Dane są potęgi \left(\frac{1}{11}\right)^{2},
\left(\frac{1}{11}\right)^{-1},
\left(\frac{1}{11}\right)^{\sqrt{5}},
\left(\frac{1}{11}\right)^{-2},
\left(\frac{1}{11}\right)^{-\sqrt{3}},
\left(\frac{1}{11}\right)^{\frac{\sqrt{3}}{2}} i
\left(\frac{1}{11}\right)^{-\frac{\sqrt{2}}{2}}.
Podaj wykładnik najmniejszej z nich.
Odpowiedź:
Wpisz odpowiedź:
\cdot√
(wpisz trzy liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:
\cdot√
(wpisz trzy liczby całkowite)
Zadanie 4.1 pkt ⋅ Numer: pp-11117 ⋅ Poprawnie: 160/225 [71%]
Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2-19n-84,
gdzie n\in\{1,2,3,...,80\}.
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
748 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%]
« Dana jest funkcja g(x)=\frac{11}{x}.
Wyrażenie
g(1-\sqrt{3})+g\left(\frac{1}{1+\sqrt{3}}\right)
zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Q} i
n\in\mathbb{N}.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj b+c.
Odpowiedź:
b+c=
(wpisz dwie liczby całkowite)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat