Matury CKEMatma z CKESprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-5

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11622  
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej należą punkty o współrzędnych (-6, 3) oraz \left(\frac{3}{2},3\right), a osią symetrii tego wykresu jest prosta o równaniu x=a.

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11628  
Podpunkt 2.1 (1 pkt)
 Wyznacz miejsca zerowe funkcji określonej wzorem f(x)=-2(x-5)^2+72.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11629  
Podpunkt 3.1 (1 pkt)
 « Rzucono kamień z prędkością początkową 9\ [m/s] pionowo do góry. Wysokość s\ [m], jaką osiągnie kamień po t sekundach, określona jest w przybliżeniu wzorem funkcji s(t)=36t-18t^2.

Jaką największą wysokość osiągnie ten kamień?

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11127  
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{5}{x}.

Oblicz wartość tej funkcji w punkcie \sqrt{8}-\sqrt{3} i zapisz wynik w postaci m\sqrt{8}+n\sqrt{3}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11569  
Podpunkt 5.1 (1 pkt)
 Równanie x\cdot y=5 spełniają tylko dwie takie pary liczb, w których obie liczby są naturalne.

Ile par liczb całkowitych spełnia równanie x\cdot y=-18?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20923  
Podpunkt 6.1 (1 pkt)
 Liczby 2 i 6 są miejscami zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział \left\langle -12,+\infty\right) Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20925  
Podpunkt 7.1 (1 pkt)
 Pewne ciało w czasie t[s] przebyło drogę s[m], którą opisuje wzór s(t)=t^2+7t+6, gdzie t\in[1,9].

Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?

Odpowiedź:
s[m]= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
v_{sr}[m/s]=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20486  
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},\frac{7}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20879  
Podpunkt 9.1 (1 pkt)
 Samochód osobowy jadący ze średnią prędkością 120 km/h pokonuje pewną drogę w czasie 2 godzin. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością 20 km/h?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie 4 godzin?

Wynik podaj w kilometrach na godzinę.

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)


Masz pytania? Napisz: k42195@poczta.fm