Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10805 ⋅ Poprawnie: 274/540 [50%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja liniowa spełnia warunki f(-\sqrt{2})=1 i f(8\sqrt{2})=-9.

Wynika z tego, że jej wykres przechodzi przez ćwiartki układu:

Odpowiedzi:
A. II, III i IV B. I, III i IV
C. I, II i III D. I, II i IV
Zadanie 2.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 170/286 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(-3,11) i B=(3,5) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11532 ⋅ Poprawnie: 91/170 [53%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 (1 pkt) Funkcja liniowa określona wzorem f(x)=-3(m^2-2)x+3 jest malejąca, gdy:
Odpowiedzi:
A. m\in\left(-2,2\right) B. m\in\left(-\infty, -\frac{\sqrt{6}}{3}\right)\cup\left(\frac{\sqrt{6}}{3}, +\infty\right)
C. m\in\left(-\infty, -\sqrt{2}\right)\cup\left(\sqrt{2}, +\infty\right) D. m\in\left(-\infty, -\frac{\sqrt{6}}{2}\right)\cup\left(\frac{\sqrt{6}}{2}, +\infty\right)
E. m\in\left(-\sqrt{2},\sqrt{2}\right) F. m\in\left(-\infty, -2\right)\cup\left(2, +\infty\right)
Zadanie 4.  1 pkt ⋅ Numer: pp-10909 ⋅ Poprawnie: 98/225 [43%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wskaż prostą prostopadłą do osi Ox:
Odpowiedzi:
A. 3y=0 B. 3y=x
C. x-3=y D. 4y+3=0
E. 4x+3=0 F. -3x+y=0
Zadanie 5.  1 pkt ⋅ Numer: pp-10934 ⋅ Poprawnie: 84/157 [53%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 O funkcji f określonej wzorem f(x)=\frac{7-m}{m+8}x+3 wiadomo, że f(-1)=0.

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20307 ⋅ Poprawnie: 44/104 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » Funkcja liniowa określona wzorem g(x)=ax+b spełnia warunki: \begin{cases} g(-2)=12 \\ g(x)\lessdot 0 \iff x\in(2,+\infty) \end{cases} .

Podaj a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj b.
Odpowiedź:
b=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20306 ⋅ Poprawnie: 201/649 [30%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Dane są punkty A=(-6, 66) i B=(-10, 118). Wyznacz równanie prostej AB.

Podaj współczynnik kierunkowy tej prostej.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Wyznacz odciętą punktu przecięcia prostej AB z osią Ox.
Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20450 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dane są funkcje f(x)= \begin{cases} 2\text{, dla }x\leqslant 2 \\ x+2\text{, dla }x > 2 \end{cases} oraz g(x)=-f(-x).

Oblicz 100\cdot \left|g(-\sqrt{5})\cdot g(-\sqrt{3})\cdot g(-\sqrt{2})\right| .

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx+4ab należy punkt P=(b, 16a^2+4ab) oraz h(b+4a)\neq 48a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20299 ⋅ Poprawnie: 60/114 [52%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Suma cyfr liczby dwucyfrowej jest równa 17. Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o 9 większą.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30053 ⋅ Poprawnie: 38/222 [17%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=-\sqrt{3}x+am+b.

Wyznacz te wartości m, dla których miejscem zerowym funkcji jest liczba \sqrt{3}.

Dane
a=-1
b=-6
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Dla jakich wartosci m wykres przecina oś Oy w punkcie o rzędnej 2?
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (2 pkt)
 Dla m=-2 wyznacz współrzędne punktów przecięcia wykresu z osiami układu.

Ile wynosi suma czterech otrzymanych współrzędnych?

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30057 ⋅ Poprawnie: 57/102 [55%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « Dwie maszyny mają wytworzyć 3360 sztuk produktu. Pierwsza z nich w ciągu dnia wytwarza x sztuk tego produktu, druga y sztuk, przy czym x \lessdot y. Przy takim tempie produkcji zlecenie zostałoby wykonane w 20 dni. Jednak po pierwszym dniu maszyna pierwsza uległa awarii i pozostałe do wytworzenia sztuki wykonała maszyna druga, ale cały proces produkcji zajął 29 dni.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm