Wyznacz zbiór tych wszystkich wartości parametru m, dla których
funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{16}\right)x+256
jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min
=
(dwie liczby całkowite)
max
=
(dwie liczby całkowite)
Zadanie 4.1 pkt ⋅ Numer: pp-10885 ⋅ Poprawnie: 102/162 [62%]
« Funkcja liniowa f określona wzorem
f(x)=mx+n wartości nieujemne przyjmuje tylko
w przedziale (-\infty, 3\rangle oraz zachodzi
warunek f(-3)=24. Wyznacz wartości współczynników
m i n.
Podaj m.
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20032 ⋅ Poprawnie: 0/0
« Punkt P=(0,4) jest punktem przecięcia się
prostych k i l.
Prosta k wraz z osiami układu ogranicza trójkąt
o polu równym 20, a prosta
l trójkąt o polu równym 30.
Oblicz pole trójkąta, którego wierzchołkami są: punkt
P oraz punkty przecięcia obu prostych z osią
Ox.
Podaj najmniejsze możliwe pole powierzchni tego trójkąta.
Odpowiedź:
P_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu
współrzędnych Ox.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30048 ⋅ Poprawnie: 14/58 [24%]
Wypożyczenie skutera śnieżnego kosztuje 49 zł
dziennie plus dodatkowo 1,5 złotego za każdy
przejechany nim kilometr. Funkcja y=f(n)=an+b opisuje
zależność pomiędzy ilością przejechanych kilometrów a kosztem wypożyczenia
skutera na pięć kolejnych dni.
Podaj a+b.
Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
Kamil dysponuje kwotą 680.00 zł i zamierza wypożyczyć
skuter na pięć dni.
Ile kilometrów może w tym czasie przejechać wypożyczonym skutertem?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat