Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10874 ⋅ Poprawnie: 704/848 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Rozwiązaniem układu równań
\begin{cases}
-5x+7y=-\frac{9}{2} \\
3x-5y=\frac{3}{2}
\end{cases}
jest para liczb:
Odpowiedzi:
A. x=3\wedge y=\frac{3}{2}
B. x=2\wedge y=2
C. x=3\wedge y=\frac{5}{2}
D. x=4\wedge y=\frac{3}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11702 ⋅ Poprawnie: 21/30 [70%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Rozwiąż układ równań metodą przeciwnych współczynników:
\begin{cases}
1,2x-\frac{2}{5}y=\frac{124}{5} \\
\frac{2}{3}y+0,2x=\frac{7}{15}
\end{cases}
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10870 ⋅ Poprawnie: 368/586 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Układ równań
\begin{cases}
2x+3y=1\\
-4x-6y=-2
\end{cases}
opisuje w układzie współrzędnych na płaszczyźnie:
Odpowiedzi:
A. zbiór pusty
B. zbiór nieskończony
C. zbiór dwuelementowy
D. zbiór jednoelementowy
Zadanie 4. 1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz wartości parametrów
m i
n tak,
aby pary liczb
(-4,m-3) i
(n+5,3) spełniały równanie
\frac{3}{10}x-\frac{1}{2}y=\frac{24}{5} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10954 ⋅ Poprawnie: 198/258 [76%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Pierwsza rata, która stanowi
22\% ceny roweru
szosowego, jest o
547 zł niższa od raty drugiej,
która stanowi
72\% ceny roweru.
Ile złotych kosztuje rower?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20325 ⋅ Poprawnie: 152/365 [41%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Rozwiąż układ równań
\begin{cases}
3x+2y=3 \\
y+2=\frac{3(1-x)+4}{2}
\end{cases}
.
Punkt A=(6, m) należy do rozwiązania.
Podaj m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20320 ⋅ Poprawnie: 106/257 [41%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Dla jakiej wartości parametru
m proste,
będące wykresami funkcji liniowych
f(x)=2x+5 i
g(x)=4x+1 przecinają się na prostej
7x-2y+m-5=0 ?
Odpowiedź:
P=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20838 ⋅ Poprawnie: 87/140 [62%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Jeśli do liczby
45 dopiszemy cyfrę z przodu, to otrzymamy
liczbę
x . Jeśli do liczby
45
dopiszemy cyfrę z tyłu, to otrzymamy liczbę
y . Różnica
x-y jest równa
389 , zaś suma
cyfr dopisanych z przodu i z tyłu jesty równa
14 .
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
««« Pewnego dnia Ola wyruszyła na szlak o godzinie 6
00 i szła z
prędkością
3 km/h. Po
300 minutach z tego samego miejsca wyruszyła na ten
sam szlak Ania i poruszała się po tej samej drodze z prędkością
7 km/h.
Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%]
Rozwiąż
Podpunkt 10.1 (4 pkt)
« Dane są funkcje
f(x)=
\begin{cases}
-2 \text{, dla } x \lessdot 4 \\
x-6\text{, dla } x\geqslant 4
\end{cases}
oraz
g(x)=\frac{1}{3}x+\frac{a}{3} .
Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.
Dane
a=9
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż