Podgląd testu : lo2@sp-07-funk-wybr-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11621 ⋅ Poprawnie: 133/171 [77%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2 należy punkt o współrzędnych
\left(1,2\right) .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11630 ⋅ Poprawnie: 105/154 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-2x^2-32x-125 ,
a wierzchołek jej wykresu ma współrzędne
W=(x_w,y_w) .
Wyznacz współrzędne wierzchołka W .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11723 ⋅ Poprawnie: 16/31 [51%]
Rozwiąż
Podpunkt 3.1 (0.5 pkt)
Dane są potęgi
\left(\frac{1}{3}\right)^{2} ,
\left(\frac{1}{3}\right)^{-1} ,
\left(\frac{1}{3}\right)^{\sqrt{5}} ,
\left(\frac{1}{3}\right)^{-2} ,
\left(\frac{1}{3}\right)^{-\sqrt{3}} ,
\left(\frac{1}{3}\right)^{\frac{\sqrt{3}}{2}} i
\left(\frac{1}{3}\right)^{-\frac{\sqrt{2}}{2}} .
Podaj wykładnik najmniejszej z nich.
Odpowiedź:
Podpunkt 3.2 (0.5 pkt)
Podaj wykładnik największej z nich.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-11119 ⋅ Poprawnie: 231/419 [55%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Funkcja
f określona jest wzorem
f(x)=\frac{36}{x}
. Zbiór
A jest zbiorem wszystkich liczb
całkowitych
c takich, że
f(c) jest liczbą całkowitą.
Ile liczb zawiera zbiór A .
Odpowiedź:
ile=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-11114 ⋅ Poprawnie: 454/638 [71%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wykres proporcjonalności odwrotnej zawiera punkt o współrzednych
(4,9) .
Wynika z tego, że ten wykres zawiera też punkt:
Odpowiedzi:
A. (-2,-3)
B. (-18,-2)
C. (4,3)
D. (-7,5)
Zadanie 6. 2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 96/228 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykresem funkcji kwadratowej
f(x)=ax^2+bx+c jest parabola o wierzchołku
W=(2,36) , a jednym z miejsc zerowych tej funkcji
jest liczba
5 .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj współczynniki
b i
c .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pewne ciało w czasie
t[s] przebyło drogę
s[m] , którą opisuje wzór
s(t)=t^2+2t+2 , gdzie
t\in[1,23] .
Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?
Odpowiedź:
s[m]=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/636 [44%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu funkcji
f(x)=\frac{a}{x-3} należy punkt
\left(5,\frac{1}{4}\right) oraz
punkt
(x_0,4) .
Wyznacz x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20497 ⋅ Poprawnie: 32/154 [20%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«« Do wykresu proporcjonalności odwrotnej należy punkt
\left(2, \frac{1}{4}\right) .
Wyznacz liczbę odwrotną do liczby \sqrt{2} w tej
proporcjonalności.
Odpowiedź:
Rozwiąż