Punkty A=(0,3) i
B=(-6,13) należą do prostej o równaniu
5x+by+c=0.
Wyznacz liczby b i c.
Odpowiedzi:
b
=
(wpisz liczbę całkowitą)
c
=
(wpisz liczbę całkowitą)
Zadanie 2.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10815
Podpunkt 2.1 (1 pkt)
Funkcja liniowa f określona jest wzorem
f(x)=mx+n. Funkcja ta spełnia warunek
f(1)=-4, a jej wykres zawiera punkt
(5,-1).
Wyznacz współczynniki m i n.
Odpowiedzi:
m
=
(dwie liczby całkowite)
n
=
(dwie liczby całkowite)
Zadanie 3.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10891
Podpunkt 3.1 (1 pkt)
« Wyznacz zbiór tych wartości parametru m, dla których funkcja liniowa
f(x)=\frac{\left(64-m^2\right)}{4}x-9 jest rosnąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Najmniejszy z końców liczbowych tych przedziałów jest równy p,
a ilość liczb całkowitych należących do rozwiązania jest równa q.
Podaj liczby p i q.
Odpowiedzi:
p
=
(wpisz liczbę całkowitą)
q
=
(wpisz liczbę całkowitą)
Zadanie 4.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10921
Podpunkt 4.1 (1 pkt)
» Wykresy funkcji f(x)=-x-mx-3 i
y=-8x+7 nie mają punktów wspólnych.
Wyznacz m.
Odpowiedź:
m=(wpisz liczbę całkowitą)
Zadanie 5.(1 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-10938
Podpunkt 5.1 (1 pkt)
Punkt A=(m^2+1,-3) należy do wykresu funkcji liniowej
określonej wzorem g(x)=31-2x:
Podaj miejsce zerowe funkcji określonej wzorem f(x)=-x+b.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pr-20032
Podpunkt 8.1 (1 pkt)
Funkcja f określona jest wzorem
f(x)=ax+b. Dla a=98
i b=99 oblicz
\frac{f(99)}{99^2}.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Narysuj w układzie współrzędnych zbiór
A=\{(x,y): x\in\langle 1,3\rangle \wedge y=-\frac{1}{2}x+b \wedge b\in\langle -4,1\rangle\}
.
Podaj współrzędną y tego punktu należącego do zbioru
A, który jest najbardziej oddalony od początku układu
współrzędnych.
Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 9.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20310
Podpunkt 9.1 (2 pkt)
Rozwiąż równanie
\frac{-5x-1}{6x-3}=2
.
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 10.(2 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-20304
Podpunkt 10.1 (1 pkt)
« Punkt P=(0,4) jest punktem przecięcia się
prostych k i l.
Prosta k wraz z osiami układu ogranicza trójkąt
o polu równym 26, a prosta
l trójkąt o polu równym 28.
Oblicz pole trójkąta, którego wierzchołkami są: punkt
P oraz punkty przecięcia obu prostych z osią
Ox.
Podaj najmniejsze możliwe pole powierzchni tego trójkąta.
Odpowiedź:
P_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu
współrzędnych Ox.
Podaj najmniejszą liczbe spęłniającą tę nierówność.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Najmniejszą liczbę spęłniającą tę nierówność zapisz w postaci ułamka
nieskracalnego o dodatnim mianowniku.
Podaj mianownik tego ułamka.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 12.(4 pkt)
[ ⇒Dodaj do testu ] Numer zadania: pp-30057
Podpunkt 12.1 (2 pkt)
« Dwie maszyny mają wytworzyć 4070 sztuk produktu.
Pierwsza z nich w ciągu dnia wytwarza x sztuk tego
produktu, druga y sztuk, przy czym x \lessdot y.
Przy takim tempie produkcji
zlecenie zostałoby wykonane w 22 dni. Jednak po
pierwszym dniu maszyna pierwsza uległa awarii i pozostałe do wytworzenia sztuki
wykonała maszyna druga, ale cały proces produkcji zajął
38 dni.
Podaj x.
Odpowiedź:
x=(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj y.
Odpowiedź:
y=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat