Podgląd testu : lo2@sp-06-ukl-row-lin-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10850 ⋅ Poprawnie: 110/209 [52%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Układ równań
\begin{cases}
y=-2(a-5)x-2b+8 \\
y=\frac{4}{b-4}x+a-5
\end{cases}
ma nieskończenie wiele rozwiązań dla:
Odpowiedzi:
A. a=1 \wedge b=6
B. a=3 \wedge b=6
C. a=3 \wedge b=5
D. a=4 \wedge b=5
Zadanie 2. 1 pkt ⋅ Numer: pp-11703 ⋅ Poprawnie: 38/47 [80%]
Rozwiąż
Podpunkt 2.1 (0.5 pkt)
Rozwiąż układ równań metodą przeciwnych współczynników:
\begin{cases}
\frac{2}{3}x-4y=\frac{58}{3} \\
x-5y=48
\end{cases}
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 2.2 (0.5 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10870 ⋅ Poprawnie: 368/586 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Układ równań
\begin{cases}
-3x-2y=2\\
6x+4y=-4
\end{cases}
opisuje w układzie współrzędnych na płaszczyźnie:
Odpowiedzi:
A. zbiór jednoelementowy
B. zbiór dwuelementowy
C. zbiór pusty
D. zbiór nieskończony
Zadanie 4. 1 pkt ⋅ Numer: pp-11701 ⋅ Poprawnie: 9/15 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Wyznacz wartości parametrów
m i
n tak,
aby pary liczb
(-2,m-9) i
(n,4) spełniały równanie
\frac{3}{10}x-\frac{1}{2}y=\frac{49}{10} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-10947 ⋅ Poprawnie: 74/115 [64%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Statek płynie ze stałą prędkością i w ciągu minuty przepływa
380 metrów.
Zalezność przepłyniętej drogi y w kilometrach od czasu
x w godzinach opisuje wzór y=a\cdot x .
Wyznacz a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20837 ⋅ Poprawnie: 211/381 [55%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Rozwiąż układ równań
\begin{cases}
\frac{1}{3}(x-3y)-x=3-\frac{1}{2}(x+3y-3) \\
\frac{1}{2}(x-15)-\frac{1}{4}(3y-18)=x+3y
\end{cases}
.
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20320 ⋅ Poprawnie: 106/257 [41%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Dla jakiej wartości parametru
m proste,
będące wykresami funkcji liniowych
f(x)=2x+5 i
g(x)=4x+1 przecinają się na prostej
7x-2y+m+6=0 ?
Odpowiedź:
P=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20838 ⋅ Poprawnie: 87/140 [62%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Jeśli do liczby
36 dopiszemy cyfrę z przodu, to otrzymamy
liczbę
x . Jeśli do liczby
36
dopiszemy cyfrę z tyłu, to otrzymamy liczbę
y . Różnica
x-y jest równa
168 , zaś suma
cyfr dopisanych z przodu i z tyłu jesty równa
13 .
Podaj x .
Odpowiedź:
x=
(wpisz liczbę całkowitą)
Podpunkt 8.2 (1 pkt)
Odpowiedź:
y=
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20329 ⋅ Poprawnie: 45/208 [21%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
««« Pewnego dnia Ola wyruszyła na szlak o godzinie 6
00 i szła z
prędkością
3 km/h. Po
150 minutach z tego samego miejsca wyruszyła na ten
sam szlak Ania i poruszała się po tej samej drodze z prędkością
7 km/h.
Oblicz, po ilu minutach od momentu wyruszenia na trasę Oli, Ania ją dogoni.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 4 pkt ⋅ Numer: pp-30055 ⋅ Poprawnie: 27/125 [21%]
Rozwiąż
Podpunkt 10.1 (4 pkt)
« Dane są funkcje
f(x)=
\begin{cases}
-2 \text{, dla } x \lessdot 4 \\
x-6\text{, dla } x\geqslant 4
\end{cases}
oraz
g(x)=\frac{1}{3}x+\frac{a}{3} .
Oblicz pole powierzchni figury ograniczonej wykresami tych funkcji.
Dane
a=4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Rozwiąż