« Funkcja liniowa f określona wzorem
f(x)=mx+n wartości nieujemne przyjmuje tylko
w przedziale (-\infty, 5\rangle oraz zachodzi
warunek f(-2)=21. Wyznacz wartości współczynników
m i n.
Podaj m.
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pr-20030 ⋅ Poprawnie: 0/0
«« Funkcja f określona jest wzorem:
f(x)=
\begin{cases}
|x| \text{, dla } x \leqslant 14 \\
x-2 \text{, dla } x > 14
\end{cases}.
Funkcja g określona jest wzorem
g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań
równania g(x)=m w zależności od parametru
m.
Podaj największą możliwą wartość m, dla której równanie to ma
trzy rozwiązania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejszą wartość m, dla której równanie
ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/85 [28%]
« Punkt P=(0,4) jest punktem przecięcia się
prostych k i l.
Prosta k wraz z osiami układu ogranicza trójkąt
o polu równym 42, a prosta
l trójkąt o polu równym 54.
Oblicz pole trójkąta, którego wierzchołkami są: punkt
P oraz punkty przecięcia obu prostych z osią
Ox.
Podaj najmniejsze możliwe pole powierzchni tego trójkąta.
Odpowiedź:
P_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu
współrzędnych Ox.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30048 ⋅ Poprawnie: 14/58 [24%]