Liczby -6 i -1 są miejscami
zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział
\left(-\infty, \frac{25}{8}\right\rangle.
Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.
Podaj liczbę p.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%]
Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2-6n-144,
gdzie n\in\{1,2,3,...,80\}.
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
720 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/636 [44%]
Samochód osobowy jadący ze średnią prędkością 145 km/h
pokonuje pewną drogę w czasie 2 godzin i 24 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością
36 km/h?
Wynik podaj w minutach.
Odpowiedź:
t[min]=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie
3 godzin?
Wynik podaj w kilometrach na godzinę.
Odpowiedź:
v[km/h]=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0
Odległość między dwoma miastami
wynosi 285 km. Pociąg pokonuję tę trasę ze średnią
prędkością v. Gdyby pociąg jechał o
7 km/h szybciej, to do miasta docelowego
przyjechałby o 9 minut szybciej. Gdyby zaś pociąg jechał
o 10 km/h wolniej, to pokonywałby tę trasę o
15 minut dłużej.
Z jaką średnią prędkością pociąg zwyczajowo pokonuję tę trasę?
Odpowiedź:
v[km/h]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat