Podgląd testu : lo2@sp-07-funk-wybr-pp-5
Zadanie 1. 1 pkt ⋅ Numer: pp-11622 ⋅ Poprawnie: 66/106 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej należą punkty o współrzędnych
(-8, -3) oraz
\left(5,-3\right) ,
a osią symetrii tego wykresu jest prosta o równaniu
x=a .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11626 ⋅ Poprawnie: 97/203 [47%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=2x^2+4x-4 .
Zbiorem wartości tej funkcji jest przedział postaci:
Odpowiedzi:
A. \langle p,+\infty)
B. (-\infty, p\rangle
C. (-\infty, p)
D. (p,+\infty)
Podpunkt 2.2 (0.8 pkt)
Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11635 ⋅ Poprawnie: 37/42 [88%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu funkcji logarytmicznej określonej wzorem
f(x)=\log_{a}{x} należy punkt
P=(4,2) .
Oblicz podstawę logarytmu a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11129 ⋅ Poprawnie: 705/874 [80%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=\frac{4}{x} jest:
Odpowiedzi:
A. \mathbb{R}-\{0\}
B. \mathbb{R}
C. \mathbb{R}-\{4\}
D. \mathbb{R}-\{-4\}
Zadanie 5. 1 pkt ⋅ Numer: pp-11116 ⋅ Poprawnie: 621/740 [83%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Do wykresu funkcji określonej wzorem
f(x)=\frac{a}{x} , dla
x\neq 0 należy punkt o współrzędnych
A=(-3,-8) .
Podaj wartość parametru a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 97/229 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykresem funkcji kwadratowej
f(x)=ax^2+bx+c jest parabola o wierzchołku
W=(-1,25) , a jednym z miejsc zerowych tej funkcji
jest liczba
4 .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj współczynniki
b i
c .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2+n-24 ,
gdzie
n\in\{1,2,3,...,80\} .
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
2496 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu funkcji
f(x)=-\frac{9}{x}+q należy punkt
\left(\frac{9}{2},-\frac{11}{2}\right) .
Wyznacz q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20880 ⋅ Poprawnie: 38/54 [70%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Brygada
24 robotników
wykonuje pewną pracę w czasie
3 godzin i
5 minut. W jakim czasie wykona tę samą pracę brygada liczbąca
30 robotników?
Wynik podaj w minutach.
Odpowiedź:
t[min]=
(wpisz liczbę całkowitą)
Rozwiąż