Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11621 ⋅ Poprawnie: 134/171 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Do wykresu funkcji kwadratowej określonej wzorem y=ax^2 należy punkt o współrzędnych \left(1,\frac{2}{3}\right).

Wyznacz wartość parametru a.

Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.  1 pkt ⋅ Numer: pp-11627 ⋅ Poprawnie: 56/84 [66%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz miejsca zerowe funkcji określonej wzorem f(x)=-\frac{1}{2}x^2+7x-\frac{49}{2}.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11724 ⋅ Poprawnie: 14/38 [36%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Zbiorem wartości funkcji określonej wzorem f(x)=4^{-x}, gdzie x\in(-1,3), jest przedział (a,b).

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11115 ⋅ Poprawnie: 397/706 [56%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Do wykresu funkcji f(x)=\frac{a}{x} należy punkt o współrzędnych (259,260).

Zatem funkcja f:

Odpowiedzi:
A. jest malejąca w (0,+\infty) B. jest rosnąca w (0,+\infty)
C. jest rosnąca w (-\infty, 0) D. jest malejąca w \mathbb{R}
Zadanie 5.  1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem h(x)=\frac{1}{-15x} należy punkt o współrzędnych P=\left(\frac{m}{180},-1\right).

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 97/229 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=ax^2+bx+c jest parabola o wierzchołku W=(5,2), a jednym z miejsc zerowych tej funkcji jest liczba 6.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj współczynniki b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2-16n-114, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 1440 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/637 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=\frac{a}{x-3} należy punkt \left(5,\frac{1}{4}\right) oraz punkt (x_0,-6).

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20879 ⋅ Poprawnie: 35/51 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Samochód osobowy jadący ze średnią prędkością 110 km/h pokonuje pewną drogę w czasie 3 godzin i 36 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością 40 km/h?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie 5 godzin i 30 minut?

Wynik podaj w kilometrach na godzinę.

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20821 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dana jest funkcja g(x)=\frac{6}{x}. Wyrażenie g(1-\sqrt{3})+g\left(\frac{1}{1+\sqrt{3}}\right) zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Q} i n\in\mathbb{N}.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj b+c.
Odpowiedź:
b+c=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30396 ⋅ Poprawnie: 20/42 [47%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Odległość między dwoma miastami Odległość między dwoma miastami wynosi 70 km. Pociąg pokonuję tę trasę w określonym czasie t. Gdyby pociąg jechał o 25 km/h wolniej, to do miasta docelowego przyjechałby o 50 minut później. Gdyby zaś pociąg jechał o 45 km/h szybiej, to pokonywałby tę trasę w czasie o 30 minut krótszym.

Ile minut potrzebuje pociąg na pokonanie tej trasy?

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm