Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11620 ⋅ Poprawnie: 99/186 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem y=-\frac{2}{3}x^2.

Określ, które z podanych punktów należą do jej wykresu:

Odpowiedzi:
T/N : \left(-\frac{\sqrt{2}}{2},-\frac{1}{6}\right) T/N : \left(-3,-6\right)
T/N : \left(\sqrt{2},-\frac{4}{3}\right)  
Zadanie 2.  1 pkt ⋅ Numer: pp-11627 ⋅ Poprawnie: 56/84 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz miejsca zerowe funkcji określonej wzorem f(x)=-x^2-2x-1.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11629 ⋅ Poprawnie: 61/74 [82%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Rzucono kamień z prędkością początkową 33\ [m/s] pionowo do góry. Wysokość s\ [m], jaką osiągnie kamień po t sekundach, określona jest w przybliżeniu wzorem funkcji s(t)=18t-9t^2.

Jaką największą wysokość osiągnie ten kamień?

Odpowiedź:
s_{max}(t)= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11109 ⋅ Poprawnie: 233/416 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wykres funkcji określonej wzorem f(x)=-\frac{11}{x} nie przecina prostej o równaniu:
Odpowiedzi:
A. y=11 B. x=-11
C. y=-11x D. y=22x
Zadanie 5.  1 pkt ⋅ Numer: pp-11114 ⋅ Poprawnie: 454/638 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres proporcjonalności odwrotnej zawiera punkt o współrzednych (8,6).

Wynika z tego, że ten wykres zawiera też punkt:

Odpowiedzi:
A. (-5,-8) B. (16,3)
C. (-2,7) D. (-1,5)
Zadanie 6.  2 pkt ⋅ Numer: pp-20923 ⋅ Poprawnie: 120/191 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczby -3 i -2 są miejscami zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział \left\langle -\frac{1}{16},+\infty\right) Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2+n-180, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 2632 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/636 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=\frac{a}{x-3} należy punkt \left(5,\frac{1}{4}\right) oraz punkt (x_0,12).

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20879 ⋅ Poprawnie: 35/51 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Samochód osobowy jadący ze średnią prędkością 115 km/h pokonuje pewną drogę w czasie 2 godzin i 18 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością 23 km/h?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie 3 godzin i 50 minut?

Wynik podaj w kilometrach na godzinę.

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm