Podgląd testu : lo2@sp-07-funk-wybr-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11620 ⋅ Poprawnie: 99/186 [53%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
y=-\frac{4}{3}x^2 .
Określ, które z podanych punktów należą do jej wykresu:
Odpowiedzi:
T/N : \left(-3,-8\right)
T/N : \left(\sqrt{2},-\frac{8}{3}\right)
T/N : \left(-2\sqrt{3},-8\right)
Zadanie 2. 1 pkt ⋅ Numer: pp-11626 ⋅ Poprawnie: 78/176 [44%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=2x^2-24x+65 .
Zbiorem wartości tej funkcji jest przedział postaci:
Odpowiedzi:
A. (p,+\infty)
B. \langle p,+\infty)
C. (-\infty, p)
D. (-\infty, p\rangle
Podpunkt 2.2 (0.8 pkt)
Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11629 ⋅ Poprawnie: 61/74 [82%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Rzucono kamień z prędkością początkową
28\ [m/s] pionowo do góry.
Wysokość
s\ [m] , jaką osiągnie kamień po
t
sekundach, określona jest w przybliżeniu wzorem funkcji
s(t)=14t-7t^2 .
Jaką największą wysokość osiągnie ten kamień?
Odpowiedź:
s_{max}(t)=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 397/619 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja określona wzorem
f(x)=\frac{5}{x} .
Oblicz wartość tej funkcji w punkcie \sqrt{15}-\sqrt{10}
i zapisz wynik w postaci m\sqrt{15}+n\sqrt{10} , gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-11569 ⋅ Poprawnie: 27/59 [45%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Równanie
x\cdot y=5 spełniają tylko dwie takie pary liczb,
w których obie liczby są naturalne.
Ile par liczb całkowitych spełnia równanie x\cdot y=-18 ?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20923 ⋅ Poprawnie: 120/191 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Liczby
-5 i
-2 są miejscami
zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział
\left(-\infty, \frac{27}{8}\right\rangle .
Wyznacz wzór tej funkcji w postaci kanonicznej
y=a(x-p)^2+q .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pewne ciało w czasie
t[s] przebyło drogę
s[m] , którą opisuje wzór
s(t)=t^2+3t+5 , gdzie
t\in[1,28] .
Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?
Odpowiedź:
s[m]=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/636 [44%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu funkcji
f(x)=\frac{a}{x-3} należy punkt
\left(5,\frac{1}{4}\right) oraz
punkt
(x_0,8) .
Wyznacz x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20497 ⋅ Poprawnie: 32/154 [20%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«« Do wykresu proporcjonalności odwrotnej należy punkt
\left(-2, \frac{1}{6}\right) .
Wyznacz liczbę odwrotną do liczby \sqrt{6} w tej
proporcjonalności.
Odpowiedź:
Rozwiąż