Wierzchołek paraboli ma współrzedne W=(5,-8),
a punkt A=\left(\frac{3}{2}, 13\right) należy do jej
wykresu. Punkt B=(x_B,y_B) też należy do tego wykresu i
jest symetryczny do punktu A względem osi symetrii tej paraboli.
Wyznacz współrzedne punktu B.
Odpowiedzi:
x_B
=
(dwie liczby całkowite)
y_B
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11627 ⋅ Poprawnie: 56/84 [66%]
Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2-11n-52,
gdzie n\in\{1,2,3,...,80\}.
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
1188 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/637 [44%]
Motocyklista poruszający się ze stałą prędkością przejechał drogę z miasta
A do miasta B w ustalonym czasie
t. Jeśli jechałby z prędkością o 25
większą, to czas przejazdu byłby o 0 godzin i 24 minut krótszy;
gdyby zaś jego prędkość była o 15 km/h mniejsza, to czas
przejazdu byłby o 0 godzin
i 24 minut dłuższy.
Z jaką średnią prędkością w kilometrach na godzinę jechał motocyklista?
Odpowiedź:
v_{sr}\ [km/h]=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Jaka była długość trasy w kilometrach?
Odpowiedź:
s\ [km]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat