Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-2

Zadanie 1.  1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 368/443 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielokąt wypukły ma 41 boków.

Wyznacz ilość przekątnych tego wielokąta.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 26 i 53. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 532/770 [69%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinek AB o długości 28 jest równoległy do odcinka CD, przy czym: |PA|=14 i |AC|=6:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=1, |DC|=\frac{2}{3} i |AB|=\frac{5}{6}:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Odcinki DE i AB są równoległe, przy czym |DE|=\frac{5}{12} i |AB|=\frac{11}{12}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 548/1156 [47%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 (1 pkt) W trójkącie prostokątnym ABC przyprostokątna AC ma długość \sqrt{74}, a wysokość AD opuszczona z wierzchołka kąta prostego A ma długość 7:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 490/626 [78%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 «« Obwody trójkątów podobnych T_1 i T_2 wynoszą odpowiednio 198 i 36. Najdłuższy bok trójkąta T_2 ma długość 32.

Oblicz długość najdłuższego boku trójkąta T_1.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Trójkąt ABC ma obwód o długości 65. Punkty A_1, B_1 i C_1 są środkami boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta A_1B_1C_1 w skali \frac{3}{2}.

Oblicz długość obwodu trójkąta PQR.

Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%] Rozwiąż 
Podpunkt 9.1 (0.5 pkt)
 Punkt S=\left(\frac{21}{2},\frac{13}{2}\right) jest punktem wspólnym odcinka AB i jego symetralnej, przy czym \overrightarrow{BS}=[-3,1]. Wyznacz współrzędne punktu A.

Podaj x_A.

Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (0.5 pkt)
 Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm