Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pr-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11624  
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-2(x+2)^2+8, a jej wykresem jest parabola o wierzchołku W=(p,q).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11626  
Podpunkt 2.1 (0.2 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-x^2+16x-58.

Zbiorem wartości tej funkcji jest przedział postaci:

Odpowiedzi:
A. (-\infty, p\rangle B. (-\infty, p)
C. \langle p,+\infty) D. (p,+\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11635  
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=(27,3).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11119  
Podpunkt 4.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=\frac{48}{x} . Zbiór A jest zbiorem wszystkich liczb całkowitych c takich, że f(c) jest liczbą całkowitą.

Ile liczb zawiera zbiór A.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10311  
Podpunkt 5.1 (1 pkt)
 » Na rysunku pokazano wykres funkcji h(x)=-\frac{2}{x+3}+2:

Wartości ujemne funkcja h przyjmuje dla:

Odpowiedzi:
A. x\in(-3,0) B. x\in(-3,-2)
C. x\in(-\infty,-2) D. x\in(-3,+\infty)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20923  
Podpunkt 6.1 (1 pkt)
 Liczby -1 i 6 są miejscami zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział \left(-\infty, \frac{49}{8}\right\rangle. Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20925  
Podpunkt 7.1 (1 pkt)
 Pewne ciało w czasie t[s] przebyło drogę s[m], którą opisuje wzór s(t)=t^2+3t+5, gdzie t\in[1,31].

Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?

Odpowiedź:
s[m]= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
v_{sr}[m/s]=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20486  
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},\frac{9}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20497  
Podpunkt 9.1 (2 pkt)
 «« Do wykresu proporcjonalności odwrotnej należy punkt \left(-4, \frac{1}{2}\right).

Wyznacz liczbę odwrotną do liczby \sqrt{7} w tej proporcjonalności.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 10.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pr-20828  
Podpunkt 10.1 (1 pkt)
« Dana jest funkcja:

Wyznacz a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Dla jakich argumentów funkcja przyjmuje wartości większe niż m?

Rozwiązanie zapisz w postaci sumy przedziałówu. Podaj sumę wszystkich końców liczbowych tych przedziałów.

Dane
m=14
Odpowiedź:
\frac{p}{q}=
(wpisz dwie liczby całkowite)
Podpunkt 10.3 (1 pkt)
 » Oblicz f\left(\sqrt{k}\right).

Wynik zapisz w postaci a+b\sqrt{k}, gdzie a,b\in\mathbb{W}. Podaj b.

Dane
k=14
Odpowiedź:
b=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm