Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10850 ⋅ Poprawnie: 110/209 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Układ równań \begin{cases} y=-2(a-1)x-2b-6 \\ y=\frac{4}{b+3}x+a-1 \end{cases} ma nieskończenie wiele rozwiązań dla:
Odpowiedzi:
A. a=-1 \wedge b=-1 B. a=0 \wedge b=-2
C. a=-3 \wedge b=-1 D. a=-1 \wedge b=-2
Zadanie 2.  1 pkt ⋅ Numer: pp-10868 ⋅ Poprawnie: 398/597 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Układ równań \begin{cases} -2x+2y=-3 \\ 2x-2y=-6 \end{cases} :
Odpowiedzi:
A. ma dokładnie dwa rozwiązania B. jest sprzeczny
C. ma dokładnie jedno rozwiązanie D. ma nieskończenie wiele rozwiązań
Zadanie 3.  1 pkt ⋅ Numer: pp-10866 ⋅ Poprawnie: 143/231 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż układ nieoznaczony:
Odpowiedzi:
A. 2x+2y=7\ \wedge\ -3y-3x=1 B. -3y+2x=1\ \wedge\ -4x+y=-4
C. -3x+3y=-3\ \wedge\ -x+y=2 D. 8x+8y=4\ \wedge\ -8x-8y=-4
Zadanie 4.  1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb \left(-\frac{13}{4},m+11\right) i (n-2,-1) spełniały równanie \frac{1}{5}x-\frac{2}{5}y=-\frac{14}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10956 ⋅ Poprawnie: 213/385 [55%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Marta ma 9 razy więcej sióstr niż braci, zaś jej brat Tomek ma 19 razy więcej sióstr niż braci.

Ile dzieci jest w tej rodzinie?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż układ równań \begin{cases} \frac{1}{3}(x-4y)-x=4-\frac{1}{2}(x+4y-4) \\ \frac{1}{2}(x-20)-\frac{1}{4}(4y-24)=x+4y \end{cases} .

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż układ równań \begin{cases} x+0,75y=0 \\ 0,25y=2x+7 \end{cases} .

Podaj sumę x^2+y^2.

Odpowiedź:
x^2+y^2= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20838 ⋅ Poprawnie: 87/140 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Jeśli do liczby 40 dopiszemy cyfrę z przodu, to otrzymamy liczbę x. Jeśli do liczby 40 dopiszemy cyfrę z tyłu, to otrzymamy liczbę y. Różnica x-y jest równa 232, zaś suma cyfr dopisanych z przodu i z tyłu jesty równa 14.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 ««« Pewnego dnia Ola wyruszyła na szlak o godzinie 600 i szła z prędkością 3 km/h. Po 210 minutach z tego samego miejsca wyruszyła na ten sam szlak Ania i poruszała się po tej samej drodze z prędkością 7 km/h.

Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.

Odpowiedź:
t[min]=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « Dane są funkcje f(x)= \begin{cases} -2 \text{, dla } x \lessdot 4 \\ x-6\text{, dla } x\geqslant 4 \end{cases} oraz g(x)=\frac{1}{3}x+\frac{a}{3}.

Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm