Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pr-1

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11621  
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(2,20\right).

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11627  
Podpunkt 2.1 (1 pkt)
 Wyznacz miejsca zerowe funkcji określonej wzorem f(x)=-\frac{1}{2}x^2-5x-\frac{25}{2}.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11724  
Podpunkt 3.1 (1 pkt)
 « Zbiorem wartości funkcji określonej wzorem f(x)=3^{-x}, gdzie x\in(-3,3), jest przedział (a,b).

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11116  
Podpunkt 4.1 (1 pkt)
 Do wykresu funkcji określonej wzorem f(x)=\frac{a}{x}, dla x\neq 0 należy punkt o współrzędnych A=(-4,2).

Podaj wartość parametru a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-10313  
Podpunkt 5.1 (1 pkt)
 Na rysunku

pokazano wykres funkcji:

Odpowiedzi:
A. h(x)=\frac{2}{x+1}+2 B. h(x)=\frac{2}{x+2}+1
C. h(x)=\frac{1}{x-2}-1 D. h(x)=\frac{1}{x+2}-1
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20923  
Podpunkt 6.1 (1 pkt)
 Liczby -4 i 2 są miejscami zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział \left(-\infty, \frac{9}{2}\right\rangle. Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.

Podaj liczbę p.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20926  
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2-12n-90, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 720 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20486  
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},\frac{3}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20880  
Podpunkt 9.1 (2 pkt)
 Brygada 28 robotników wykonuje pewną pracę w czasie 3 godzin. W jakim czasie wykona tę samą pracę brygada liczbąca 48 robotników?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20826  
Podpunkt 10.1 (1 pkt)
 Wykres funkcji g(x)=\frac{3}{x-1}+m przecina oś Ox w punkcie x=\frac{a}{2}.

Wyznacz m.

Dane
a=9
b=9
Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Narysuj wykres funkcji g.

Podaj najmniejszą jej wartość w przedziale \langle 2,b\rangle.

Odpowiedź:
g_{min}(x)=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm