Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 115/192 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-2x oblicz h\left(\frac{3\sqrt{3}-3}{2}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest złożona T/N : liczba ta jest niewymierna
Zadanie 2.  1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 226/428 [52%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Prosta wyznaczona przez punkty A=(-3,6) i B=(-1,-4) określona jest równaniem -10x+by+c=0.

Podaj liczby b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10907 ⋅ Poprawnie: 137/251 [54%] Rozwiąż 
Podpunkt 3.1 (0.8 pkt)
 Wykres funkcji liniowej f(x)=2x-3a przecina oś Oy powyżej punktu (0,5) wtedy i tylko wtedy, gdy parametr a należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 3.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -\infty B. +\infty
C. 0 D. 7
E. -7 F. 2
Zadanie 4.  1 pkt ⋅ Numer: pp-10885 ⋅ Poprawnie: 102/162 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wykres funkcji liniowej f określonej wzorem f(x)=ax+b nie przechodzi tylko przez ćwiartkę układu współrzędnych o numerze 1.

Wówczas:

Odpowiedzi:
A. a\lessdot 0 \wedge b<0 B. a\lessdot 0 \wedge b>0
C. a>0 \wedge b\lessdot 0 D. a>0 \wedge b>0
Zadanie 5.  1 pkt ⋅ Numer: pp-10799 ⋅ Poprawnie: 274/421 [65%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Zbiorem wszystkich rozwiązań nierówności \left(\sqrt{34}-\frac{59}{10}\right)(-5+7x) > 0 jest pewien przedział.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -7 B. -\infty
C. 5 D. 0
E. +\infty F. 3
Zadanie 6.  2 pkt ⋅ Numer: pp-20844 ⋅ Poprawnie: 112/328 [34%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Punkt K=(-2,6) należy do wykresu funkcji liniowej określonej wzorem f(x)=(-9-m)x+4.

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Wykresy funkcji f i funkcji określonej wzorem h(x)=2-2x przecinają oś Ox w tym samym punkcie.

Podaj m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20840 ⋅ Poprawnie: 156/279 [55%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja liniowa f określona wzorem f(x)=mx+n wartości nieujemne przyjmuje tylko w przedziale (-\infty, 3\rangle oraz zachodzi warunek f(-1)=12. Wyznacz wartości współczynników m i n.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20449 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Wyznacz współczynnik kierunkowy m prostej przechodzącej przez punkty A=(-6-\sqrt{5},-3-4\sqrt{5}) oraz B=(\sqrt{5}-2,3).

Podaj m.

Odpowiedź:
m= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx+5ab należy punkt P=(b, 25a^2+5ab) oraz h(b+5a)\neq 75a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20303 ⋅ Poprawnie: 87/134 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Zależność temperatury w skali Fahrenheita \ ^{\circ}{F} od temperatury w skali Celsjusza \ ^{\circ}{C} wyraża wzór f(c)=32+1,8\cdot c, gdzie f – temperatura w skali Fahrenheita, zaś c – temperatura w skali Celsjusza.

Oblicz, w jakiej temperaturze w skali Fahrenheita zażywasz kąpieli, jeśli termometr wskazuje, że temperatura wody wynosi wtedy 36^{\circ}C.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 W czajniku znajduje się woda o temperaturze 102^{\circ}F.

Jaką temperaturę w stopniach Celsjusza ma ta woda?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30042 ⋅ Poprawnie: 54/113 [47%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Funkcja liniowa g(x)=(4m+6)x+5 spełnia warunek g\left(\frac{1}{2}\right)=0.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Rozwiąż nierówność g(x) \lessdot h(x), gdzie h(x)=-1+3x. Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30034 ⋅ Poprawnie: 92/188 [48%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Za kwotę 2000 zł Kamil kupił od kolegi telefon i konsolę. Po kilku miesiącach sprzedał telefon z dwudziestoprocentowym zyskiem, a następnęgo dnia sprzedał konsolę z dziesięcioprocentową stratą. Wówczas okazało się, że na obu tych przedmiotach zarobił p%.

Za jaką cenę Kamil zakupił telefon?

Dane
p=4
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Za jaką kwotę Kamil sprzedał konsolę?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm