Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2-16n-114,
gdzie n\in\{1,2,3,...,80\}.
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
1440 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/637 [44%]
Samochód osobowy jadący ze średnią prędkością 110 km/h
pokonuje pewną drogę w czasie 3 godzin i 36 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością
40 km/h?
Wynik podaj w minutach.
Odpowiedź:
t[min]=(wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie
5 godzin i 30 minut?
Wynik podaj w kilometrach na godzinę.
Odpowiedź:
v[km/h]=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-20821 ⋅ Poprawnie: 0/0
« Dana jest funkcja g(x)=\frac{6}{x}.
Wyrażenie
g(1-\sqrt{3})+g\left(\frac{1}{1+\sqrt{3}}\right)
zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Q} i
n\in\mathbb{N}.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj b+c.
Odpowiedź:
b+c=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30396 ⋅ Poprawnie: 20/42 [47%]
« Odległość między dwoma miastami
Odległość między dwoma miastami
wynosi 70 km. Pociąg pokonuję tę trasę w określonym
czasie t. Gdyby pociąg jechał o
25 km/h wolniej, to do miasta docelowego
przyjechałby o 50 minut później. Gdyby zaś pociąg jechał
o 45 km/h szybiej, to pokonywałby tę trasę w czasie o
30 minut krótszym.
Ile minut potrzebuje pociąg na pokonanie tej trasy?
Odpowiedź:
t[min]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat