Podgląd testu : lo2@sp-07-funk-wybr-pr-1
Zadanie 1. 1 pkt ⋅ Numer: pp-11624 ⋅ Poprawnie: 227/299 [75%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-2(x+8)^2-1 ,
a jej wykresem jest parabola o wierzchołku
W=(p,q) .
Podaj liczby p i q .
Odpowiedzi:
Zadanie 2. 1 pkt ⋅ Numer: pp-11626 ⋅ Poprawnie: 78/176 [44%]
Rozwiąż
Podpunkt 2.1 (0.2 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-3x^2-6x-5 .
Zbiorem wartości tej funkcji jest przedział postaci:
Odpowiedzi:
A. (-\infty, p)
B. (-\infty, p\rangle
C. \langle p,+\infty)
D. (p,+\infty)
Podpunkt 2.2 (0.8 pkt)
Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11632 ⋅ Poprawnie: 39/53 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=4^x , gdzie
x\in(-3,1) ,
jest przedział
(a,b) .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11117 ⋅ Poprawnie: 160/225 [71%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dla której z podanych wartości
a , wykres funkcji określonej wzorem
f(x)=\frac{a}{x} nie ma punktów wspólnych z wykresem
prostej o równaniu
y=9x :
Odpowiedzi:
A. a=\frac{1}{2}
B. a=-\sqrt{3}
C. a=\sqrt{4}
D. a=\frac{1}{4}
E. a=4
F. a=2
Zadanie 5. 1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
h(x)=\frac{1}{-20x} należy punkt
o współrzędnych
P=\left(\frac{m}{180},-1\right) .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 96/221 [43%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykresem funkcji kwadratowej
f(x)=ax^2+bx+c jest parabola o wierzchołku
W=(-1,50) , a jednym z miejsc zerowych tej funkcji
jest liczba
4 .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj współczynniki
b i
c .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2+2n-96 ,
gdzie
n\in\{1,2,3,...,80\} .
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
1152 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/635 [44%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu funkcji
f(x)=\frac{a}{x-3} należy punkt
\left(5,\frac{1}{4}\right) oraz
punkt
(x_0,5) .
Wyznacz x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20880 ⋅ Poprawnie: 37/52 [71%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Brygada
48 robotników
wykonuje pewną pracę w czasie
3 godzin i
30 minut. W jakim czasie wykona tę samą pracę brygada liczbąca
72 robotników?
Wynik podaj w minutach.
Odpowiedź:
t[min]=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Wykres funkcji
g(x)=\frac{m}{x+2} zawiera punkt
A=\left(-\frac{3}{2},6\right) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz
g\left(\sqrt{3}-3\right) . Wynik zapisz w
postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{W} i
c\in\mathbb{Z} .
Podaj a+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż