Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-5

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11621  
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(-2,8\right).

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11625  
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-(x+5)^2+3. Przekształć jej wzór do postaci ogólnej y=ax^2+bx+c.

Podaj współczynniki b i c.

Odpowiedzi:
b=
(wpisz liczbę całkowitą)

c=
(dwie liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11725  
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=\left(\frac{1}{81},4\right).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11129  
Podpunkt 4.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=\frac{1}{x} jest:
Odpowiedzi:
A. \mathbb{R}-\{1\} B. \mathbb{R}-\{-1\}
C. \mathbb{R} D. \mathbb{R}-\{0\}
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11115  
Podpunkt 5.1 (1 pkt)
 « Do wykresu funkcji f(x)=\frac{a}{x} należy punkt o współrzędnych (92,93).

Zatem funkcja f:

Odpowiedzi:
A. jest rosnąca w (0,+\infty) B. jest malejąca w (0,+\infty)
C. jest rosnąca w (-\infty, 0) D. jest malejąca w \mathbb{R}
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20923  
Podpunkt 6.1 (1 pkt)
 Liczby -5 i -4 są miejscami zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział \left\langle -\frac{1}{8},+\infty\right) Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20926  
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2-12n-26, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 1254 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20485  
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=\frac{a}{x-3} należy punkt \left(5,\frac{1}{4}\right) oraz punkt (x_0,-10).

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20497  
Podpunkt 9.1 (2 pkt)
 «« Do wykresu proporcjonalności odwrotnej należy punkt \left(-5, \frac{1}{4}\right).

Wyznacz liczbę odwrotną do liczby \sqrt{5} w tej proporcjonalności.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm