Wierzchołek paraboli ma współrzedne W=(-5,-3),
a punkt A=\left(-1, -15\right) należy do jej
wykresu. Punkt B=(x_B,y_B) też należy do tego wykresu i
jest symetryczny do punktu A względem osi symetrii tej paraboli.
Wyznacz współrzedne punktu B.
Odpowiedzi:
x_B
=
(dwie liczby całkowite)
y_B
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11628 ⋅ Poprawnie: 51/74 [68%]
Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2-7n-120,
gdzie n\in\{1,2,3,...,80\}.
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
1496 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/636 [44%]
Samochód osobowy jadący ze średnią prędkością 110 km/h
pokonuje pewną drogę w czasie 3 godzin i 36 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością
36 km/h?
Wynik podaj w minutach.
Odpowiedź:
t[min]=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie
4 godzin?
Wynik podaj w kilometrach na godzinę.
Odpowiedź:
v[km/h]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat