« Rzucono kamień z prędkością początkową 14\ [m/s] pionowo do góry.
Wysokość s\ [m], jaką osiągnie kamień po t
sekundach, określona jest w przybliżeniu wzorem funkcji
s(t)=8t-4t^2.
Jaką największą wysokość osiągnie ten kamień?
Odpowiedź:
s_{max}(t)=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11119 ⋅ Poprawnie: 231/419 [55%]
Liczby -5 i 1 są miejscami
zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział
\left(-\infty, \frac{9}{2}\right\rangle.
Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.
Podaj liczbę p.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%]
Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2-n-60,
gdzie n\in\{1,2,3,...,80\}.
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
2280 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%]