Do wykresu funkcji liniowej f należą punkty
A=(5, 0) i B=(0,1).
Wykres funkcji liniowej g określonej wzorem
g(x)=mx+n jest symetryczny do wykresu
funkcji f względem osi Ox.
Wyznacz współczynniki m i n.
Odpowiedzi:
m
=
(dwie liczby całkowite)
n
=
(wpisz liczbę całkowitą)
Zadanie 3.1 pkt ⋅ Numer: pp-10881 ⋅ Poprawnie: 190/246 [77%]
Wyznacz zbiór tych wszystkich wartości parametru m, dla których
funkcja liniowa określona wzorem f(x)=\left(m^2-\frac{1}{64}\right)x+4096
jest malejąca. Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
min
=
(dwie liczby całkowite)
max
=
(dwie liczby całkowite)
Zadanie 4.1 pkt ⋅ Numer: pp-10921 ⋅ Poprawnie: 196/343 [57%]
«« Funkcja f określona jest wzorem:
f(x)=
\begin{cases}
|x| \text{, dla } x \leqslant 12 \\
x-2 \text{, dla } x > 12
\end{cases}.
Funkcja g określona jest wzorem
g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań
równania g(x)=m w zależności od parametru
m.
Podaj największą możliwą wartość m, dla której równanie to ma
trzy rozwiązania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejszą wartość m, dla której równanie
ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%]
Zależność temperatury w skali Fahrenheita \ ^{\circ}{F}
od temperatury w skali Celsjusza \ ^{\circ}{C} wyraża
wzór f(c)=32+1,8\cdot c, gdzie
f – temperatura w skali Fahrenheita, zaś
c – temperatura w skali Celsjusza.
Oblicz, w jakiej temperaturze w skali Fahrenheita zażywasz kąpieli, jeśli
termometr wskazuje, że temperatura wody wynosi wtedy
46^{\circ}C.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
W czajniku znajduje się woda o temperaturze
130^{\circ}F.
Jaką temperaturę w stopniach Celsjusza ma ta woda?
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30045 ⋅ Poprawnie: 42/113 [37%]