Podgląd testu : lo2@sp-06-ukl-row-lin-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-10851 ⋅ Poprawnie: 156/248 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wskaż parę prostych widocznych na rysunku:
Odpowiedzi:
A. y=-2x-2\wedge y=\frac{2}{3}x+2
B. y=-2x+2\wedge y=\frac{2}{3}x-2
C. y=-2x+2\wedge y=\frac{3}{2}x-2
D. y=-2x-2\wedge y=\frac{3}{2}x+2
Zadanie 2. 1 pkt ⋅ Numer: pp-10873 ⋅ Poprawnie: 370/490 [75%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dany jest układ równań:
\begin{cases}
5y-3x=-14 \\
8x-6y=52
\end{cases}
.
Określ znaki liczb pary
(x,y) spełniającej
ten układ równań:
Odpowiedzi:
A. x \lessdot 0 \wedge y \lessdot 0
B. x > 0 \wedge y > 0
C. x \lessdot 0 \wedge y > 0
D. x > 0 \wedge y \lessdot 0
Zadanie 3. 1 pkt ⋅ Numer: pp-10867 ⋅ Poprawnie: 188/303 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wskaż układ równań sprzecznych:
Odpowiedzi:
A. 2x+3y=3\ \wedge\ -4x-6y=-6
B. -4x-8y=8\ \wedge\ -6y-3x=6
C. 4x+2y=6\ \wedge\ -6x-3y=-8
D. -7y-8x=1\ \wedge\ -4x+y=5
Zadanie 4. 1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz wartości parametrów
m i
n tak,
aby pary liczb
(1,m+3) i
(n+8,11) spełniały równanie
\frac{3}{10}x-\frac{1}{2}y=\frac{23}{10} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10947 ⋅ Poprawnie: 74/115 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Statek płynie ze stałą prędkością i w ciągu minuty przepływa
280 metrów.
Zalezność przepłyniętej drogi y w kilometrach od czasu
x w godzinach opisuje wzór y=a\cdot x .
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20325 ⋅ Poprawnie: 152/365 [41%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Rozwiąż układ równań
\begin{cases}
3x+2y=3 \\
y+2=\frac{3(1-x)+4}{2}
\end{cases}
.
Punkt A=(-10, m) należy do rozwiązania.
Podaj m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20320 ⋅ Poprawnie: 106/257 [41%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Dla jakiej wartości parametru
m proste,
będące wykresami funkcji liniowych
f(x)=2x+5 i
g(x)=4x+1 przecinają się na prostej
7x-2y+m+9=0 ?
Odpowiedź:
P=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
9 lat temu lipa była o
33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa
mają razem
248 lat.
Ile lat ma obecnie lipa?
Odpowiedź:
lipa=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
dab=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
««« Pewnego dnia Ola wyruszyła na szlak o godzinie 6
00 i szła z
prędkością
3 km/h. Po
120 minutach z tego samego miejsca wyruszyła na ten
sam szlak Ania i poruszała się po tej samej drodze z prędkością
7 km/h.
Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż