Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11623 ⋅ Poprawnie: 104/183 [56%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wierzchołek paraboli ma współrzedne W=(-8,1), a punkt A=\left(2, 14\right) należy do jej wykresu. Punkt B=(x_B,y_B) też należy do tego wykresu i jest symetryczny do punktu A względem osi symetrii tej paraboli.

Wyznacz współrzedne punktu B.

Odpowiedzi:
x_B= (dwie liczby całkowite)

y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11626 ⋅ Poprawnie: 97/203 [47%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=3x^2-18x+26.

Zbiorem wartości tej funkcji jest przedział postaci:

Odpowiedzi:
A. (-\infty, p) B. (p,+\infty)
C. \langle p,+\infty) D. (-\infty, p\rangle
Podpunkt 2.2 (0.8 pkt)
 Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11631 ⋅ Poprawnie: 19/56 [33%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 « Dane są potęgi 8^{2}, 8^{-1}, 8^{-2}, 8^{-\sqrt{3}}, 8^{\frac{\sqrt{3}}{2}} i 8^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 397/620 [64%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{5}{x}.

Oblicz wartość tej funkcji w punkcie \sqrt{7}-\sqrt{2} i zapisz wynik w postaci m\sqrt{7}+n\sqrt{2}, gdzie m,n\in\mathbb{Z}.

Podaj liczby m i n.

Odpowiedzi:
m= (wpisz liczbę całkowitą)
n= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11569 ⋅ Poprawnie: 27/59 [45%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Równanie x\cdot y=5 spełniają tylko dwie takie pary liczb, w których obie liczby są naturalne.

Ile par liczb całkowitych spełnia równanie x\cdot y=-42?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 97/229 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=ax^2+bx+c jest parabola o wierzchołku W=(-2,64), a jednym z miejsc zerowych tej funkcji jest liczba 2.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj współczynniki b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2+4n-42, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 2262 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},\frac{5}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20880 ⋅ Poprawnie: 38/54 [70%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Brygada 40 robotników wykonuje pewną pracę w czasie 2 godzin. W jakim czasie wykona tę samą pracę brygada liczbąca 64 robotników?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm