Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10809 ⋅ Poprawnie: 98/159 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 « Punkt o współrzędnych (9-3t, 2t-5), gdzie t\in\mathbb{R}, należy do prostej określonej równaniem 2x+by=c.

Wyznacz współczynniki b i c.

Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11418 ⋅ Poprawnie: 171/287 [59%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Punkty A=(-4,8) i B=(-2,6) należą do prostej k. Prosta l symetryczna do prostej k względem początku układu współrzędnych ma równanie y=ax+b.

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10890 ⋅ Poprawnie: 57/100 [57%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 Wykres funkcji liniowej określonej wzorem h(x)=(\sqrt{3}-a)x+\frac{a}{2} jest prostą, która nie przechodzi tylko przez czwartą ćwiartkę układu współrzędnych.

Funkcja h spełnia ten warunek wtedy i tylko wtedy, gdy liczba a należy do pewnego przedziału o końcach p i q, przy czym p\lessdot q.

Podaj p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Podpunkt 3.2 (0.5 pkt)
 Podaj q.
Odpowiedź:
q= \cdot
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10882 ⋅ Poprawnie: 218/416 [52%] Rozwiąż 
Podpunkt 4.1 (0.8 pkt)
 Funkcja liniowa określona wzorem f(x)=\left(\frac{4}{5}+\frac{3}{4}m\right)x+5 jest rosnąca, gdy m należy do pewnego przedziału.

Podaj koniec tego przedziału, który jest liczbą wymierną niecałkowitą.

Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.2 pkt)
 Drugim końcem tego przedziału jest:
Odpowiedzi:
A. 11 B. -3
C. -2 D. -\infty
E. +\infty F. -12
Zadanie 5.  1 pkt ⋅ Numer: pp-10930 ⋅ Poprawnie: 111/144 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Funkcje określone wzorami f(x)=-\frac{1}{2}x-3 i g(x)=\frac{3}{5}x-4 przyjmują równą wartość dla argumentu x_0.

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20333 ⋅ Poprawnie: 108/289 [37%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Wykres funkcji rosnącej g(x)=(3m-3)x+3m-5 nie przechodzi przez drugą ćwiartkę układu współrzędnych. Wyznacz zbiór wszystkich możliwych wartości parametru m\in\mathbb{R}.

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj najmniejszy z tych wszystkich z konców liczbowych tych przedziałów.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj największy z wszystkich konców liczbowych tych przedziałów.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20840 ⋅ Poprawnie: 156/279 [55%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Funkcja liniowa f określona wzorem f(x)=mx+n wartości nieujemne przyjmuje tylko w przedziale (-\infty, 3\rangle oraz zachodzi warunek f(-4)=7. Wyznacz wartości współczynników m i n.

Podaj m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj n.
Odpowiedź:
n=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20032 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Funkcja f określona jest wzorem f(x)=ax+b. Dla a=98 i b=99 oblicz \frac{f(99)}{99^2}.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Narysuj w układzie współrzędnych zbiór A=\left\{(x,y): x\in\langle 1,3\rangle \wedge y=-\frac{1}{2}x+b \wedge b\in\langle -3,1\rangle\right\} .

Podaj współrzędną y tego punktu należącego do zbioru A, który jest najbardziej oddalony od początku układu współrzędnych.

Odpowiedź:
y=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Rozwiąż równanie 2x-3=\sqrt{3}x+7.

Podaj rozwiązanie.

Odpowiedź:
x= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20302 ⋅ Poprawnie: 212/353 [60%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Zależność temperatury w skali Celsjusza \ ^{\circ}{C} od temperatury w skali Fahrenheita \ ^{\circ}{F} wyraża wzór T(f)=\frac{5}{9}f-\frac{160}{9}, gdzie f – temperatura w skali Fahrenheita, zaś T – temperatura w skali Celsjusza.

1 lipca termometr wskazywał 18^{\circ}C. Ile to było stopni Fahrenheita?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Ile stopni Celsjusza ma woda o temperaturze 50.0^{\circ}F?
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30046 ⋅ Poprawnie: 59/199 [29%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 Dana jest funkcja f(x)=\frac{5}{7}x-4. Naszkicuj jej wykres. Dla jakich argumentów funkcja ta przyjmuje wartości dodatnie?

Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Rozwiąż nierówność f(1-x)\leqslant 2x-6.

Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30058 ⋅ Poprawnie: 41/63 [65%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 » Pan Kowalski wykonuje pewną pracę w ciągu p godzin. Tę samą pracę pan Nowak wykonuje w ciągu q godzin.

Ile godzin potrzeba, aby panowie pracując razem wykonali tę samą pracę.

Dane
p=9
q=18
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm