Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 171/287 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Punkty A=(1,6) i B=(-4,11) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10813 ⋅ Poprawnie: 211/390 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Proste pokazane na rysunku
określone są równaniami 2x-4y=a, 3x+y=b i 3x+8y=c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10918 ⋅ Poprawnie: 83/138 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Funkcja liniowa określona wzorem f(x)=ax+b jest malejąca i ma miejsce zerowe \frac{\sqrt{79}-9}{2}.

Wynika z tego, że:

Odpowiedzi:
A. a > 0 \wedge b \lessdot 0 B. a \lessdot 0 \wedge b < 0
C. a > 0 \wedge b > 0 D. a \lessdot 0 \wedge b > 0
Zadanie 4.  1 pkt ⋅ Numer: pp-10882 ⋅ Poprawnie: 218/416 [52%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=\left(\frac{3}{5}+\frac{1}{6}m\right)x+5 jest rosnąca, gdy m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -10 B. +\infty
C. 6 D. -\infty
E. -3 F. 8
Zadanie 5.  1 pkt ⋅ Numer: pp-10927 ⋅ Poprawnie: 52/70 [74%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt o współrzędnych P=\left(\sqrt{7}, -1\right) należy do wykresu funkcji liniowej y=-3\sqrt{7}x+2\cdot ......-4.

Podaj brakującą liczbę.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20333 ⋅ Poprawnie: 108/289 [37%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wykres funkcji rosnącej g(x)=(5m+2)x+2m-1 nie przechodzi przez drugą ćwiartkę układu współrzędnych. Wyznacz zbiór wszystkich możliwych wartości parametru m\in\mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich z konców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największy z wszystkich konców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20308 ⋅ Poprawnie: 232/418 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Miejscem zerowym funkcji f(x)=\frac{2-7m}{2}x+2 jest liczba \frac{1}{17}.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Funkcja f określona jest wzorem: f(x)= \begin{cases} |x| \text{, dla } x \leqslant 7 \\ x-2 \text{, dla } x > 7 \end{cases}. Funkcja g określona jest wzorem g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań równania g(x)=m w zależności od parametru m.

Podaj największą możliwą wartość m, dla której równanie to ma trzy rozwiązania.

Odpowiedź:
m_{max}= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj najmniejszą wartość m, dla której równanie ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Rozwiąż równanie 2x-6=\sqrt{6}x-2.

Podaj rozwiązanie.

Odpowiedź:
x= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20305 ⋅ Poprawnie: 94/131 [71%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Miara kąta wewnętrznego wielokąta foremnego jest równa 150 stopnie.

Ile wierzchołków ma ten wielokąt?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30045 ⋅ Poprawnie: 42/113 [37%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Dana jest funkcja f(x)=3x+1, której dziedziną jest zbiór rozwiązań nierówności (3\sqrt{2}-x)^2\geqslant (x+\sqrt{2})^2. Wyznacz ZW_f.

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Ile liczb naturalnych należy do tego zbioru wartości?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  4 pkt ⋅ Numer: pp-30035 ⋅ Poprawnie: 31/98 [31%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Koszt dostarczenia przesyłki pocztą kurierską w danym mieście wynosił 5 zł, a poza granicami miasta 10 zł. W ciągu tygodnia jeden kurier dostarcza średnio 2200 przesyłek, przy czym 95\% tych przesyłek dostarcza poza granice miasta.

Oblicz, jaki tygodniowy zysk miała firma kurierska zatrudniająca 10 kurierów, jeśli jej tygodniowe koszty były następujące: na reklamę firma przeznaczała 25\% przychodów, a na płace 9100 zł (zysk = przychód - koszty).

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Oblicz, o ile złotych podwyższono cenę za jedną przesyłkę poza miasto, jeśli przychód tygodniowy po tej podwyżce był równy 444400.00 zł.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 O ile procent zwiększył się tygodniowy zysk firmy po podwyższeniu opłaty za przesyłki poza granice miasta o kwotę z punktu b). Wynik podaj z dokładnością do 1%.
Odpowiedź:
[\%]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm