Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10874 ⋅ Poprawnie: 704/848 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Rozwiązaniem układu równań
\begin{cases}
-2x-8y=17 \\
-3x-y=-\frac{15}{2}
\end{cases}
jest para liczb:
Odpowiedzi:
A. x=\frac{5}{2}\wedge y=-\frac{5}{2}
B. x=\frac{7}{2}\wedge y=-2
C. x=\frac{7}{2}\wedge y=-3
D. x=\frac{9}{2}\wedge y=-3
Zadanie 2. 1 pkt ⋅ Numer: pp-11694 ⋅ Poprawnie: 40/101 [39%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Rozwiąż układ równań metodą przeciwnych współczynników:
\begin{cases}
\frac{2}{5}x+\frac{1}{3}y=\frac{28}{15} \\
\frac{1}{2}x-\frac{2}{9}y=\frac{19}{18}
\end{cases}
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10852 ⋅ Poprawnie: 35/69 [50%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Dana jest prosta o równaniu
k:-8x+7y-7=0 . Prosta
k tworzy z prostą
l układ
sprzeczny.
Prosta l może być opisana równaniem:
Odpowiedzi:
A. l:-4x+\frac{7}{2}y=\frac{7}{2}
B. l:7x+8y-7=0
C. l:-\frac{7}{2}y+4x=\frac{7}{2}
D. l:-8x-7y-7=0
Zadanie 4. 1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz wartości parametrów
m i
n tak,
aby pary liczb
(-13,m-9) i
(n-13,6) spełniały równanie
\frac{3}{10}x-\frac{1}{2}y=\frac{3}{5} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10949 ⋅ Poprawnie: 169/210 [80%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Do pewnej liczby
m dodano
63 . Otrzymaną sumę podzielono przez
2 . W wyniku tego działania otrzymano liczbę
4 razy większą od liczby
m .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20325 ⋅ Poprawnie: 152/365 [41%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
» Rozwiąż układ równań
\begin{cases}
3x+2y=3 \\
y+2=\frac{3(1-x)+4}{2}
\end{cases}
.
Punkt A=(-10, m) należy do rozwiązania.
Podaj m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Rozwiąż układ równań
\begin{cases}
x+0,75y=-8 \\
0,25y=2x+23
\end{cases}
.
Podaj sumę x^2+y^2 .
Odpowiedź:
x^2+y^2=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20326 ⋅ Poprawnie: 637/941 [67%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Kinga jest o
8 lat starsza od Kamila.
2 lat temu Kamil był dwa razy młodszy pod Kingi.
Ile lat ma teraz Kamil.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
««« Pewnego dnia Ola wyruszyła na szlak o godzinie 6
00 i szła z
prędkością
3 km/h. Po
120 minutach z tego samego miejsca wyruszyła na ten
sam szlak Ania i poruszała się po tej samej drodze z prędkością
7 km/h.
Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%]
Rozwiąż
Podpunkt 10.1 (4 pkt)
« Dane są funkcje
f(x)=
\begin{cases}
-2 \text{, dla } x \lessdot 4 \\
x-6\text{, dla } x\geqslant 4
\end{cases}
oraz
g(x)=\frac{1}{3}x+\frac{a}{3} .
Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż