Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10872 ⋅ Poprawnie: 377/496 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Którą parę prostych pokazano na rysunku:
Odpowiedzi:
A. y=x+1\wedge y=-2x+4 B. y=x-1\wedge y=-2x+4
C. y=x+1\wedge y=2x+4 D. y=x-1\wedge y=2x+4
Zadanie 2.  1 pkt ⋅ Numer: pp-11693 ⋅ Poprawnie: 90/178 [50%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} 2x-5y=47 \\ \frac{3}{4}x-2y=\frac{37}{2} \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10866 ⋅ Poprawnie: 143/231 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż układ nieoznaczony:
Odpowiedzi:
A. 7x+7y=-2\ \wedge\ 6y+6x=8 B. 7x+4y=-3\ \wedge\ -7x-4y=3
C. x-2y=-7\ \wedge\ -3x+6y=-5 D. -3y+7x=-1\ \wedge\ x-4y=4
Zadanie 4.  1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb (-11,m+9) i (n-3,16) spełniały równanie \frac{3}{10}x-\frac{1}{2}y=-\frac{19}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10949 ⋅ Poprawnie: 169/210 [80%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do pewnej liczby m dodano 93. Otrzymaną sumę podzielono przez 2. W wyniku tego działania otrzymano liczbę 2 razy większą od liczby m.

Wyznacz m.

Odpowiedź:
m=\frac{a}{b}=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20325 ⋅ Poprawnie: 152/365 [41%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Rozwiąż układ równań \begin{cases} 3x+2y=3 \\ y+2=\frac{3(1-x)+4}{2} \end{cases} .

Punkt A=(4, m) należy do rozwiązania. Podaj m.

Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20320 ⋅ Poprawnie: 106/257 [41%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Dla jakiej wartości parametru m proste, będące wykresami funkcji liniowych f(x)=2x+5 i g(x)=4x+1 przecinają się na prostej 7x-2y+m-3=0?
Odpowiedź:
P= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20838 ⋅ Poprawnie: 87/140 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Jeśli do liczby 40 dopiszemy cyfrę z przodu, to otrzymamy liczbę x. Jeśli do liczby 40 dopiszemy cyfrę z tyłu, to otrzymamy liczbę y. Różnica x-y jest równa 337, zaś suma cyfr dopisanych z przodu i z tyłu jesty równa 10.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 ««« Pewnego dnia Ola wyruszyła na szlak o godzinie 600 i szła z prędkością 3 km/h. Po 270 minutach z tego samego miejsca wyruszyła na ten sam szlak Ania i poruszała się po tej samej drodze z prędkością 7 km/h.

Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.

Odpowiedź:
t[min]=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « Dane są funkcje f(x)= \begin{cases} -2 \text{, dla } x \lessdot 4 \\ x-6\text{, dla } x\geqslant 4 \end{cases} oraz g(x)=\frac{1}{3}x+\frac{a}{3}.

Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm