Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pp-5

Zadanie 1.  1 pkt ⋅ Numer: pp-11623 ⋅ Poprawnie: 104/183 [56%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wierzchołek paraboli ma współrzedne W=(-3,-7), a punkt A=\left(3, -14\right) należy do jej wykresu. Punkt B=(x_B,y_B) też należy do tego wykresu i jest symetryczny do punktu A względem osi symetrii tej paraboli.

Wyznacz współrzedne punktu B.

Odpowiedzi:
x_B= (dwie liczby całkowite)

y_B= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11630 ⋅ Poprawnie: 105/154 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-x^2-14x-43, a wierzchołek jej wykresu ma współrzędne W=(x_w,y_w).

Wyznacz współrzędne wierzchołka W.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11635 ⋅ Poprawnie: 37/42 [88%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=(8,3).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11119 ⋅ Poprawnie: 231/419 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=\frac{12}{x} . Zbiór A jest zbiorem wszystkich liczb całkowitych c takich, że f(c) jest liczbą całkowitą.

Ile liczb zawiera zbiór A.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11114 ⋅ Poprawnie: 455/639 [71%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wykres proporcjonalności odwrotnej zawiera punkt o współrzednych (4,3).

Wynika z tego, że ten wykres zawiera też punkt:

Odpowiedzi:
A. (7,4) B. (1,5)
C. (-8,-6) D. (1,12)
Zadanie 6.  2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 97/229 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=ax^2+bx+c jest parabola o wierzchołku W=(2,3), a jednym z miejsc zerowych tej funkcji jest liczba 3.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj współczynniki b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2-7n-36, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 864 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},-\frac{5}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20880 ⋅ Poprawnie: 38/54 [70%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Brygada 16 robotników wykonuje pewną pracę w czasie 2 godzin. W jakim czasie wykona tę samą pracę brygada liczbąca 24 robotników?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm