Podgląd testu : lo2@sp-07-funk-wybr-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11621 ⋅ Poprawnie: 133/171 [77%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Do wykresu funkcji kwadratowej określonej wzorem
y=ax^2 należy punkt o współrzędnych
\left(-1,\frac{5}{2}\right) .
Wyznacz wartość parametru a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 2. 1 pkt ⋅ Numer: pp-11630 ⋅ Poprawnie: 105/154 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=3x^2-18x+25 ,
a wierzchołek jej wykresu ma współrzędne
W=(x_w,y_w) .
Wyznacz współrzędne wierzchołka W .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11724 ⋅ Poprawnie: 14/38 [36%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Zbiorem wartości funkcji określonej wzorem
f(x)=4^{-x} , gdzie
x\in(-2,2) ,
jest przedział
(a,b) .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11117 ⋅ Poprawnie: 160/225 [71%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dla której z podanych wartości
a , wykres funkcji określonej wzorem
f(x)=\frac{a}{x} nie ma punktów wspólnych z wykresem
prostej o równaniu
y=11x :
Odpowiedzi:
A. a=-\sqrt{11}
B. a=\frac{1}{2}
C. a=5
D. a=\sqrt{4}
E. a=\frac{1}{4}
F. a=3
Zadanie 5. 1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
h(x)=\frac{1}{30x} należy punkt
o współrzędnych
P=\left(\frac{m}{180},-1\right) .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 96/228 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykresem funkcji kwadratowej
f(x)=ax^2+bx+c jest parabola o wierzchołku
W=(1,9) , a jednym z miejsc zerowych tej funkcji
jest liczba
4 .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj współczynniki
b i
c .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2-12n-440 ,
gdzie
n\in\{1,2,3,...,80\} .
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
946 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/636 [44%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu funkcji
f(x)=\frac{a}{x-3} należy punkt
\left(5,\frac{1}{4}\right) oraz
punkt
(x_0,12) .
Wyznacz x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20497 ⋅ Poprawnie: 32/154 [20%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«« Do wykresu proporcjonalności odwrotnej należy punkt
\left(4, \frac{1}{2}\right) .
Wyznacz liczbę odwrotną do liczby \sqrt{5} w tej
proporcjonalności.
Odpowiedź:
Zadanie 10. 2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Wykres funkcji
g(x)=\frac{m}{x+2} zawiera punkt
A=\left(-\frac{3}{2},7\right) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz
g\left(\sqrt{3}-3\right) . Wynik zapisz w
postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{W} i
c\in\mathbb{Z} .
Podaj a+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż