Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10865 ⋅ Poprawnie: 281/430 [65%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Układ równań \begin{cases} 4x+3y=-3 \\ -6y=6+8x \end{cases} :
Odpowiedzi:
A. jest oznaczony B. jest nieoznaczony
C. ma dwa rozwiązania D. jest sprzeczny
Zadanie 2.  1 pkt ⋅ Numer: pp-10873 ⋅ Poprawnie: 370/490 [75%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dany jest układ równań: \begin{cases} 8y-7x=-126 \\ 5x-6y=92 \end{cases} . Określ znaki liczb pary (x,y) spełniającej ten układ równań:
Odpowiedzi:
A. x > 0 \wedge y \lessdot 0 B. x \lessdot 0 \wedge y > 0
C. x \lessdot 0 \wedge y \lessdot 0 D. x > 0 \wedge y > 0
Zadanie 3.  1 pkt ⋅ Numer: pp-10870 ⋅ Poprawnie: 368/586 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Układ równań \begin{cases} 4x-3y=-4\\ -3x-4y=-12 \end{cases} opisuje w układzie współrzędnych na płaszczyźnie:
Odpowiedzi:
A. zbiór nieskończony B. zbiór pusty
C. zbiór dwuelementowy D. zbiór jednoelementowy
Zadanie 4.  1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb \left(-\frac{17}{4},m+15\right) i (n-12,3) spełniały równanie \frac{1}{5}x-\frac{2}{5}y=-\frac{23}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10950 ⋅ Poprawnie: 173/201 [86%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Sznurek o długości 408 metrów pocięto na trzy części, których stosunek długości jest równy 7:9:18.

Ile metrów ma najdłuższa z tych części?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20325 ⋅ Poprawnie: 152/365 [41%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Rozwiąż układ równań \begin{cases} 3x+2y=3 \\ y+2=\frac{3(1-x)+4}{2} \end{cases} .

Punkt A=(10, m) należy do rozwiązania. Podaj m.

Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż układ równań \begin{cases} x+0,75y=12 \\ 0,25y=2x-17 \end{cases} .

Podaj sumę x^2+y^2.

Odpowiedź:
x^2+y^2= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20838 ⋅ Poprawnie: 87/140 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Jeśli do liczby 42 dopiszemy cyfrę z przodu, to otrzymamy liczbę x. Jeśli do liczby 42 dopiszemy cyfrę z tyłu, to otrzymamy liczbę y. Różnica x-y jest równa 113, zaś suma cyfr dopisanych z przodu i z tyłu jesty równa 14.

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Podaj liczbę y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 ««« Pewnego dnia Ola wyruszyła na szlak o godzinie 600 i szła z prędkością 3 km/h. Po 330 minutach z tego samego miejsca wyruszyła na ten sam szlak Ania i poruszała się po tej samej drodze z prędkością 7 km/h.

Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.

Odpowiedź:
t[min]=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « Dane są funkcje f(x)= \begin{cases} -2 \text{, dla } x \lessdot 4 \\ x-6\text{, dla } x\geqslant 4 \end{cases} oraz g(x)=\frac{1}{3}x+\frac{a}{3}.

Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.

Dane
a=11
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm