Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10863 ⋅ Poprawnie: 271/452 [59%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Układ równań \begin{cases} 7x-5y=1 \\ 6y+6x=-6 \end{cases} :
Odpowiedzi:
A. ma dwa rozwiązania B. jest nieoznaczony
C. jest sprzeczny D. jest oznaczony
Zadanie 2.  1 pkt ⋅ Numer: pp-10873 ⋅ Poprawnie: 370/490 [75%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest układ równań: \begin{cases} 6y-5x=88 \\ 6x+y=-40 \end{cases} . Określ znaki liczb pary (x,y) spełniającej ten układ równań:
Odpowiedzi:
A. x > 0 \wedge y \lessdot 0 B. x \lessdot 0 \wedge y > 0
C. x \lessdot 0 \wedge y \lessdot 0 D. x > 0 \wedge y > 0
Zadanie 3.  1 pkt ⋅ Numer: pp-10867 ⋅ Poprawnie: 188/303 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż układ równań sprzecznych:
Odpowiedzi:
A. 8y+2x=-5\ \wedge\ x-7y=4 B. -7x-7y=-4\ \wedge\ -x-y=1
C. 8x+8y=-4\ \wedge\ 2y+2x=-1 D. 5x+3y=-3\ \wedge\ -5x-3y=3
Zadanie 4.  1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb (-12,m+2) i (n-11,16) spełniały równanie \frac{3}{10}x-\frac{1}{2}y=-\frac{41}{10}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10952 ⋅ Poprawnie: 185/221 [83%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kolejka górska porusza się ze stałą prędkością 40 km/h.

Zalezność przebytej drogi s od czasu t opisuje wzór:

Odpowiedzi:
A. s=t+40 B. s=\frac{40}{t}
C. s=\frac{t}{40} D. s=40\cdot t
Zadanie 6.  2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż układ równań \begin{cases} \frac{1}{3}(x-2y)-x=2-\frac{1}{2}(x+2y-2) \\ \frac{1}{2}(x-10)-\frac{1}{4}(2y-12)=x+2y \end{cases} .

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż układ równań \begin{cases} x+0,75y=-6 \\ 0,25y=2x+19 \end{cases} .

Podaj sumę x^2+y^2.

Odpowiedź:
x^2+y^2= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 14 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20330 ⋅ Poprawnie: 490/707 [69%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
Suma cyfr liczby dwucyfrowej jest równa 12. Jeśli od cyfry dziesiątek odejmiemy 6, a do cyfry jedności dodamy 6, to otrzymana liczba będzie się składać z takich samych cyfr, ale zapisanych w odwrotnej kolejności.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « Dane są funkcje f(x)= \begin{cases} -2 \text{, dla } x \lessdot 4 \\ x-6\text{, dla } x\geqslant 4 \end{cases} oraz g(x)=\frac{1}{3}x+\frac{a}{3}.

Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.

Dane
a=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm