«« Funkcja f określona jest wzorem:
f(x)=
\begin{cases}
|x| \text{, dla } x \leqslant 14 \\
x-2 \text{, dla } x > 14
\end{cases}.
Funkcja g określona jest wzorem
g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań
równania g(x)=m w zależności od parametru
m.
Podaj największą możliwą wartość m, dla której równanie to ma
trzy rozwiązania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejszą wartość m, dla której równanie
ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%]
« Prosta k jest równoległa do prostej
AB wyznaczonej przez punkty punkty
A=(1,-5) i B=(-2,4)
i przecina oś Oy w punkcie o rzędnej równej
2. Dla jakiej wartości parametru
k punkt C=(-2k+22, 5k-50)
należy do prostej k?
Podaj k.
Odpowiedź:
k=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pp-30049 ⋅ Poprawnie: 38/68 [55%]
« Z miejscowości A wyjechał autobus osobowy i dotarł
do miejscowości B po
t godzinach jazdy. Godzinę póżniej od autobusu
osobowego na tę samą trasę wyjechał autobus pospieszny i dotarł do miejscowości
B o godzinę wcześniej niż autobus osobowy.
Po ilu godzinach swojej jazdy autobus pospieszny wyprzedził autobus osobowy?
Dane
t=12
Odpowiedź:
t\ [h]=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat