Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 105/164 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt o współrzędnych
(2t-3, 4t+4) , gdzie
t\in\mathbb{R} , należy do prostej określonej równaniem
y=2x+b .
Wyznacz współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10937 ⋅ Poprawnie: 662/979 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dana jest funkcja liniowa
f(x)=-5x+2 .
Oceń prawdziwość poniższych zdań:
Odpowiedzi:
T/N : wykres tej funkcji przecina oś rzednych w punkcie (0,2)
T/N : do wykresu tej funkcji należy punkt P=\left(\frac{2}{3},-\frac{4}{3}\right)
T/N : funkcja f jest malejąca w zbiorze \mathbb{R}
Zadanie 3. 1 pkt ⋅ Numer: pp-10917 ⋅ Poprawnie: 96/188 [51%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Funkcja liniowa określona wzorem
f(x)=ax+b jest rosnąca i ma
miejsce zerowe
\frac{\sqrt{82}-9}{2} .
Wynika z tego, że:
Odpowiedzi:
A. a > 0 \wedge b \lessdot 0
B. a \lessdot 0 \wedge b > 0
C. a \lessdot 0 \wedge b < 0
D. a > 0 \wedge b > 0
Zadanie 4. 1 pkt ⋅ Numer: pp-10889 ⋅ Poprawnie: 39/62 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dla której z podanych wartości
m funkcja liniowa
określona wzorem
f(x)=-49x+m^2-9+m^4 x jest malejąca:
Odpowiedzi:
A. m=\sqrt{7}+1
B. m=7
C. m=-2\sqrt{7}
D. m=-\frac{\sqrt{7}}{7}
Zadanie 5. 1 pkt ⋅ Numer: pp-10935 ⋅ Poprawnie: 72/173 [41%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
«« Funkcja liniowa wartości dodatnie przyjmuje tylko dla argumentów mniejszych od
20 . Do jej wykresu należy punkt
\left(2,\frac{3}{2}\right) .
Oblicz pole powierzchni trójkąta ograniczonego osiami układu współrzędnych i wykresem tej funkcji.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20334 ⋅ Poprawnie: 31/131 [23%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
«« Zbadaj monotoniczność funkcji
f(x)=(4-\sqrt{11}m)x+2 dla
m=\frac{13}{2}\sqrt{11}-1 .
O ile rośnie lub maleje wartość tej funkcji jeśli argument rośnie o
1 ?
Odpowiedź:
Zadanie 7. 2 pkt ⋅ Numer: pp-20308 ⋅ Poprawnie: 227/413 [54%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Miejscem zerowym funkcji
f(x)=\frac{2-7m}{2}x+2 jest
liczba
\frac{1}{24} .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20449 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Wyznacz współczynnik kierunkowy
m prostej przechodzącej przez
punkty
A=(3-\sqrt{5},5-4\sqrt{5}) oraz
B=(\sqrt{5}-2,3) .
Podaj m .
Odpowiedź:
Zadanie 9. 2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Do wykresu nie stałej funkcji liniowej
h(x)=bx-3ab
należy punkt
P=(b, 9a^2-3ab) oraz
h(b-3a)\neq 27a^2 .
Oblicz wartość ilorazu \frac{a}{b} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20328 ⋅ Poprawnie: 206/372 [55%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Kinga i Kamil są małżeństwem od
24 lat. W dniu ślubu
mieli razem
54 lata, z za
7
lat Kinga będzie dwa razy starsza niż w dniu ślubu.
Ile lat ma teraz Kinga?
Odpowiedź:
wiek\ Kingi=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30042 ⋅ Poprawnie: 54/113 [47%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Funkcja liniowa
g(x)=(-4m-6)x-1 spełnia warunek
g\left(\frac{1}{2}\right)=0 .
Podaj m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Rozwiąż nierówność
g(x) \lessdot h(x) ,
gdzie
h(x)=1-4x .
Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30059 ⋅ Poprawnie: 99/146 [67%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Suma dwóch liczb wynosi
s . Jeśli jedną z nich
zwiększymy o
20 %, a drugą zmniejszymy o
10 %, to ich suma zwiększy się o
p . Jakie to liczby?
Podaj mniejszą z tych liczb.
Dane
s=231
p=15
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj większą z tych liczb.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż