Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10872 ⋅ Poprawnie: 377/496 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Którą parę prostych pokazano na rysunku:
Odpowiedzi:
A. y=x-1\wedge y=-2x+4 B. y=x-1\wedge y=2x+4
C. y=x+1\wedge y=2x+4 D. y=x+1\wedge y=-2x+4
Zadanie 2.  1 pkt ⋅ Numer: pp-10868 ⋅ Poprawnie: 398/597 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Układ równań \begin{cases} \frac{4}{3}x+y=1 \\ 8x+6y=6 \end{cases} :
Odpowiedzi:
A. ma dokładnie jedno rozwiązanie B. ma nieskończenie wiele rozwiązań
C. ma dokładnie dwa rozwiązania D. jest sprzeczny
Zadanie 3.  1 pkt ⋅ Numer: pp-10852 ⋅ Poprawnie: 35/69 [50%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Dana jest prosta o równaniu k:4x+2y-5=0. Prosta k tworzy z prostą lukład sprzeczny.

Prosta l może być opisana równaniem:

Odpowiedzi:
A. l:-y-2x=\frac{5}{2} B. l:2x-4y-5=0
C. l:4x-2y-5=0 D. l:2x+y=\frac{5}{2}
Zadanie 4.  1 pkt ⋅ Numer: pp-11700 ⋅ Poprawnie: 12/22 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz równanie postaci x+ay=c, które spełniają wszystkie pary liczb postaci (5y+3,y).

Podaj liczby a i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10947 ⋅ Poprawnie: 74/115 [64%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Statek płynie ze stałą prędkością i w ciągu minuty przepływa 810 metrów.

Zalezność przepłyniętej drogi y w kilometrach od czasu x w godzinach opisuje wzór y=a\cdot x.

Wyznacz a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż układ równań \begin{cases} \frac{1}{3}(x-5y)-x=5-\frac{1}{2}(x+5y-5) \\ \frac{1}{2}(x-25)-\frac{1}{4}(5y-30)=x+5y \end{cases} .

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż układ równań \begin{cases} x+0,75y=8 \\ 0,25y=2x-9 \end{cases} .

Podaj sumę x^2+y^2.

Odpowiedź:
x^2+y^2= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 44 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 ««« Pewnego dnia Ola wyruszyła na szlak o godzinie 600 i szła z prędkością 3 km/h. Po 270 minutach z tego samego miejsca wyruszyła na ten sam szlak Ania i poruszała się po tej samej drodze z prędkością 7 km/h.

Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.

Odpowiedź:
t[min]=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « Dane są funkcje f(x)= \begin{cases} -2 \text{, dla } x \lessdot 4 \\ x-6\text{, dla } x\geqslant 4 \end{cases} oraz g(x)=\frac{1}{3}x+\frac{a}{3}.

Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.

Dane
a=9
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm