Podgląd testu : lo2@sp-07-funk-wybr-pr-2
Zadanie 1. 1 pkt ⋅ Numer: pp-11620 ⋅ Poprawnie: 100/187 [53%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Funkcja kwadratowa określona jest wzorem
y=-\frac{3}{2}x^2 .
Określ, które z podanych punktów należą do jej wykresu:
Odpowiedzi:
T/N : \left(-3\sqrt{2},-18\right)
T/N : \left(\frac{1}{2},-\frac{3}{8}\right)
T/N : \left(2,-6\right)
Zadanie 2. 1 pkt ⋅ Numer: pp-11627 ⋅ Poprawnie: 56/84 [66%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wyznacz miejsca zerowe funkcji określonej wzorem
f(x)=-x^2-4x-4 .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-11635 ⋅ Poprawnie: 37/41 [90%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Do wykresu funkcji logarytmicznej określonej wzorem
f(x)=\log_{a}{x} należy punkt
P=(4,2) .
Oblicz podstawę logarytmu a .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11129 ⋅ Poprawnie: 704/873 [80%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zbiorem wartości funkcji określonej wzorem
f(x)=\frac{3}{x} jest:
Odpowiedzi:
A. \mathbb{R}-\{3\}
B. \mathbb{R}-\{0\}
C. \mathbb{R}-\{-3\}
D. \mathbb{R}
Zadanie 5. 1 pkt ⋅ Numer: pr-10321 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Do wykresu funkcji określonej wzorem
h(x)=\frac{1}{-15x} należy punkt
o współrzędnych
P=\left(\frac{m}{180},-1\right) .
Wyznacz liczbę m .
Odpowiedź:
m=
(wpisz liczbę całkowitą)
Zadanie 6. 2 pkt ⋅ Numer: pp-20924 ⋅ Poprawnie: 97/229 [42%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Wykresem funkcji kwadratowej
f(x)=ax^2+bx+c jest parabola o wierzchołku
W=(2,16) , a jednym z miejsc zerowych tej funkcji
jest liczba
6 .
Podaj współczynnik a .
Odpowiedź:
a=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj współczynniki
b i
c .
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20925 ⋅ Poprawnie: 48/71 [67%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Pewne ciało w czasie
t[s] przebyło drogę
s[m] , którą opisuje wzór
s(t)=t^2+2t+5 , gdzie
t\in[1,11] .
Jaką drogę w metrach przebyło to ciało w podanym przedziale czasu?
Odpowiedź:
s[m]=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Z jaką średnią prędkością w metrach na sekundę poruszało się to ciało?
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20486 ⋅ Poprawnie: 299/603 [49%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Do wykresu funkcji
f(x)=-\frac{9}{x}+q należy punkt
\left(\frac{9}{2},-\frac{11}{2}\right) .
Wyznacz q .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20497 ⋅ Poprawnie: 32/154 [20%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
«« Do wykresu proporcjonalności odwrotnej należy punkt
\left(6, \frac{1}{2}\right) .
Wyznacz liczbę odwrotną do liczby \sqrt{5} w tej
proporcjonalności.
Odpowiedź:
Zadanie 10. 2 pkt ⋅ Numer: pr-20827 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 10.1 (1 pkt)
«« Wykres funkcji
g(x)=\frac{m}{x+2} zawiera punkt
A=\left(-\frac{3}{2},\frac{7}{2}\right) .
Wyznacz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz
g\left(\sqrt{3}-3\right) . Wynik zapisz w
postaci
a+b\sqrt{c} , gdzie
a,b\in\mathbb{W} i
c\in\mathbb{Z} .
Podaj a+b .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pr-30831 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 11.1 (2 pkt)
Motocyklista poruszający się ze stałą prędkością przejechał drogę z miasta
A do miasta
B w ustalonym czasie
t . Jeśli jechałby z prędkością o
10
większą, to czas przejazdu byłby o
0 godzin i
6 minut krótszy;
gdyby zaś jego prędkość była o
24 km/h mniejsza, to czas
przejazdu byłby o
0 godzin
i
28 minut dłuższy.
Z jaką średnią prędkością w kilometrach na godzinę jechał motocyklista?
Odpowiedź:
v_{sr}\ [km/h]=
(wpisz liczbę całkowitą)
Podpunkt 11.2 (2 pkt)
Jaka była długość trasy w kilometrach?
Odpowiedź:
s\ [km]=
(wpisz liczbę całkowitą)
Rozwiąż