Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11624 ⋅ Poprawnie: 260/322 [80%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=(x-5)^2, a jej wykresem jest parabola o wierzchołku W=(p,q).

Podaj liczby p i q.

Odpowiedzi:
p= (wpisz liczbę całkowitą)
q= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11625 ⋅ Poprawnie: 150/265 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem f(x)=-\frac{1}{2}(x+2)^2+1. Przekształć jej wzór do postaci ogólnej y=ax^2+bx+c.

Podaj współczynniki b i c.

Odpowiedzi:
b=
(wpisz liczbę całkowitą)

c=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-11631 ⋅ Poprawnie: 19/56 [33%] Rozwiąż 
Podpunkt 3.1 (0.5 pkt)
 « Dane są potęgi 8^{2}, 8^{-1}, 8^{-2}, 8^{-\sqrt{3}}, 8^{\frac{\sqrt{3}}{2}} i 8^{-\frac{\sqrt{2}}{2}}.

Podaj wykładnik najmniejszej z nich.

Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Podpunkt 3.2 (0.5 pkt)
 Podaj wykładnik największej z nich.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11569 ⋅ Poprawnie: 27/59 [45%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Równanie x\cdot y=5 spełniają tylko dwie takie pary liczb, w których obie liczby są naturalne.

Ile par liczb całkowitych spełnia równanie x\cdot y=66?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem h(x)=\frac{1}{18x} należy punkt o współrzędnych P=\left(\frac{m}{180},-1\right).

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 96/221 [43%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=ax^2+bx+c jest parabola o wierzchołku W=(3,-1), a jednym z miejsc zerowych tej funkcji jest liczba 4.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj współczynniki b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni. Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych figurek opisuje wzór funkcji d(n)=\frac{1}{2}n^2-9n-224, gdzie n\in\{1,2,3,...,80\}.

Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty tygodniowej działalności?

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości 1596 złotych?
Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/636 [44%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=\frac{a}{x-3} należy punkt \left(5,\frac{1}{4}\right) oraz punkt (x_0,3).

Wyznacz x_0.

Odpowiedź:
x_0=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20879 ⋅ Poprawnie: 35/51 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Samochód osobowy jadący ze średnią prędkością 120 km/h pokonuje pewną drogę w czasie 2 godzin i 42 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością 40 km/h?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie 3 godzin i 36 minut?

Wynik podaj w kilometrach na godzinę.

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20821 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Dana jest funkcja g(x)=\frac{12}{x}. Wyrażenie g(1-\sqrt{3})+g\left(\frac{1}{1+\sqrt{3}}\right) zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Q} i n\in\mathbb{N}.

Podaj liczbę a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj b+c.
Odpowiedź:
b+c=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30397 ⋅ Poprawnie: 21/31 [67%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 Odległość między dwoma miastami wynosi 218 km. Pociąg pokonuję tę trasę ze średnią prędkością v. Gdyby pociąg jechał o 9 km/h szybciej, to do miasta docelowego przyjechałby o 8 minut szybciej. Gdyby zaś pociąg jechał o 13 km/h wolniej, to pokonywałby tę trasę o 14 minut dłużej.

Z jaką średnią prędkością pociąg zwyczajowo pokonuję tę trasę?

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm