Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11620 ⋅ Poprawnie: 100/187 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem y=-\frac{5}{3}x^2.

Określ, które z podanych punktów należą do jej wykresu:

Odpowiedzi:
T/N : \left(\frac{\sqrt{3}}{2},-\frac{20}{9}\right) T/N : \left(2,-\frac{20}{3}\right)
T/N : \left(-2\sqrt{3},-10\right)  
Zadanie 2.  1 pkt ⋅ Numer: pp-11626 ⋅ Poprawnie: 97/203 [47%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2-2x+9.

Zbiorem wartości tej funkcji jest przedział postaci:

Odpowiedzi:
A. \langle p,+\infty) B. (-\infty, p)
C. (-\infty, p\rangle D. (p,+\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11635 ⋅ Poprawnie: 37/42 [88%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=(32,5).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11129 ⋅ Poprawnie: 705/874 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=\frac{1}{x} jest:
Odpowiedzi:
A. \mathbb{R} B. \mathbb{R}-\{0\}
C. \mathbb{R}-\{-1\} D. \mathbb{R}-\{1\}
Zadanie 5.  1 pkt ⋅ Numer: pp-11114 ⋅ Poprawnie: 455/639 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres proporcjonalności odwrotnej zawiera punkt o współrzednych (2,3).

Wynika z tego, że ten wykres zawiera też punkt:

Odpowiedzi:
A. (4,7) B. (-6,-1)
C. (1,-2) D. (7,5)
Zadanie 6.  2 pkt ⋅ Numer: pp-20923 ⋅ Poprawnie: 148/218 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczby -1 i 5 są miejscami zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział \left(-\infty, 18\right\rangle. Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pewne ciało w czasie t[s] przebyło drogę s[m], którą opisuje wzór s(t)=t^2+6t+6, gdzie t\in[1,6].

Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?

Odpowiedź:
s[m]= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
v_{sr}[m/s]=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},-\frac{11}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20497 ⋅ Poprawnie: 32/154 [20%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 «« Do wykresu proporcjonalności odwrotnej należy punkt \left(-6, \frac{1}{5}\right).

Wyznacz liczbę odwrotną do liczby \sqrt{5} w tej proporcjonalności.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm