczna do tej prostej względem osi Ox określona jest równaniem ax+by=4.

Podaj współczynniki a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 226/428 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(-1,6) i B=(-4,4) określona jest równaniem -2x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 121/205 [59%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-81\right)x+2 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10883 ⋅ Poprawnie: 123/271 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
« Proste p i q są równoległe, a punkt O(0,0) leży pomiędzy nimi.

Zatem:

Odpowiedzi:
A. a\cdot m \lessdot 0 \ \wedge\ b\cdot n > 0 B. a\cdot m \lessdot 0 \ \wedge\ b\cdot n < 0
C. a\cdot m > 0 \ \wedge\ b\cdot n > 0 D. a\cdot m > 0 \ \wedge\ b\cdot n \lessdot 0
Zadanie 5.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 138/236 [58%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=\frac{5}{6}-\frac{1}{8}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -6 B. -7
C. -\infty D. +\infty
E. -4 F. 12
Zadanie 6.  2 pkt ⋅ Numer: pp-20309 ⋅ Poprawnie: 230/297 [77%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Oblicz miejsce zerowe funkcji f(x)= \begin{cases} 7+2x \text{, dla } x\leqslant 2 \\ x \text{, dla } x > 2 \end{cases} .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20309 ⋅ Poprawnie: 230/297 [77%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Oblicz miejsce zerowe funkcji f(x)= \begin{cases} 7+2x \text{, dla } x\leqslant 2 \\ x \text{, dla } x > 2 \end{cases} .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Funkcja f określona jest wzorem: f(x)= \begin{cases} |x| \text{, dla } x \leqslant 8 \\ x-2 \text{, dla } x > 8 \end{cases}. Funkcja g określona jest wzorem g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań równania g(x)=m w zależności od parametru m.

Podaj największą możliwą wartość m, dla której równanie to ma trzy rozwiązania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejszą wartość m, dla której równanie ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Rozwiąż równanie 2x-6=\sqrt{6}x-7.

Podaj rozwiązanie.

Odpowiedź:
x= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20302 ⋅ Poprawnie: 212/353 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Zależność temperatury w skali Celsjusza \ ^{\circ}{C} od temperatury w skali Fahrenheita \ ^{\circ}{F} wyraża wzór T(f)=\frac{5}{9}f-\frac{160}{9}, gdzie f – temperatura w skali Fahrenheita, zaś T – temperatura w skali Celsjusza.

1 lipca termometr wskazywał 24^{\circ}C. Ile to było stopni Fahrenheita?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Ile stopni Celsjusza ma woda o temperaturze 95.0^{\circ}F?
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30042 ⋅ Poprawnie: 54/113 [47%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Funkcja liniowa g(x)=(5m+5)x-1 spełnia warunek g\left(\frac{1}{2}\right)=0.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Rozwiąż nierówność g(x) \lessdot h(x), gdzie h(x)=1+4x. Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30056 ⋅ Poprawnie: 26/66 [39%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « Z miejscowości A wyjechał autobus osobowy i dotarł do miejscowości B po t godzinach jazdy. Godzinę póżniej od autobusu osobowego na tę samą trasę wyjechał autobus pospieszny i dotarł do miejscowości B o godzinę wcześniej niż autobus osobowy.

Po ilu godzinach swojej jazdy autobus pospieszny wyprzedził autobus osobowy?

Dane
t=8
Odpowiedź:
t\ [h]=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm