Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-05-funkcja-liniowa-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10943 ⋅ Poprawnie: 114/191 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Wiedząc, że h(x)=3\sqrt{3}-2x oblicz h\left(\frac{3\sqrt{3}-7}{2}\right).

Oceń prawdziwość poniższych zdań:

Odpowiedzi:
T/N : liczba ta jest złożona T/N : liczba ta jest pierwsza
Zadanie 2.  1 pkt ⋅ Numer: pp-10813 ⋅ Poprawnie: 211/389 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
Proste pokazane na rysunku
określone są równaniami 2x-4y=a, 3x+y=b i 3x+8y=c.

Wyznacz współczynniki a, b i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10920 ⋅ Poprawnie: 78/133 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Funkcja określona wzorem f(x)=\left(m^2-8m\right)x+5 spełnia warunek f(-5)=f(5).

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę całkowitą)
m_{max}= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10901 ⋅ Poprawnie: 79/140 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Proporcjonalnością prostą jest zależność opisana wzorem:
Odpowiedzi:
A. y=\frac{2}{\sqrt{2}x} B. y=\frac{4}{x}
C. y=\frac{\sqrt{2}x}{2} D. y=4x^2
Zadanie 5.  1 pkt ⋅ Numer: pp-10798 ⋅ Poprawnie: 36/81 [44%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Trójkąt o bokach długości 5, 2p+25, p+11 jest równoramienny.

Wyznacz p.

Odpowiedź:
p= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20309 ⋅ Poprawnie: 230/297 [77%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Oblicz miejsce zerowe funkcji f(x)= \begin{cases} 4+2x \text{, dla } x\leqslant 2 \\ x \text{, dla } x > 2 \end{cases} .
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20846 ⋅ Poprawnie: 143/220 [65%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Liczba b spełnia równanie (b+5)(b-1)=(b+2)(b+11)-3(b+3).

Podaj miejsce zerowe funkcji f(x)=-10x+b.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20449 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Wyznacz współczynnik kierunkowy m prostej przechodzącej przez punkty A=(-6-\sqrt{5},3-4\sqrt{5}) oraz B=(\sqrt{5}-2,3).

Podaj m.

Odpowiedź:
m= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20335 ⋅ Poprawnie: 24/84 [28%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Do wykresu nie stałej funkcji liniowej h(x)=bx+5ab należy punkt P=(b, 25a^2+5ab) oraz h(b+5a)\neq 75a^2.

Oblicz wartość ilorazu \frac{a}{b}.

Odpowiedź:
\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20300 ⋅ Poprawnie: 121/174 [69%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Suma cyfr liczby dwucyfrowej jest równa 6. Jeśli zamienimy miejscami cyfry w tej liczbie, to otrzymamy liczbę o 36 mniejszą.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30053 ⋅ Poprawnie: 38/222 [17%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=-\sqrt{3}x+am+b.

Wyznacz te wartości m, dla których miejscem zerowym funkcji jest liczba \sqrt{3}.

Dane
a=-8
b=4
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Dla jakich wartosci m wykres przecina oś Oy w punkcie o rzędnej 2?
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 11.3 (2 pkt)
 Dla m=-2 wyznacz współrzędne punktów przecięcia wykresu z osiami układu.

Ile wynosi suma czterech otrzymanych współrzędnych?

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30035 ⋅ Poprawnie: 31/98 [31%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 « Koszt dostarczenia przesyłki pocztą kurierską w danym mieście wynosił 5 zł, a poza granicami miasta 10 zł. W ciągu tygodnia jeden kurier dostarcza średnio 2300 przesyłek, przy czym 80\% tych przesyłek dostarcza poza granice miasta.

Oblicz, jaki tygodniowy zysk miała firma kurierska zatrudniająca 10 kurierów, jeśli jej tygodniowe koszty były następujące: na reklamę firma przeznaczała 25\% przychodów, a na płace 9000 zł (zysk = przychód - koszty).

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 12.2 (1 pkt)
 Oblicz, o ile złotych podwyższono cenę za jedną przesyłkę poza miasto, jeśli przychód tygodniowy po tej podwyżce był równy 427800.00 zł.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 12.3 (2 pkt)
 O ile procent zwiększył się tygodniowy zysk firmy po podwyższeniu opłaty za przesyłki poza granice miasta o kwotę z punktu b). Wynik podaj z dokładnością do 1%.
Odpowiedź:
[\%]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm