Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10863 ⋅ Poprawnie: 271/452 [59%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Układ równań
\begin{cases}
7x-5y=1 \\
6y+6x=-6
\end{cases}
:
Odpowiedzi:
A. ma dwa rozwiązania
B. jest nieoznaczony
C. jest sprzeczny
D. jest oznaczony
Zadanie 2. 1 pkt ⋅ Numer: pp-10873 ⋅ Poprawnie: 370/490 [75%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dany jest układ równań:
\begin{cases}
6y-5x=88 \\
6x+y=-40
\end{cases}
.
Określ znaki liczb pary
(x,y) spełniającej
ten układ równań:
Odpowiedzi:
A. x > 0 \wedge y \lessdot 0
B. x \lessdot 0 \wedge y > 0
C. x \lessdot 0 \wedge y \lessdot 0
D. x > 0 \wedge y > 0
Zadanie 3. 1 pkt ⋅ Numer: pp-10867 ⋅ Poprawnie: 188/303 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wskaż układ równań sprzecznych:
Odpowiedzi:
A. 8y+2x=-5\ \wedge\ x-7y=4
B. -7x-7y=-4\ \wedge\ -x-y=1
C. 8x+8y=-4\ \wedge\ 2y+2x=-1
D. 5x+3y=-3\ \wedge\ -5x-3y=3
Zadanie 4. 1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz wartości parametrów
m i
n tak,
aby pary liczb
(-12,m+2) i
(n-11,16) spełniały równanie
\frac{3}{10}x-\frac{1}{2}y=-\frac{41}{10} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10952 ⋅ Poprawnie: 185/221 [83%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kolejka górska porusza się ze stałą prędkością
40 km/h.
Zalezność przebytej drogi s od czasu
t opisuje wzór:
Odpowiedzi:
A. s=t+40
B. s=\frac{40}{t}
C. s=\frac{t}{40}
D. s=40\cdot t
Zadanie 6. 2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Rozwiąż układ równań
\begin{cases}
\frac{1}{3}(x-2y)-x=2-\frac{1}{2}(x+2y-2) \\
\frac{1}{2}(x-10)-\frac{1}{4}(2y-12)=x+2y
\end{cases}
.
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż układ równań
\begin{cases}
x+0,75y=-6 \\
0,25y=2x+19
\end{cases}
.
Podaj sumę x^2+y^2 .
Odpowiedź:
x^2+y^2=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
14 lat temu lipa była o
33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa
mają razem
248 lat.
Ile lat ma obecnie lipa?
Odpowiedź:
lipa=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
dab=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20330 ⋅ Poprawnie: 490/707 [69%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Suma cyfr liczby dwucyfrowej jest równa
12 .
Jeśli od cyfry dziesiątek odejmiemy
6 , a do cyfry
jedności dodamy
6 , to otrzymana liczba będzie się
składać z takich samych cyfr, ale zapisanych w odwrotnej kolejności.
Wyznacz tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%]
Rozwiąż
Podpunkt 10.1 (4 pkt)
« Dane są funkcje
f(x)=
\begin{cases}
-2 \text{, dla } x \lessdot 4 \\
x-6\text{, dla } x\geqslant 4
\end{cases}
oraz
g(x)=\frac{1}{3}x+\frac{a}{3} .
Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.
Dane
a=3
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż