Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10874 ⋅ Poprawnie: 704/848 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Rozwiązaniem układu równań
\begin{cases}
-2x-3y=\frac{1}{2} \\
-x-7y=\frac{17}{2}
\end{cases}
jest para liczb:
Odpowiedzi:
A. x=2\wedge y=-\frac{1}{2}
B. x=3\wedge y=-\frac{3}{2}
C. x=1\wedge y=-1
D. x=2\wedge y=-\frac{3}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11693 ⋅ Poprawnie: 90/178 [50%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Rozwiąż układ równań metodą przeciwnych współczynników:
\begin{cases}
2x-5y=32 \\
\frac{3}{4}x-2y=12
\end{cases}
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10867 ⋅ Poprawnie: 188/303 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wskaż układ równań sprzecznych:
Odpowiedzi:
A. 8y+5x=-3\ \wedge\ -x-8y=5
B. 7x+7y=-3\ \wedge\ -5x-5y=4
C. 8x-8y=-3\ \wedge\ -8x+8y=3
D. 2x-4y=-4\ \wedge\ -2y+x=-2
Zadanie 4. 1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz wartości parametrów
m i
n tak,
aby pary liczb
\left(-\frac{17}{4},m+6\right) i
(n-6,2) spełniały równanie
\frac{1}{5}x-\frac{2}{5}y=-\frac{21}{5} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10950 ⋅ Poprawnie: 173/201 [86%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Sznurek o długości
144 metrów pocięto na trzy części,
których stosunek długości jest równy
2:6:10 .
Ile metrów ma najdłuższa z tych części?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Rozwiąż układ równań
\begin{cases}
\frac{1}{3}(x-3y)-x=3-\frac{1}{2}(x+3y-3) \\
\frac{1}{2}(x-15)-\frac{1}{4}(3y-18)=x+3y
\end{cases}
.
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20320 ⋅ Poprawnie: 106/257 [41%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Dla jakiej wartości parametru
m proste,
będące wykresami funkcji liniowych
f(x)=2x+5 i
g(x)=4x+1 przecinają się na prostej
7x-2y+m+3=0 ?
Odpowiedź:
P=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20326 ⋅ Poprawnie: 637/941 [67%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Kinga jest o
8 lat starsza od Kamila.
3 lat temu Kamil był dwa razy młodszy pod Kingi.
Ile lat ma teraz Kamil.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
««« Pewnego dnia Ola wyruszyła na szlak o godzinie 6
00 i szła z
prędkością
3 km/h. Po
180 minutach z tego samego miejsca wyruszyła na ten
sam szlak Ania i poruszała się po tej samej drodze z prędkością
7 km/h.
Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%]
Rozwiąż
Podpunkt 10.1 (4 pkt)
« Dane są funkcje
f(x)=
\begin{cases}
-2 \text{, dla } x \lessdot 4 \\
x-6\text{, dla } x\geqslant 4
\end{cases}
oraz
g(x)=\frac{1}{3}x+\frac{a}{3} .
Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.
Dane
a=5
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż