Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11624 ⋅ Poprawnie: 236/305 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=(x+7)^2+2, a jej wykresem jest parabola o wierzchołku W=(p,q).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11626 ⋅ Poprawnie: 78/176 [44%] Rozwiąż 
Podpunkt 2.1 (0.2 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-2x^2-24x-70.

Zbiorem wartości tej funkcji jest przedział postaci:

Odpowiedzi:
A. (-\infty, p) B. (p,+\infty)
C. (-\infty, p\rangle D. \langle p,+\infty)
Podpunkt 2.2 (0.8 pkt)
 Podaj koniec liczbowy tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11632 ⋅ Poprawnie: 39/53 [73%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=3^x, gdzie x\in(-2,1), jest przedział (a,b).

Podaj liczby a i b.

Odpowiedzi:
a= (dwie liczby całkowite)

b= (dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11129 ⋅ Poprawnie: 704/873 [80%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zbiorem wartości funkcji określonej wzorem f(x)=\frac{4}{x} jest:
Odpowiedzi:
A. \mathbb{R}-\{-4\} B. \mathbb{R}-\{0\}
C. \mathbb{R} D. \mathbb{R}-\{4\}
Zadanie 5.  1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem h(x)=\frac{1}{-3x} należy punkt o współrzędnych P=\left(\frac{m}{180},-1\right).

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 96/221 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=ax^2+bx+c jest parabola o wierzchołku W=(1,-25), a jednym z miejsc zerowych tej funkcji jest liczba 6.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj współczynniki b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2-8n-96, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 930 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/636 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=\frac{a}{x-3} należy punkt \left(5,\frac{1}{4}\right) oraz punkt (x_0,-3).

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20880 ⋅ Poprawnie: 37/53 [69%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 Brygada 36 robotników wykonuje pewną pracę w czasie 2 godzin i 55 minut. W jakim czasie wykona tę samą pracę brygada liczbąca 60 robotników?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Wykres funkcji g(x)=\frac{m}{x+2} zawiera punkt A=\left(-\frac{3}{2},4\right).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz g\left(\sqrt{3}-3\right). Wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{W} i c\in\mathbb{Z}.

Podaj a+b.

Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30396 ⋅ Poprawnie: 20/42 [47%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Odległość między dwoma miastami Odległość między dwoma miastami wynosi 64 km. Pociąg pokonuję tę trasę w określonym czasie t. Gdyby pociąg jechał o 24 km/h wolniej, to do miasta docelowego przyjechałby o 80 minut później. Gdyby zaś pociąg jechał o 16 km/h szybiej, to pokonywałby tę trasę w czasie o 20 minut krótszym.

Ile minut potrzebuje pociąg na pokonanie tej trasy?

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm