Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-10863 ⋅ Poprawnie: 271/452 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Układ równań \begin{cases} 5x-6y=2 \\ -6y+5x=2 \end{cases} :
Odpowiedzi:
A. jest nieoznaczony B. jest oznaczony
C. jest sprzeczny D. ma dwa rozwiązania
Zadanie 2.  1 pkt ⋅ Numer: pp-10873 ⋅ Poprawnie: 370/490 [75%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest układ równań: \begin{cases} -4y-4x=-48 \\ 8x+7y=89 \end{cases} . Określ znaki liczb pary (x,y) spełniającej ten układ równań:
Odpowiedzi:
A. x \lessdot 0 \wedge y > 0 B. x > 0 \wedge y \lessdot 0
C. x \lessdot 0 \wedge y \lessdot 0 D. x > 0 \wedge y > 0
Zadanie 3.  1 pkt ⋅ Numer: pp-10869 ⋅ Poprawnie: 431/746 [57%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Dane jest równanie 6x+5y-3=0. Z którym z poniższych równań tworzy ono układ równań sprzeczny:
Odpowiedzi:
A. 6x-5y-3=0 B. 12x-5y+3=0
C. 12x+10y+6=0 D. 12x-5y-3=0
Zadanie 4.  1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb (-1,m+9) i (n+7,16) spełniały równanie \frac{3}{10}x-\frac{1}{2}y=-\frac{4}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10955 ⋅ Poprawnie: 208/277 [75%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Trzy boki prostokąta mają w sumie długość 96. Trzy inne boki tego prostokąta mają w sumie długość 105.

Wyznacz długość obwodu tego prostokąta.

Odpowiedź:
L_{\square}= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż układ równań \begin{cases} \frac{1}{3}(x-6y)-x=6-\frac{1}{2}(x+6y-6) \\ \frac{1}{2}(x-30)-\frac{1}{4}(6y-36)=x+6y \end{cases} .

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż układ równań \begin{cases} x+0,75y=12 \\ 0,25y=2x-17 \end{cases} .

Podaj sumę x^2+y^2.

Odpowiedź:
x^2+y^2= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 54 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20330 ⋅ Poprawnie: 490/707 [69%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
Suma cyfr liczby dwucyfrowej jest równa 12. Jeśli od cyfry dziesiątek odejmiemy 6, a do cyfry jedności dodamy 6, to otrzymana liczba będzie się składać z takich samych cyfr, ale zapisanych w odwrotnej kolejności.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm