Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11622 ⋅ Poprawnie: 66/106 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej należą punkty o współrzędnych (-7, -2) oraz \left(6,-2\right), a osią symetrii tego wykresu jest prosta o równaniu x=a.

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11625 ⋅ Poprawnie: 151/266 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=2(x+7)^2+5. Przekształć jej wzór do postaci ogólnej y=ax^2+bx+c.

Podaj współczynniki b i c.

Odpowiedzi:
b=
(wpisz liczbę całkowitą)

c=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11723 ⋅ Poprawnie: 16/31 [51%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 Dane są potęgi \left(\frac{1}{7}\right)^{2}, \left(\frac{1}{7}\right)^{-1}, \left(\frac{1}{7}\right)^{\sqrt{5}}, \left(\frac{1}{7}\right)^{-2}, \left(\frac{1}{7}\right)^{-\sqrt{3}}, \left(\frac{1}{7}\right)^{\frac{\sqrt{3}}{2}} i \left(\frac{1}{7}\right)^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11129 ⋅ Poprawnie: 705/874 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=\frac{6}{x} jest:
Odpowiedzi:
A. \mathbb{R}-\{6\} B. \mathbb{R}-\{0\}
C. \mathbb{R}-\{-6\} D. \mathbb{R}
Zadanie 5.  1 pkt ⋅ Numer: pp-11114 ⋅ Poprawnie: 455/639 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres proporcjonalności odwrotnej zawiera punkt o współrzednych (2,15).

Wynika z tego, że ten wykres zawiera też punkt:

Odpowiedzi:
A. (-1,-5) B. (-6,-5)
C. (-3,-1) D. (-6,-8)
Zadanie 6.  2 pkt ⋅ Numer: pp-20923 ⋅ Poprawnie: 148/218 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczby -5 i -1 są miejscami zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział \left\langle -2,+\infty\right) Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2-7n-156, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 660 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},-\frac{11}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20879 ⋅ Poprawnie: 35/51 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Samochód osobowy jadący ze średnią prędkością 150 km/h pokonuje pewną drogę w czasie 3 godzin i 28 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością 32 km/h?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie 5 godzin i 25 minut?

Wynik podaj w kilometrach na godzinę.

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm