Do wykresu funkcji liniowej f należą punkty
A=(6, 0) i B=(0,5).
Wykres funkcji liniowej g określonej wzorem
g(x)=mx+n jest symetryczny do wykresu
funkcji f względem osi Ox.
Wyznacz współczynniki m i n.
Odpowiedzi:
m
=
(dwie liczby całkowite)
n
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-10816 ⋅ Poprawnie: 226/428 [52%]
«« Funkcja f określona jest wzorem:
f(x)=
\begin{cases}
|x| \text{, dla } x \leqslant 14 \\
x-2 \text{, dla } x > 14
\end{cases}.
Funkcja g określona jest wzorem
g(x)=\left|f(x)\right|. Wyznacz liczbę rozwiązań
równania g(x)=m w zależności od parametru
m.
Podaj największą możliwą wartość m, dla której równanie to ma
trzy rozwiązania.
Odpowiedź:
m_{max}=(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Podaj najmniejszą wartość m, dla której równanie
ma przynajmniej jedno rozwiązanie.
Odpowiedź:
m_{min}=(wpisz liczbę całkowitą)
Zadanie 9.2 pkt ⋅ Numer: pp-20310 ⋅ Poprawnie: 87/136 [63%]
« Punkt P=(0,4) jest punktem przecięcia się
prostych k i l.
Prosta k wraz z osiami układu ogranicza trójkąt
o polu równym 44, a prosta
l trójkąt o polu równym 58.
Oblicz pole trójkąta, którego wierzchołkami są: punkt
P oraz punkty przecięcia obu prostych z osią
Ox.
Podaj najmniejsze możliwe pole powierzchni tego trójkąta.
Odpowiedź:
P_{min}=(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj największą możliwą długość boku tego trójkąta zawartego w osi układu
współrzędnych Ox.
Odpowiedź:
a_{max}=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30042 ⋅ Poprawnie: 54/113 [47%]
Rozwiąż nierówność g(x) \lessdot h(x),
gdzie h(x)=1+6x.
Rozwiązanie zapisz w postaci przedziału. Podaj sumę wszystkich końców liczbowych tych przedziałów.
Odpowiedź:
\frac{k}{n}=
(wpisz dwie liczby całkowite)
Zadanie 12.4 pkt ⋅ Numer: pp-30059 ⋅ Poprawnie: 99/146 [67%]