Do wykresu funkcji kwadratowej należą punkty o współrzędnych
(-6, -3) oraz \left(-\frac{3}{2},-3\right),
a osią symetrii tego wykresu jest prosta o równaniu x=a.
Wyznacz wartość parametru a.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 2.1 pkt ⋅ Numer: pp-11630 ⋅ Poprawnie: 105/154 [68%]
Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2-17n-220,
gdzie n\in\{1,2,3,...,80\}.
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
936 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%]
Motocyklista poruszający się ze stałą prędkością przejechał drogę z miasta
A do miasta B w ustalonym czasie
t. Jeśli jechałby z prędkością o 21
większą, to czas przejazdu byłby o 0 godzin i 24 minut krótszy;
gdyby zaś jego prędkość była o 4 km/h mniejsza, to czas
przejazdu byłby o 0 godzin
i 6 minut dłuższy.
Z jaką średnią prędkością w kilometrach na godzinę jechał motocyklista?
Odpowiedź:
v_{sr}\ [km/h]=(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Jaka była długość trasy w kilometrach?
Odpowiedź:
s\ [km]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat