Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10810 ⋅ Poprawnie: 107/166 [64%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Punkt o współrzędnych
(2t-3, 4t+8) , gdzie
t\in\mathbb{R} , należy do prostej określonej równaniem
y=2x+b .
Wyznacz współczynnik b .
Odpowiedź:
b=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 127/217 [58%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dane są funkcje
f(x)=-2x-3 oraz
g(x)=f(x+1)-3 . Zapisz wzór funkcji
g
w postaci
g(x)=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10913 ⋅ Poprawnie: 77/140 [55%]
Rozwiąż
Podpunkt 3.1 (0.8 pkt)
Wyznacz przedział tych wszystkich wartości
m , dla których funkcja liniowa
f(x)=\left(-\frac{6}{5}m-5\right)x-m
jest rosnąca.
Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -10
B. 8
C. -\infty
D. 4
E. 6
F. +\infty
Zadanie 4. 1 pkt ⋅ Numer: pp-10919 ⋅ Poprawnie: 219/321 [68%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Funkcja
f jest liniowa oraz
f(-4)=-2 i
f(-3)=-5 .
Oblicz f(0) .
Odpowiedź:
f(0)=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10930 ⋅ Poprawnie: 111/144 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Funkcje określone wzorami
f(x)=\frac{1}{3}x-4 i
g(x)=-\frac{2}{3}x+1 przyjmują równą wartość dla argumentu
x_0 .
Wyznacz x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 202/650 [31%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Dane są punkty
A=(3, -59) i
B=(6, -116) . Wyznacz równanie prostej
AB .
Podaj współczynnik kierunkowy tej prostej.
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Wyznacz odciętą punktu przecięcia prostej
AB
z osią
Ox .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20845 ⋅ Poprawnie: 54/94 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Liczba
b spełnia równanie
(b+2-\sqrt{2})^2-(b+2-2\sqrt{2})^2=-6 .
Podaj miejsce zerowe funkcji określonej wzorem f(x)=10x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20032 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Funkcja
f określona jest wzorem
f(x)=ax+b . Dla
a=5998
i
b=5999 oblicz
\frac{f(5999)}{5999^2} .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Narysuj w układzie współrzędnych zbiór
A=\left\{(x,y): x\in\langle 1,3\rangle \wedge y=-\frac{1}{2}x+b \wedge b\in\langle -4,1\rangle\right\}
.
Podaj współrzędną y tego punktu należącego do zbioru
A , który jest najbardziej oddalony od początku układu
współrzędnych.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Rozwiąż równanie
2x-11=\sqrt{11}x-1 .
Podaj rozwiązanie.
Odpowiedź:
Zadanie 10. 2 pkt ⋅ Numer: pp-20301 ⋅ Poprawnie: 162/378 [42%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Trójkąt ograniczony osiami układu i prostą o równaniu
-2y=-8x+8 ma pole powierzchni równe
P .
Oblicz P .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30044 ⋅ Poprawnie: 37/109 [33%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Dana jest funkcja
f(x)=5x-5 , której dziedziną
jest zbiór rozwiązań nierówności
(4x-7)^2 \lessdot 16(x-2)^2 . Wyznacz
ZW_f .
Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Ile liczb naturalnych należy do tego zbioru wartości?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 4 pkt ⋅ Numer: pp-30035 ⋅ Poprawnie: 31/98 [31%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
« Koszt dostarczenia przesyłki pocztą kurierską w danym mieście wynosił
5 zł, a poza granicami miasta 10 zł. W ciągu tygodnia jeden kurier dostarcza
średnio
2000 przesyłek, przy czym
80\% tych przesyłek dostarcza poza granice
miasta.
Oblicz, jaki tygodniowy zysk miała firma kurierska zatrudniająca 10 kurierów,
jeśli jej tygodniowe koszty były następujące: na reklamę firma przeznaczała
25\% przychodów, a na płace 8800 zł (zysk = przychód - koszty).
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
Oblicz, o ile złotych podwyższono cenę za jedną przesyłkę poza miasto, jeśli przychód
tygodniowy po tej podwyżce był równy
228000.00 zł.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
O ile procent zwiększył się tygodniowy zysk firmy po podwyższeniu opłaty za
przesyłki poza granice miasta o kwotę z punktu b). Wynik podaj z dokładnością do 1%.
Odpowiedź:
[\%]=
(wpisz liczbę całkowitą)
Rozwiąż