Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10872 ⋅ Poprawnie: 377/496 [76%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
Którą parę prostych pokazano na rysunku:
Odpowiedzi:
A. y=x+1\wedge y=2x+4 B. y=x+1\wedge y=-2x+4
C. y=x-1\wedge y=2x+4 D. y=x-1\wedge y=-2x+4
Zadanie 2.  1 pkt ⋅ Numer: pp-10868 ⋅ Poprawnie: 398/597 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Układ równań \begin{cases} 2x+2y=-1 \\ -2x-2y=1 \end{cases} :
Odpowiedzi:
A. jest sprzeczny B. ma dokładnie jedno rozwiązanie
C. ma dokładnie dwa rozwiązania D. ma nieskończenie wiele rozwiązań
Zadanie 3.  1 pkt ⋅ Numer: pp-10870 ⋅ Poprawnie: 368/586 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Układ równań \begin{cases} 2x+2y=4\\ -4x-4y=-8 \end{cases} opisuje w układzie współrzędnych na płaszczyźnie:
Odpowiedzi:
A. zbiór dwuelementowy B. zbiór pusty
C. zbiór nieskończony D. zbiór jednoelementowy
Zadanie 4.  1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wyznacz wartości parametrów m i n tak, aby pary liczb (2,m-5) i (n+11,1) spełniały równanie \frac{3}{10}x-\frac{1}{2}y=\frac{38}{5}.

Podaj liczby m i n.

Odpowiedzi:
m= (dwie liczby całkowite)

n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10948 ⋅ Poprawnie: 96/152 [63%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Wykres funkcji liniowej y=mx+21 wraz z osiami układu współrzędnych ograniczają trójkąt o polu powierzchni równym 42.

Wyznacz najmniejsze możliwe i największe możliwe m.

Odpowiedzi:
m_{min}= (wpisz liczbę zapisaną dziesiętnie)
m_{max}= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Rozwiąż układ równań \begin{cases} \frac{1}{3}(x-5y)-x=5-\frac{1}{2}(x+5y-5) \\ \frac{1}{2}(x-25)-\frac{1}{4}(5y-30)=x+5y \end{cases} .

Podaj x.

Odpowiedź:
x= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj y.
Odpowiedź:
y= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20321 ⋅ Poprawnie: 516/895 [57%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Rozwiąż układ równań \begin{cases} x+0,75y=8 \\ 0,25y=2x-9 \end{cases} .

Podaj sumę x^2+y^2.

Odpowiedź:
x^2+y^2= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20327 ⋅ Poprawnie: 158/508 [31%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 44 lat temu lipa była o 33\frac{1}{3}\% młodsza od dębu, a dziś oba drzewa mają razem 248 lat.

Ile lat ma obecnie lipa?

Odpowiedź:
lipa= (wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
 Ile lat ma obecnie dąb?
Odpowiedź:
dab= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20330 ⋅ Poprawnie: 490/707 [69%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
Suma cyfr liczby dwucyfrowej jest równa 12. Jeśli od cyfry dziesiątek odejmiemy 6, a do cyfry jedności dodamy 6, to otrzymana liczba będzie się składać z takich samych cyfr, ale zapisanych w odwrotnej kolejności.

Wyznacz tę liczbę.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 10.  4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%] Rozwiąż 
Podpunkt 10.1 (4 pkt)
 « Dane są funkcje f(x)= \begin{cases} -2 \text{, dla } x \lessdot 4 \\ x-6\text{, dla } x\geqslant 4 \end{cases} oraz g(x)=\frac{1}{3}x+\frac{a}{3}.

Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.

Dane
a=9
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm