Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pr-1

Zadanie 1.  1 pkt ⋅ Numer: pp-11622 ⋅ Poprawnie: 66/106 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej należą punkty o współrzędnych (-8, -2) oraz \left(-5,-2\right), a osią symetrii tego wykresu jest prosta o równaniu x=a.

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11630 ⋅ Poprawnie: 105/154 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=x^2+16x+59, a wierzchołek jej wykresu ma współrzędne W=(x_w,y_w).

Wyznacz współrzędne wierzchołka W.

Odpowiedzi:
x_w= (wpisz liczbę całkowitą)
y_w= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11724 ⋅ Poprawnie: 14/38 [36%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Zbiorem wartości funkcji określonej wzorem f(x)=3^{-x}, gdzie x\in(-1,1), jest przedział (a,b).

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11569 ⋅ Poprawnie: 27/59 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie x\cdot y=5 spełniają tylko dwie takie pary liczb, w których obie liczby są naturalne.

Ile par liczb całkowitych spełnia równanie x\cdot y=30?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem h(x)=\frac{1}{-20x} należy punkt o współrzędnych P=\left(\frac{m}{180},-1\right).

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20923 ⋅ Poprawnie: 148/218 [67%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Liczby -4 i -1 są miejscami zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział \left(-\infty, 9\right\rangle. Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pewne ciało w czasie t[s] przebyło drogę s[m], którą opisuje wzór s(t)=t^2+4t+9, gdzie t\in[1,13].

Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?

Odpowiedź:
s[m]= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
v_{sr}[m/s]=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},\frac{11}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20879 ⋅ Poprawnie: 35/51 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Samochód osobowy jadący ze średnią prędkością 150 km/h pokonuje pewną drogę w czasie 3 godzin i 54 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością 20 km/h?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie 5 godzin i 25 minut?

Wynik podaj w kilometrach na godzinę.

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Wykres funkcji g(x)=\frac{m}{x+2} zawiera punkt A=\left(-\frac{3}{2},4\right).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz g\left(\sqrt{3}-3\right). Wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{W} i c\in\mathbb{Z}.

Podaj a+b.

Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm