Podgląd testu : lo2@sp-07-funk-wybr-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11620 ⋅ Poprawnie: 100/187 [53%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
y=-\frac{5}{2}x^2 .
Określ, które z podanych punktów należą do jej wykresu:
Odpowiedzi:
T/N : \left(2,-5\right)
T/N : \left(-3,-\frac{45}{2}\right)
T/N : \left(\frac{1}{2},-\frac{5}{8}\right)
Zadanie 2. 1 pkt ⋅ Numer: pp-11625 ⋅ Poprawnie: 151/266 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
f(x)=2(x+6)^2+3 .
Przekształć jej wzór do postaci ogólnej
y=ax^2+bx+c .
Podaj współczynniki b i c .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11632 ⋅ Poprawnie: 39/53 [73%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=3^x , gdzie
x\in(-1,2) ,
jest przedział
(a,b) .
Podaj liczby a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11127 ⋅ Poprawnie: 397/619 [64%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Dana jest funkcja określona wzorem
f(x)=\frac{5}{x} .
Oblicz wartość tej funkcji w punkcie \sqrt{12}-\sqrt{7}
i zapisz wynik w postaci m\sqrt{12}+n\sqrt{7} , gdzie
m,n\in\mathbb{Z} .
Podaj liczby m i n .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
h(x)=\frac{1}{-2x} należy punkt
o współrzędnych
P=\left(\frac{m}{180},-1\right) .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20923 ⋅ Poprawnie: 148/218 [67%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Liczby
-6 i
2 są miejscami
zerowymi funkcji kwadratowej, a jej zbiorem wartości jest przedział
\left(-\infty, 24\right\rangle .
Wyznacz wzór tej funkcji w postaci kanonicznej
y=a(x-p)^2+q .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pewne ciało w czasie
t[s] przebyło drogę
s[m] , którą opisuje wzór
s(t)=t^2+7t+5 , gdzie
t\in[1,18] .
Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?
Odpowiedź:
s[m]=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu funkcji
f(x)=-\frac{9}{x}+q należy punkt
\left(\frac{9}{2},\frac{5}{2}\right) .
Wyznacz q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20497 ⋅ Poprawnie: 32/154 [20%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«« Do wykresu proporcjonalności odwrotnej należy punkt
\left(5, \frac{1}{2}\right) .
Wyznacz liczbę odwrotną do liczby \sqrt{5} w tej
proporcjonalności.
Odpowiedź:
Zadanie 10. 2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Wykres funkcji
g(x)=\frac{m}{x+2} zawiera punkt
A=\left(-\frac{3}{2},\frac{9}{2}\right) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz
g\left(\sqrt{3}-3\right) . Wynik zapisz w
postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{W} i
c\in\mathbb{Z} .
Podaj a+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30396 ⋅ Poprawnie: 20/42 [47%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Odległość między dwoma miastami
Odległość między dwoma miastami
wynosi
72 km. Pociąg pokonuję tę trasę w określonym
czasie
t . Gdyby pociąg jechał o
22 km/h wolniej, to do miasta docelowego
przyjechałby o
55 minut później. Gdyby zaś pociąg jechał
o
18 km/h szybiej, to pokonywałby tę trasę w czasie o
20 minut krótszym.
Ile minut potrzebuje pociąg na pokonanie tej trasy?
Odpowiedź:
t[min]=
(wpisz liczbę całkowitą)
Rozwiąż