Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pr-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11620  
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem y=-\frac{5}{4}x^2.

Określ, które z podanych punktów należą do jej wykresu:

Odpowiedzi:
T/N : \left(\sqrt{2},-\frac{5}{2}\right) T/N : \left(2,-5\right)
T/N : \left(-3,-\frac{45}{4}\right)  
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11626  
Podpunkt 2.1 (0.2 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2+2x-4.

Zbiorem wartości tej funkcji jest przedział postaci:

Odpowiedzi:
A. (-\infty, p) B. (p,+\infty)
C. (-\infty, p\rangle D. \langle p,+\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11725  
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=\left(\frac{1}{27},3\right).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11129  
Podpunkt 4.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=\frac{8}{x} jest:
Odpowiedzi:
A. \mathbb{R}-\{8\} B. \mathbb{R}
C. \mathbb{R}-\{0\} D. \mathbb{R}-\{-8\}
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10322  
Podpunkt 5.1 (1 pkt)
 Do wykresu funkcji funkcji określonej wzorem f(x)=\frac{m}{2-2x}, gdzie x\neq 1 należy punkt o współrzędnych A=\left(p, \frac{1}{q}\right).

Wyznacz liczbę m.

Dane
p=-12
q=234
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20923  
Podpunkt 6.1 (1 pkt)
 Liczby -4 i 3 są miejscami zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział \left(-\infty, \frac{49}{4}\right\rangle. Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20925  
Podpunkt 7.1 (1 pkt)
 Pewne ciało w czasie t[s] przebyło drogę s[m], którą opisuje wzór s(t)=t^2+7t+5, gdzie t\in[1,25].

Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?

Odpowiedź:
s[m]= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
v_{sr}[m/s]=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20486  
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},\frac{5}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20879  
Podpunkt 9.1 (1 pkt)
 Samochód osobowy jadący ze średnią prędkością 100 km/h pokonuje pewną drogę w czasie 3 godzin i 54 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością 36 km/h?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie 5 godzin i 25 minut?

Wynik podaj w kilometrach na godzinę.

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20826  
Podpunkt 10.1 (1 pkt)
 Wykres funkcji g(x)=\frac{3}{x-1}+m przecina oś Ox w punkcie x=\frac{a}{2}.

Wyznacz m.

Dane
a=19
b=12
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Narysuj wykres funkcji g.

Podaj najmniejszą jej wartość w przedziale \langle 2,b\rangle.

Odpowiedź:
g_{min}(x)=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm