Podgląd testu : lo2@sp-08-planimetria-pp-2
|
Zadanie 1. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
9^{\circ}.
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1,
\sqrt{2}+1,
2+\sqrt{3}, jest:
Odpowiedzi:
|
A. nie istnieje
|
B. jest prostokątny
|
|
C. jest ostrokątny
|
D. jest rozwartokątny
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 639/861 [74%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Odcinki
BC i
EF
na rysunku są równoległe, przy czym
|AC|=\frac{11}{2} i
|BC|=15:
Oblicz długość odcinka EF.
Odpowiedź:
|EF|=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{3}{4},
|DC|=\frac{5}{6} i
|DE|=\frac{2}{3}:
Oblicz długość odcinka AB.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
« Odcinki
DE i
AB
są równoległe, przy czym
|DE|=\frac{1}{4} i
|AB|=\frac{11}{12}:
Oblicz x.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 548/1156 [47%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
\sqrt{61}, a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
5:
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Oblicz długość odcinka
x:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
Przedstawione na rysunku trójkąty
ABC i
PQR są podobne.
Oblicz długość boku
AB trójkąta
ABC.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Punkt
S=(-3,-5) jest środkiem odcinka
AB takiego, że punkt
A=(x_A, y_A)
należy do osi
Oy, a punkt
B=(x_B, y_B)
należy do osi
Ox.
Wyznacz współrzędne y_A i x_B.
Odpowiedzi: