Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10928 ⋅ Poprawnie: 324/482 [67%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wykres funkcji liniowej
y=-\frac{1}{2}x+9 przecina osie
układu współrzędnych w punktach
A i
B .
Oblicz pole powierzchni trójkąta AOB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-10817 ⋅ Poprawnie: 127/217 [58%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Dane są funkcje
f(x)=-2x-3 oraz
g(x)=f(x+2)+2 . Zapisz wzór funkcji
g
w postaci
g(x)=ax+b .
Podaj współczynniki a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10879 ⋅ Poprawnie: 120/204 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
» Wyznacz zbiór tych wszystkich wartości parametru
m , dla których
funkcja liniowa określona wzorem
f(x)=\left(m^2-49\right)x+2 jest rosnąca.
Rozwiązanie zapisz w postaci sumy przedziałów.
Podaj najmniejszy i największy z końców liczbowych tych przedziałów.
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-10909 ⋅ Poprawnie: 98/225 [43%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wskaż prostą prostopadłą do osi
Ox :
Odpowiedzi:
A. 2y=x
B. -3y+2=0
C. -2x+y=0
D. x-2=y
E. 2y=0
F. -3x+2=0
Zadanie 5. 1 pkt ⋅ Numer: pp-10939 ⋅ Poprawnie: 101/204 [49%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Dla argumentu
x_0 wartości funkcji określonych wzorami
f(x)=-4x+4 i
g(x)=7x-6
są sobie równe i obie równe
y_0 .
Wyznacz y_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20847 ⋅ Poprawnie: 156/296 [52%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
« Liczba
b spełnia równanie
(b+2)(2-b)+(1+b)^2=0 .
Podaj miejsce zerowe funkcji określonej wzorem f(x)=-5x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20845 ⋅ Poprawnie: 54/94 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Liczba
b spełnia równanie
(b+2-\sqrt{2})^2-(b+2-2\sqrt{2})^2=-6 .
Podaj miejsce zerowe funkcji określonej wzorem f(x)=-5x+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20450 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Dane są funkcje
f(x)=
\begin{cases}
-2\text{, dla }x\leqslant 2 \\
x+2\text{, dla }x > 2
\end{cases}
oraz
g(x)=-f(-x) .
Oblicz
100\cdot \left|g(-\sqrt{5})\cdot g(-\sqrt{3})\cdot g(-\sqrt{2})\right|
.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 9. 2 pkt ⋅ Numer: pp-20311 ⋅ Poprawnie: 48/93 [51%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Rozwiąż równanie
2x-10=\sqrt{10}x+6 .
Podaj rozwiązanie.
Odpowiedź:
Zadanie 10. 2 pkt ⋅ Numer: pp-20301 ⋅ Poprawnie: 161/377 [42%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Trójkąt ograniczony osiami układu i prostą o równaniu
-8y=-x-2 ma pole powierzchni równe
P .
Oblicz P .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30047 ⋅ Poprawnie: 40/168 [23%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Dana jest funkcja
f(x)=8x+\frac{3}{4} .
Dla jakich argumentów funkcja przyjmuje wartości ujemne?
Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Rozwiąż nierówność
f(x+1)\geqslant 3x-7 .
Odpowiedź zapisz w postaci sumy przedziałów. Podaj sumę wszystkich końców liczbowych tych przedziałów
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30059 ⋅ Poprawnie: 99/146 [67%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« Suma dwóch liczb wynosi
s . Jeśli jedną z nich
zwiększymy o
20 %, a drugą zmniejszymy o
10 %, to ich suma zwiększy się o
p . Jakie to liczby?
Podaj mniejszą z tych liczb.
Dane
s=239
p=7
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 12.2 (2 pkt)
Podaj większą z tych liczb.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Rozwiąż