Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11622 ⋅ Poprawnie: 66/106 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej należą punkty o współrzędnych (-2, -3) oraz \left(\frac{7}{2},-3\right), a osią symetrii tego wykresu jest prosta o równaniu x=a.

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11627 ⋅ Poprawnie: 56/84 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz miejsca zerowe funkcji określonej wzorem f(x)=-\frac{1}{2}x^2-x-\frac{1}{2}.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11635 ⋅ Poprawnie: 37/41 [90%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=(27,3).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11109 ⋅ Poprawnie: 233/416 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Wykres funkcji określonej wzorem f(x)=-\frac{11}{x} nie przecina prostej o równaniu:
Odpowiedzi:
A. x=-11 B. y=22x
C. y=11 D. y=-11x
Zadanie 5.  1 pkt ⋅ Numer: pp-11116 ⋅ Poprawnie: 620/739 [83%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=\frac{a}{x}, dla x\neq 0 należy punkt o współrzędnych A=(8,-2).

Podaj wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20923 ⋅ Poprawnie: 119/182 [65%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczby -5 i 1 są miejscami zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział \left(-\infty, 18\right\rangle. Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2+n-84, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 2538 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/636 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=\frac{a}{x-3} należy punkt \left(5,\frac{1}{4}\right) oraz punkt (x_0,12).

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20879 ⋅ Poprawnie: 35/51 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Samochód osobowy jadący ze średnią prędkością 140 km/h pokonuje pewną drogę w czasie 2 godzin i 36 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością 24 km/h?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie 4 godzin i 33 minut?

Wynik podaj w kilometrach na godzinę.

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm