« Rzucono kamień z prędkością początkową 15\ [m/s] pionowo do góry.
Wysokość s\ [m], jaką osiągnie kamień po t
sekundach, określona jest w przybliżeniu wzorem funkcji
s(t)=16t-8t^2.
Jaką największą wysokość osiągnie ten kamień?
Odpowiedź:
s_{max}(t)=(wpisz liczbę całkowitą)
Zadanie 4.1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 397/619 [64%]
« Dana jest funkcja g(x)=\frac{8}{x}.
Wyrażenie
g(1-\sqrt{3})+g\left(\frac{1}{1+\sqrt{3}}\right)
zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Q} i
n\in\mathbb{N}.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj b+c.
Odpowiedź:
b+c=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30397 ⋅ Poprawnie: 21/31 [67%]
Odległość między dwoma miastami
wynosi 222 km. Pociąg pokonuję tę trasę ze średnią
prędkością v. Gdyby pociąg jechał o
28 km/h szybciej, to do miasta docelowego
przyjechałby o 21 minut szybciej. Gdyby zaś pociąg jechał
o 9 km/h wolniej, to pokonywałby tę trasę o
9 minut dłużej.
Z jaką średnią prędkością pociąg zwyczajowo pokonuję tę trasę?
Odpowiedź:
v[km/h]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat