Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10936 ⋅ Poprawnie: 847/1225 [69%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Dana jest funkcja liniowa określona wzorem f(x)=4x-8.

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : wykres tej funkcji przecina oś rzędnych w punkcie (0,-8) T/N : miejscem zerowym tej funkcji jest liczba 2
T/N : funkcja f rośnie w \mathbb{R}  
Zadanie 2.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 170/286 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(0,7) i B=(4,3) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 » Wyznacz zbiór tych wszystkich wartości parametru m, dla których funkcja liniowa określona wzorem f(x)=\left(m^2-36\right)x+2 jest rosnąca. Rozwiązanie zapisz w postaci sumy przedziałów.

Podaj najmniejszy i największy z końców liczbowych tych przedziałów.

Odpowiedzi:
min= (wpisz liczbę całkowitą)
max= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10908 ⋅ Poprawnie: 91/133 [68%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Funkcja liniowa f(x)=(2-m)x+(m+1)^2-1 jest rosnąca i jej wykres przecina oś rzędnych w punkcie P=(0,15).

Wyznacz m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10942 ⋅ Poprawnie: 125/224 [55%] Rozwiąż 
Podpunkt 5.1 (0.8 pkt)
 Dana jest funkcja liniowa g(x)=-\frac{4}{3}+\frac{1}{10}x . Funkcja g przyjmuje wartości ujemne dla argumentów należących do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. -6 B. -2
C. +\infty D. -8
E. 1 F. -\infty
Zadanie 6.  2 pkt ⋅ Numer: pp-20309 ⋅ Poprawnie: 230/297 [77%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Oblicz miejsce zerowe funkcji f(x)= \begin{cases} -1+2x \text{, dla } x\leqslant 2 \\ x \text{, dla } x > 2 \end{cases} .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20845 ⋅ Poprawnie: 54/94 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Liczba b spełnia równanie (b+2-\sqrt{2})^2-(b+2-2\sqrt{2})^2=-6.

Podaj miejsce zerowe funkcji określonej wzorem f(x)=-1x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20032 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=ax+b. Dla a=598 i b=599 oblicz \frac{f(599)}{599^2}.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Narysuj w układzie współrzędnych zbiór A=\left\{(x,y): x\in\langle 1,3\rangle \wedge y=-\frac{1}{2}x+b \wedge b\in\langle -7,1\rangle\right\} .

Podaj współrzędną y tego punktu należącego do zbioru A, który jest najbardziej oddalony od początku układu współrzędnych.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx+1ab należy punkt P=(b, 1a^2+ab) oraz h(b+a)\neq 3a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20302 ⋅ Poprawnie: 207/341 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Zależność temperatury w skali Celsjusza \ ^{\circ}{C} od temperatury w skali Fahrenheita \ ^{\circ}{F} wyraża wzór T(f)=\frac{5}{9}f-\frac{160}{9}, gdzie f – temperatura w skali Fahrenheita, zaś T – temperatura w skali Celsjusza.

1 lipca termometr wskazywał 24^{\circ}C. Ile to było stopni Fahrenheita?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Ile stopni Celsjusza ma woda o temperaturze 95.0^{\circ}F?
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30046 ⋅ Poprawnie: 56/187 [29%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dana jest funkcja f(x)=-\frac{8}{3}x-6. Naszkicuj jej wykres. Dla jakich argumentów funkcja ta przyjmuje wartości dodatnie?

Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Rozwiąż nierówność f(1-x)\leqslant 2x+2.

Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30034 ⋅ Poprawnie: 92/188 [48%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Za kwotę 2000 zł Kamil kupił od kolegi telefon i konsolę. Po kilku miesiącach sprzedał telefon z dwudziestoprocentowym zyskiem, a następnęgo dnia sprzedał konsolę z dziesięcioprocentową stratą. Wówczas okazało się, że na obu tych przedmiotach zarobił p%.

Za jaką cenę Kamil zakupił telefon?

Dane
p=10
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Za jaką kwotę Kamil sprzedał konsolę?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm