Podgląd testu : lo2@sp-07-funk-wybr-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11623 ⋅ Poprawnie: 104/183 [56%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wierzchołek paraboli ma współrzedne
W=(6,-4) ,
a punkt
A=\left(-4, -3\right) należy do jej
wykresu. Punkt
B=(x_B,y_B) też należy do tego wykresu i
jest symetryczny do punktu
A względem osi symetrii tej paraboli.
Wyznacz współrzedne punktu B .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11626 ⋅ Poprawnie: 97/203 [47%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-2x^2-32x-122 .
Zbiorem wartości tej funkcji jest przedział postaci:
Odpowiedzi:
A. (-\infty, p\rangle
B. (-\infty, p)
C. \langle p,+\infty)
D. (p,+\infty)
Podpunkt 2.2 (0.8 pkt)
Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11635 ⋅ Poprawnie: 37/42 [88%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu funkcji logarytmicznej określonej wzorem
f(x)=\log_{a}{x} należy punkt
P=(32,5) .
Oblicz podstawę logarytmu a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11115 ⋅ Poprawnie: 397/706 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Do wykresu funkcji
f(x)=\frac{a}{x} należy punkt
o współrzędnych
(21,22) .
Zatem funkcja f :
Odpowiedzi:
A. jest malejąca w (0,+\infty)
B. jest malejąca w \mathbb{R}
C. jest rosnąca w (-\infty, 0)
D. jest rosnąca w (0,+\infty)
Zadanie 5. 1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
h(x)=\frac{1}{20x} należy punkt
o współrzędnych
P=\left(\frac{m}{180},-1\right) .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20923 ⋅ Poprawnie: 148/218 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Liczby
-1 i
4 są miejscami
zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział
\left(-\infty, \frac{25}{12}\right\rangle .
Wyznacz wzór tej funkcji w postaci kanonicznej
y=a(x-p)^2+q .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pewne ciało w czasie
t[s] przebyło drogę
s[m] , którą opisuje wzór
s(t)=t^2+7t+3 , gdzie
t\in[1,4] .
Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?
Odpowiedź:
s[m]=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/637 [44%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu funkcji
f(x)=\frac{a}{x-3} należy punkt
\left(5,\frac{1}{4}\right) oraz
punkt
(x_0,-12) .
Wyznacz x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20880 ⋅ Poprawnie: 38/54 [70%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Brygada
16 robotników
wykonuje pewną pracę w czasie
3 godzin i
40 minut. W jakim czasie wykona tę samą pracę brygada liczbąca
32 robotników?
Wynik podaj w minutach.
Odpowiedź:
t[min]=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Wykres funkcji
g(x)=\frac{m}{x+2} zawiera punkt
A=\left(-\frac{3}{2},\frac{5}{2}\right) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz
g\left(\sqrt{3}-3\right) . Wynik zapisz w
postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{W} i
c\in\mathbb{Z} .
Podaj a+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż