Wierzchołek paraboli ma współrzedne W=(-3,-6),
a punkt A=\left(\frac{1}{2}, -9\right) należy do jej
wykresu. Punkt B=(x_B,y_B) też należy do tego wykresu i
jest symetryczny do punktu A względem osi symetrii tej paraboli.
Wyznacz współrzedne punktu B.
Odpowiedzi:
x_B
=
(dwie liczby całkowite)
y_B
=
(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11628 ⋅ Poprawnie: 51/74 [68%]
Liczby -4 i 1 są miejscami
zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział
\left\langle -\frac{25}{8},+\infty\right)
Wyznacz wzór tej funkcji w postaci kanonicznej y=a(x-p)^2+q.
Podaj liczbę p.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj liczbę q.
Odpowiedź:
\frac{m}{n}=
(wpisz dwie liczby całkowite)
Zadanie 7.2 pkt ⋅ Numer: pp-20926 ⋅ Poprawnie: 60/87 [68%]
Pani Monika wykonuje ręcznie figurki na choinkę, które sprzedaje do hurtowni.
Cotygodniowy dochód pani Moniki w złotych w zależności od liczby sprzedanych
figurek opisuje wzór funkcji
d(n)=\frac{1}{2}n^2-8n-18,
gdzie n\in\{1,2,3,...,80\}.
Ile figurek musi sprzedać tygodniowo pani Monika, aby pokryć koszty
tygodniowej działalności?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Ile figurek musi sprzedać tygodniowo pani Monika, aby uzysklac dochód w wysokości
918 złotych?
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20485 ⋅ Poprawnie: 284/637 [44%]
« Dana jest funkcja g(x)=\frac{3}{x}.
Wyrażenie
g(1-\sqrt{3})+g\left(\frac{1}{1+\sqrt{3}}\right)
zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{Q} i
n\in\mathbb{N}.
Podaj liczbę a.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj b+c.
Odpowiedź:
b+c=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30396 ⋅ Poprawnie: 20/42 [47%]
« Odległość między dwoma miastami
Odległość między dwoma miastami
wynosi 156 km. Pociąg pokonuję tę trasę w określonym
czasie t. Gdyby pociąg jechał o
26 km/h wolniej, to do miasta docelowego
przyjechałby o 30 minut później. Gdyby zaś pociąg jechał
o 26 km/h szybiej, to pokonywałby tę trasę w czasie o
18 minut krótszym.
Ile minut potrzebuje pociąg na pokonanie tej trasy?
Odpowiedź:
t[min]=(wpisz liczbę całkowitą)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat