Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10850 ⋅ Poprawnie: 110/209 [52%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Układ równań \begin{cases} y=-2(a+2)x-2b+14 \\ y=\frac{4}{b-7}x+a+2 \end{cases} ma nieskończenie wiele rozwiązań dla:
Odpowiedzi:
A. a=-3 \wedge b=8 B. a=-4 \wedge b=8
C. a=-6 \wedge b=9 D. a=-4 \wedge b=9
Zadanie 2.  1 pkt ⋅ Numer: pp-11702 ⋅ Poprawnie: 21/30 [70%] Rozwiąż 
Podpunkt 2.1 (0.5 pkt)
 Rozwiąż układ równań metodą przeciwnych współczynników: \begin{cases} 1,2x-\frac{2}{5}y=22 \\ \frac{2}{3}y+0,2x=\frac{143}{15} \end{cases}

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10867 ⋅ Poprawnie: 188/303 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wskaż układ równań sprzecznych:
Odpowiedzi:
A. -x+y=1\ \wedge\ -4x+4y=-5 B. -4y-x=-7\ \wedge\ 2x+7y=6
C. 8x-4y=5\ \wedge\ -8x+4y=-5 D. -4x-2y=-8\ \wedge\ y+2x=4
Zadanie 4.  1 pkt ⋅ Numer: pp-11700 ⋅ Poprawnie: 12/22 [54%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zapisz równanie postaci x+ay=c, które spełniają wszystkie pary liczb postaci (2y-8,y).

Podaj liczby a i c.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10952 ⋅ Poprawnie: 185/221 [83%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kolejka górska porusza się ze stałą prędkością 115 km/h.

Zalezność przebytej drogi s od czasu t opisuje wzór:

Odpowiedzi:
A. s=115\cdot t B. s=t+115
C. s=\frac{t}{115} D. s=\frac{115}{t}
Zadanie 6.  2 pkt ⋅ Numer: pp-20325 ⋅ Poprawnie: 152/365 [41%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 » Rozwiąż układ równań \begin{cases} 3x+2y=3 \\ y+2=\frac{3(1-x)+4}{2} \end{cases} .

Punkt A=(2, m) należy do rozwiązania. Podaj m.

Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż układ równań \begin{cases} x+0,75y=4 \\ 0,25y=2x-1 \end{cases} .

Podaj sumę x^2+y^2.

Odpowiedź:
x^2+y^2= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 39 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 ««« Pewnego dnia Ola wyruszyła na szlak o godzinie 600 i szła z prędkością 3 km/h. Po 240 minutach z tego samego miejsca wyruszyła na ten sam szlak Ania i poruszała się po tej samej drodze z prędkością 7 km/h.

Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.

Odpowiedź:
t[min]=
(wpisz dwie liczby całkowite)
Zadanie 10.  4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « Dane są funkcje f(x)= \begin{cases} -2 \text{, dla } x \lessdot 4 \\ x-6\text{, dla } x\geqslant 4 \end{cases} oraz g(x)=\frac{1}{3}x+\frac{a}{3}.

Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm