Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10874 ⋅ Poprawnie: 704/848 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Rozwiązaniem układu równań \begin{cases} 2x+y=-4 \\ -7x-6y=\frac{23}{2} \end{cases} jest para liczb:
Odpowiedzi:
A. x=-\frac{3}{2}\wedge y=1 B. x=-\frac{7}{2}\wedge y=\frac{3}{2}
C. x=-\frac{5}{2}\wedge y=2 D. x=-\frac{5}{2}\wedge y=1
Zadanie 2.  1 pkt ⋅ Numer: pp-10868 ⋅ Poprawnie: 398/597 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Układ równań \begin{cases} \frac{1}{3}x-2y=4 \\ -6x+4y=-2 \end{cases} :
Odpowiedzi:
A. jest sprzeczny B. ma dokładnie dwa rozwiązania
C. ma nieskończenie wiele rozwiązań D. ma dokładnie jedno rozwiązanie
Zadanie 3.  1 pkt ⋅ Numer: pp-10853 ⋅ Poprawnie: 528/694 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Ile rozwiązań ma układ równań \begin{cases} \frac{1}{2}x+\frac{1}{4}y=4 \\ -2x-y=-12 \end{cases} :
Odpowiedzi:
A. nieskończenie wiele B. 1
C. 0 D. 2
Zadanie 4.  1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb \left(\frac{31}{4},m-2\right) i (n-1,-4) spełniały równanie \frac{1}{5}x-\frac{2}{5}y=\frac{3}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10952 ⋅ Poprawnie: 185/221 [83%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kolejka górska porusza się ze stałą prędkością 55 km/h.

Zalezność przebytej drogi s od czasu t opisuje wzór:

Odpowiedzi:
A. s=55\cdot t B. s=\frac{55}{t}
C. s=t+55 D. s=\frac{t}{55}
Zadanie 6.  2 pkt ⋅ Numer: pp-20325 ⋅ Poprawnie: 152/365 [41%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Rozwiąż układ równań \begin{cases} 3x+2y=3 \\ y+2=\frac{3(1-x)+4}{2} \end{cases} .

Punkt A=(-6, m) należy do rozwiązania. Podaj m.

Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż układ równań \begin{cases} x+0,75y=-4 \\ 0,25y=2x+15 \end{cases} .

Podaj sumę x^2+y^2.

Odpowiedź:
x^2+y^2= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 19 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 ««« Pewnego dnia Ola wyruszyła na szlak o godzinie 600 i szła z prędkością 3 km/h. Po 150 minutach z tego samego miejsca wyruszyła na ten sam szlak Ania i poruszała się po tej samej drodze z prędkością 7 km/h.

Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.

Odpowiedź:
t[min]=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « Dane są funkcje f(x)= \begin{cases} -2 \text{, dla } x \lessdot 4 \\ x-6\text{, dla } x\geqslant 4 \end{cases} oraz g(x)=\frac{1}{3}x+\frac{a}{3}.

Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.

Dane
a=4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm