Podgląd testu : lo2@sp-07-funk-wybr-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11620 ⋅ Poprawnie: 100/187 [53%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
y=-\frac{5}{3}x^2 .
Określ, które z podanych punktów należą do jej wykresu:
Odpowiedzi:
T/N : \left(\sqrt{2},-\frac{10}{3}\right)
T/N : \left(-3\sqrt{2},-30\right)
T/N : \left(\frac{1}{2},-\frac{5}{12}\right)
Zadanie 2. 1 pkt ⋅ Numer: pp-11628 ⋅ Poprawnie: 51/74 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz miejsca zerowe funkcji określonej wzorem
f(x)=-2(x-5)^2+18 .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11632 ⋅ Poprawnie: 39/53 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=4^x , gdzie
x\in(-2,3) ,
jest przedział
(a,b) .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11109 ⋅ Poprawnie: 233/416 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Wykres funkcji określonej wzorem
f(x)=-\frac{11}{x} nie przecina
prostej o równaniu:
Odpowiedzi:
A. x=-11
B. y=22x
C. y=-11x
D. y=11
Zadanie 5. 1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
h(x)=\frac{1}{5x} należy punkt
o współrzędnych
P=\left(\frac{m}{180},-1\right) .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 97/229 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykresem funkcji kwadratowej
f(x)=ax^2+bx+c jest parabola o wierzchołku
W=(-2,1) , a jednym z miejsc zerowych tej funkcji
jest liczba
-1 .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj współczynniki
b i
c .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pewne ciało w czasie
t[s] przebyło drogę
s[m] , którą opisuje wzór
s(t)=t^2+5t+7 , gdzie
t\in[1,33] .
Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?
Odpowiedź:
s[m]=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/636 [44%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu funkcji
f(x)=\frac{a}{x-3} należy punkt
\left(5,\frac{1}{4}\right) oraz
punkt
(x_0,12) .
Wyznacz x_0 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20880 ⋅ Poprawnie: 37/53 [69%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Brygada
32 robotników
wykonuje pewną pracę w czasie
2 godzin i
30 minut. W jakim czasie wykona tę samą pracę brygada liczbąca
40 robotników?
Wynik podaj w minutach.
Odpowiedź:
t[min]=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Wykres funkcji
g(x)=\frac{m}{x+2} zawiera punkt
A=\left(-\frac{3}{2},7\right) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz
g\left(\sqrt{3}-3\right) . Wynik zapisz w
postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{W} i
c\in\mathbb{Z} .
Podaj a+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30397 ⋅ Poprawnie: 21/31 [67%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
Odległość między dwoma miastami
wynosi
155 km. Pociąg pokonuję tę trasę ze średnią
prędkością
v . Gdyby pociąg jechał o
11 km/h szybciej, to do miasta docelowego
przyjechałby o
22 minut szybciej. Gdyby zaś pociąg jechał
o
27 km/h wolniej, to pokonywałby tę trasę o
111 minut dłużej.
Z jaką średnią prędkością pociąg zwyczajowo pokonuję tę trasę?
Odpowiedź:
v[km/h]=
(wpisz liczbę całkowitą)
Rozwiąż