Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10874 ⋅ Poprawnie: 704/848 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Rozwiązaniem układu równań
\begin{cases}
-x-7y=-\frac{39}{2} \\
3x+2y=\frac{3}{2}
\end{cases}
jest para liczb:
Odpowiedzi:
A. x=-\frac{3}{2}\wedge y=4
B. x=-\frac{1}{2}\wedge y=3
C. x=-\frac{3}{2}\wedge y=3
D. x=-\frac{5}{2}\wedge y=\frac{7}{2}
Zadanie 2. 1 pkt ⋅ Numer: pp-11702 ⋅ Poprawnie: 21/30 [70%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Rozwiąż układ równań metodą przeciwnych współczynników:
\begin{cases}
1,2x-\frac{2}{5}y=30 \\
\frac{2}{3}y+0,2x=\frac{47}{5}
\end{cases}
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10866 ⋅ Poprawnie: 143/231 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Wskaż układ nieoznaczony:
Odpowiedzi:
A. -8x+6y=3\ \wedge\ 3y-4x=8
B. 4x-3y=1\ \wedge\ -8x+6y=-2
C. 4x+3y=7\ \wedge\ 8x+6y=-7
D. -6y+3x=-2\ \wedge\ 7x+6y=-2
Zadanie 4. 1 pkt ⋅ Numer: pp-11592 ⋅ Poprawnie: 33/43 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz wartości parametrów
m i
n tak,
aby pary liczb
\left(\frac{47}{4},m-5\right) i
(n+4,-8) spełniały równanie
\frac{1}{5}x-\frac{2}{5}y=3 .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10953 ⋅ Poprawnie: 36/83 [43%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Halę targową budowało
n=62 osób przez
291 dni. Teraz taką samą halę trzeba wybudować
w innym mieście w
186 dni.
Ile osób należy zatrudnić?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Rozwiąż układ równań
\begin{cases}
\frac{1}{3}(x-3y)-x=3-\frac{1}{2}(x+3y-3) \\
\frac{1}{2}(x-15)-\frac{1}{4}(3y-18)=x+3y
\end{cases}
.
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż układ równań
\begin{cases}
x+0,75y=-4 \\
0,25y=2x+15
\end{cases}
.
Podaj sumę x^2+y^2 .
Odpowiedź:
x^2+y^2=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
19 lat temu lipa była o
33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa
mają razem
248 lat.
Ile lat ma obecnie lipa?
Odpowiedź:
lipa=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
dab=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
««« Pewnego dnia Ola wyruszyła na szlak o godzinie 6
00 i szła z
prędkością
3 km/h. Po
180 minutach z tego samego miejsca wyruszyła na ten
sam szlak Ania i poruszała się po tej samej drodze z prędkością
7 km/h.
Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%]
Rozwiąż
Podpunkt 10.1 (4 pkt)
« Dane są funkcje
f(x)=
\begin{cases}
-2 \text{, dla } x \lessdot 4 \\
x-6\text{, dla } x\geqslant 4
\end{cases}
oraz
g(x)=\frac{1}{3}x+\frac{a}{3} .
Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż