Do wykresu funkcji kwadratowej należą punkty o współrzędnych
(-5, 3) oraz \left(-\frac{7}{2},3\right),
a osią symetrii tego wykresu jest prosta o równaniu x=a.
Wyznacz wartość parametru a.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11625 ⋅ Poprawnie: 151/266 [56%]
Liczby -1 i 5 są miejscami
zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział
\left\langle -9,+\infty\right)
Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.
Podaj liczbę p.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%]
Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2-7n-156,
gdzie n\in\{1,2,3,...,80\}.
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
660 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%]
Samochód osobowy jadący ze średnią prędkością 95 km/h
pokonuje pewną drogę w czasie 3 godzin i 18 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością
33 km/h?
Wynik podaj w minutach.
Odpowiedź:
t[min]=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie
4 godzin i 45 minut?
Wynik podaj w kilometrach na godzinę.
Odpowiedź:
v[km/h]=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-20821 ⋅ Poprawnie: 0/0
« Dana jest funkcja g(x)=\frac{11}{x}.
Wyrażenie
g(1-\sqrt{3})+g\left(\frac{1}{1+\sqrt{3}}\right)
zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Q} i
n\in\mathbb{N}.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj b+c.
Odpowiedź:
b+c=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30396 ⋅ Poprawnie: 20/42 [47%]
« Odległość między dwoma miastami
Odległość między dwoma miastami
wynosi 156 km. Pociąg pokonuję tę trasę w określonym
czasie t. Gdyby pociąg jechał o
24 km/h wolniej, to do miasta docelowego
przyjechałby o 27 minut później. Gdyby zaś pociąg jechał
o 16 km/h szybiej, to pokonywałby tę trasę w czasie o
12 minut krótszym.
Ile minut potrzebuje pociąg na pokonanie tej trasy?
Odpowiedź:
t[min]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat