Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10872 ⋅ Poprawnie: 377/496 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Którą parę prostych pokazano na rysunku:
Odpowiedzi:
A. y=x+1\wedge y=2x+4
B. y=x-1\wedge y=2x+4
C. y=x+1\wedge y=-2x+4
D. y=x-1\wedge y=-2x+4
Zadanie 2. 1 pkt ⋅ Numer: pp-11694 ⋅ Poprawnie: 40/101 [39%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Rozwiąż układ równań metodą przeciwnych współczynników:
\begin{cases}
\frac{2}{5}x+\frac{1}{3}y=-2 \\
\frac{1}{2}x-\frac{2}{9}y=-\frac{19}{3}
\end{cases}
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10869 ⋅ Poprawnie: 431/746 [57%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Dane jest równanie
4x+7y-3=0 . Z którym z poniższych
równań tworzy ono układ równań sprzeczny:
Odpowiedzi:
A. 8x-7y-3=0
B. 8x+14y+6=0
C. 8x-7y+3=0
D. 4x-7y-3=0
Zadanie 4. 1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz wartości parametrów
m i
n tak,
aby pary liczb
(1,m+12) i
(n+11,17) spełniały równanie
\frac{3}{10}x-\frac{1}{2}y=-\frac{7}{10} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10950 ⋅ Poprawnie: 173/201 [86%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Sznurek o długości
264 metrów pocięto na trzy części,
których stosunek długości jest równy
7:11:26 .
Ile metrów ma najdłuższa z tych części?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Rozwiąż układ równań
\begin{cases}
\frac{1}{3}(x-6y)-x=6-\frac{1}{2}(x+6y-6) \\
\frac{1}{2}(x-30)-\frac{1}{4}(6y-36)=x+6y
\end{cases}
.
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20320 ⋅ Poprawnie: 106/257 [41%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Dla jakiej wartości parametru
m proste,
będące wykresami funkcji liniowych
f(x)=2x+5 i
g(x)=4x+1 przecinają się na prostej
7x-2y+m-7=0 ?
Odpowiedź:
P=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
49 lat temu lipa była o
33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa
mają razem
248 lat.
Ile lat ma obecnie lipa?
Odpowiedź:
lipa=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
dab=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20330 ⋅ Poprawnie: 490/707 [69%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Suma cyfr liczby dwucyfrowej jest równa
12 .
Jeśli od cyfry dziesiątek odejmiemy
6 , a do cyfry
jedności dodamy
6 , to otrzymana liczba będzie się
składać z takich samych cyfr, ale zapisanych w odwrotnej kolejności.
Wyznacz tę liczbę.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 10. 4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%]
Rozwiąż
Podpunkt 10.1 (4 pkt)
« Dane są funkcje
f(x)=
\begin{cases}
-2 \text{, dla } x \lessdot 4 \\
x-6\text{, dla } x\geqslant 4
\end{cases}
oraz
g(x)=\frac{1}{3}x+\frac{a}{3} .
Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.
Dane
a=10
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż