Podgląd testu : lo2@sp-07-funk-wybr-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11620 ⋅ Poprawnie: 100/187 [53%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
y=-\frac{3}{2}x^2 .
Określ, które z podanych punktów należą do jej wykresu:
Odpowiedzi:
T/N : \left(2,-3\right)
T/N : \left(\sqrt{2},-6\right)
T/N : \left(\frac{\sqrt{3}}{2},-2\right)
Zadanie 2. 1 pkt ⋅ Numer: pp-11630 ⋅ Poprawnie: 105/154 [68%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=-3x^2-36x-107 ,
a wierzchołek jej wykresu ma współrzędne
W=(x_w,y_w) .
Wyznacz współrzędne wierzchołka W .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11632 ⋅ Poprawnie: 39/53 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=2^x , gdzie
x\in(-3,1) ,
jest przedział
(a,b) .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11115 ⋅ Poprawnie: 397/706 [56%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Do wykresu funkcji
f(x)=\frac{a}{x} należy punkt
o współrzędnych
(225,226) .
Zatem funkcja f :
Odpowiedzi:
A. jest rosnąca w (0,+\infty)
B. jest malejąca w \mathbb{R}
C. jest rosnąca w (-\infty, 0)
D. jest malejąca w (0,+\infty)
Zadanie 5. 1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
h(x)=\frac{1}{-20x} należy punkt
o współrzędnych
P=\left(\frac{m}{180},-1\right) .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20923 ⋅ Poprawnie: 148/218 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Liczby
-4 i
1 są miejscami
zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział
\left\langle -\frac{25}{2},+\infty\right)
Wyznacz wzór tej funkcji w postaci kanonicznej
y=a(x-p)^2+q .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pewne ciało w czasie
t[s] przebyło drogę
s[m] , którą opisuje wzór
s(t)=t^2+2t+3 , gdzie
t\in[1,10] .
Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?
Odpowiedź:
s[m]=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu funkcji
f(x)=-\frac{9}{x}+q należy punkt
\left(\frac{9}{2},-\frac{7}{2}\right) .
Wyznacz q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20880 ⋅ Poprawnie: 38/54 [70%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
Brygada
36 robotników
wykonuje pewną pracę w czasie
3 godzin. W jakim czasie wykona tę samą pracę brygada liczbąca
40 robotników?
Wynik podaj w minutach.
Odpowiedź:
t[min]=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Wykres funkcji
g(x)=\frac{m}{x+2} zawiera punkt
A=\left(-\frac{3}{2},\frac{7}{2}\right) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz
g\left(\sqrt{3}-3\right) . Wynik zapisz w
postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{W} i
c\in\mathbb{Z} .
Podaj a+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30396 ⋅ Poprawnie: 20/42 [47%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Odległość między dwoma miastami
Odległość między dwoma miastami
wynosi
57 km. Pociąg pokonuję tę trasę w określonym
czasie
t . Gdyby pociąg jechał o
27 km/h wolniej, to do miasta docelowego
przyjechałby o
54 minut później. Gdyby zaś pociąg jechał
o
38 km/h szybiej, to pokonywałby tę trasę w czasie o
24 minut krótszym.
Ile minut potrzebuje pociąg na pokonanie tej trasy?
Odpowiedź:
t[min]=
(wpisz liczbę całkowitą)
Rozwiąż