Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-10851 ⋅ Poprawnie: 156/248 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Wskaż parę prostych widocznych na rysunku:
Odpowiedzi:
A. y=-2x+2\wedge y=\frac{3}{2}x-2 B. y=-2x+2\wedge y=\frac{2}{3}x-2
C. y=-2x-2\wedge y=\frac{2}{3}x+2 D. y=-2x-2\wedge y=\frac{3}{2}x+2
Zadanie 2.  1 pkt ⋅ Numer: pp-11703 ⋅ Poprawnie: 38/47 [80%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} \frac{2}{3}x-4y=\frac{44}{3} \\ x-5y=48 \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10866 ⋅ Poprawnie: 143/231 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż układ nieoznaczony:
Odpowiedzi:
A. -6x+6y=2\ \wedge\ -3x+3y=1 B. -8y-8x=-8\ \wedge\ -3x-4y=-3
C. 2x-2y=-5\ \wedge\ 8x-8y=-5 D. 4x-2y=-2\ \wedge\ -y+2x=7
Zadanie 4.  1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb \left(\frac{43}{4},m+7\right) i (n+9,2) spełniały równanie \frac{1}{5}x-\frac{2}{5}y=-\frac{6}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10951 ⋅ Poprawnie: 101/134 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Sznurek o długości 25.2 metrów pocięto na trzy części, których stosunek długości jest równy 2:5:11.

Ile decymetrów ma najdłuższa z tych części?

Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż układ równań \begin{cases} \frac{1}{3}(x-3y)-x=3-\frac{1}{2}(x+3y-3) \\ \frac{1}{2}(x-15)-\frac{1}{4}(3y-18)=x+3y \end{cases} .

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20320 ⋅ Poprawnie: 106/257 [41%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Dla jakiej wartości parametru m proste, będące wykresami funkcji liniowych f(x)=2x+5 i g(x)=4x+1 przecinają się na prostej 7x-2y+m+6=0?
Odpowiedź:
P= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20838 ⋅ Poprawnie: 87/140 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Jeśli do liczby 35 dopiszemy cyfrę z przodu, to otrzymamy liczbę x. Jeśli do liczby 35 dopiszemy cyfrę z tyłu, to otrzymamy liczbę y. Różnica x-y jest równa 180, zaś suma cyfr dopisanych z przodu i z tyłu jesty równa 10.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20330 ⋅ Poprawnie: 490/707 [69%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
Suma cyfr liczby dwucyfrowej jest równa 12. Jeśli od cyfry dziesiątek odejmiemy 6, a do cyfry jedności dodamy 6, to otrzymana liczba będzie się składać z takich samych cyfr, ale zapisanych w odwrotnej kolejności.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm