Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10850 ⋅ Poprawnie: 110/209 [52%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Układ równań
\begin{cases}
y=-2(a+3)x-2b+12 \\
y=\frac{4}{b-6}x+a+3
\end{cases}
ma nieskończenie wiele rozwiązań dla:
Odpowiedzi:
A. a=-5 \wedge b=7
B. a=-7 \wedge b=8
C. a=-4 \wedge b=7
D. a=-5 \wedge b=8
Zadanie 2. 1 pkt ⋅ Numer: pp-11693 ⋅ Poprawnie: 90/178 [50%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Rozwiąż układ równań metodą przeciwnych współczynników:
\begin{cases}
2x-5y=-25 \\
\frac{3}{4}x-2y=-\frac{41}{4}
\end{cases}
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10869 ⋅ Poprawnie: 431/746 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Dane jest równanie
2x+2y-3=0 . Z którym z poniższych
równań tworzy ono układ równań sprzeczny:
Odpowiedzi:
A. 2x-2y-3=0
B. 4x-2y-3=0
C. 4x-2y+3=0
D. 4x+4y+6=0
Zadanie 4. 1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz wartości parametrów
m i
n tak,
aby pary liczb
\left(\frac{27}{4},m-7\right) i
(n+7,-7) spełniały równanie
\frac{1}{5}x-\frac{2}{5}y=\frac{8}{5} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10950 ⋅ Poprawnie: 173/201 [86%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Sznurek o długości
264 metrów pocięto na trzy części,
których stosunek długości jest równy
3:4:5 .
Ile metrów ma najdłuższa z tych części?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20325 ⋅ Poprawnie: 152/365 [41%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Rozwiąż układ równań
\begin{cases}
3x+2y=3 \\
y+2=\frac{3(1-x)+4}{2}
\end{cases}
.
Punkt A=(4, m) należy do rozwiązania.
Podaj m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż układ równań
\begin{cases}
x+0,75y=6 \\
0,25y=2x-5
\end{cases}
.
Podaj sumę x^2+y^2 .
Odpowiedź:
x^2+y^2=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
39 lat temu lipa była o
33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa
mają razem
248 lat.
Ile lat ma obecnie lipa?
Odpowiedź:
lipa=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
dab=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20330 ⋅ Poprawnie: 490/707 [69%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Suma cyfr liczby dwucyfrowej jest równa
12 .
Jeśli od cyfry dziesiątek odejmiemy
6 , a do cyfry
jedności dodamy
6 , to otrzymana liczba będzie się
składać z takich samych cyfr, ale zapisanych w odwrotnej kolejności.
Wyznacz tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%]
Rozwiąż
Podpunkt 10.1 (4 pkt)
« Dane są funkcje
f(x)=
\begin{cases}
-2 \text{, dla } x \lessdot 4 \\
x-6\text{, dla } x\geqslant 4
\end{cases}
oraz
g(x)=\frac{1}{3}x+\frac{a}{3} .
Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż