Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-07-funk-wybr-pr-2

Zadanie 1.  1 pkt ⋅ Numer: pp-11620 ⋅ Poprawnie: 100/187 [53%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Funkcja kwadratowa określona jest wzorem y=-\frac{5}{4}x^2.

Określ, które z podanych punktów należą do jej wykresu:

Odpowiedzi:
T/N : \left(2,-\frac{5}{2}\right) T/N : \left(-3\sqrt{2},-15\right)
T/N : \left(-2\sqrt{3},-\frac{15}{2}\right)  
Zadanie 2.  1 pkt ⋅ Numer: pp-11628 ⋅ Poprawnie: 51/74 [68%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Wyznacz miejsca zerowe funkcji określonej wzorem f(x)=-4(x+3)^2+16.
Odpowiedzi:
x_{min}= (wpisz liczbę całkowitą)
x_{max}= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11725 ⋅ Poprawnie: 33/34 [97%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Do wykresu funkcji logarytmicznej określonej wzorem f(x)=\log_{a}{x} należy punkt P=\left(\frac{1}{32},5\right).

Oblicz podstawę logarytmu a.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11119 ⋅ Poprawnie: 231/419 [55%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 « Funkcja f określona jest wzorem f(x)=\frac{12}{x} . Zbiór A jest zbiorem wszystkich liczb całkowitych c takich, że f(c) jest liczbą całkowitą.

Ile liczb zawiera zbiór A.

Odpowiedź:
ile= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Do wykresu funkcji określonej wzorem h(x)=\frac{1}{10x} należy punkt o współrzędnych P=\left(\frac{m}{180},-1\right).

Wyznacz liczbę m.

Odpowiedź:
m= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 97/229 [42%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Wykresem funkcji kwadratowej f(x)=ax^2+bx+c jest parabola o wierzchołku W=(1,48), a jednym z miejsc zerowych tej funkcji jest liczba 5.

Podaj współczynnik a.

Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Podaj współczynniki b i c.
Odpowiedzi:
b= (wpisz liczbę całkowitą)
c= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Pewne ciało w czasie t[s] przebyło drogę s[m], którą opisuje wzór s(t)=t^2+3t+9, gdzie t\in[1,9].

Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?

Odpowiedź:
s[m]= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
v_{sr}[m/s]=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Do wykresu funkcji f(x)=-\frac{9}{x}+q należy punkt \left(\frac{9}{2},\frac{9}{2}\right).

Wyznacz q.

Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20879 ⋅ Poprawnie: 35/51 [68%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Samochód osobowy jadący ze średnią prędkością 120 km/h pokonuje pewną drogę w czasie 2 godzin i 41 minut. W jakim czasie pokona tę drogę motorowerzysta jadący ze średnią prekością 30 km/h?

Wynik podaj w minutach.

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
 Z jaką prędkością należy jechać, aby pokonać tę drogę w czasie 3 godzin i 30 minut?

Wynik podaj w kilometrach na godzinę.

Odpowiedź:
v[km/h]= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 10.1 (1 pkt)
 «« Wykres funkcji g(x)=\frac{m}{x+2} zawiera punkt A=\left(-\frac{3}{2},3\right).

Wyznacz m.

Odpowiedź:
m=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz g\left(\sqrt{3}-3\right). Wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b\in\mathbb{W} i c\in\mathbb{Z}.

Podaj a+b.

Odpowiedź:
a+b=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30396 ⋅ Poprawnie: 20/42 [47%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « Odległość między dwoma miastami Odległość między dwoma miastami wynosi 98 km. Pociąg pokonuję tę trasę w określonym czasie t. Gdyby pociąg jechał o 28 km/h wolniej, to do miasta docelowego przyjechałby o 56 minut później. Gdyby zaś pociąg jechał o 14 km/h szybiej, to pokonywałby tę trasę w czasie o 14 minut krótszym.

Ile minut potrzebuje pociąg na pokonanie tej trasy?

Odpowiedź:
t[min]= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm