Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11567 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Z punktu leżącego na zewnątrz kąta ABC o mierze 20^{\circ} poprowadzono prostą równoległą do półprostej BA^{\rightarrow} oraz prostą prostopadłą do półprostej BC^{\rightarrow}.

Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 157/206 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Obwód wielokąta jest równy 122. Jedna z jego przekątnych dzieli wielokąt na dwa wielokąty o obwodach 71 i 101.

Oblicz długość tej przekątnej.

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 279/374 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Trójkąt równoramienny prostokątny ma przeciwprostokątną długości 4+10\sqrt{2}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/702 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zielone odcinki na rysunku sa równolegle, przy czym |AP|=\frac{5}{6}, |BP|=\frac{1}{2}, |CP|=2, |DP|=\frac{10}{3}, |AB|=4:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{5}{6}, |DE|=\frac{1}{6} i |AB|=\frac{3}{4}:

Oblicz długość odcinka DC.

Odpowiedź:
|DC|=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Odcinki DE i AB są równoległe, przy czym |DE|=\frac{5}{12} i |AB|=\frac{11}{12}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 W trapezie podstawy mają długość 48 i 60, a wysokość ma długość 11. Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.

Podaj krótszą z tych odległości.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Podaj dłuższą z tych odległości.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) W trójkącie prostokątnym ABC przyprostokątna AC ma długość \sqrt{58}, a wysokość AD opuszczona z wierzchołka kąta prostego A ma długość 3:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Obwody trójkątów podobnych T_1 i T_2 wynoszą odpowiednio 9 i 6. Najdłuższy bok trójkąta T_2 ma długość 4.

Oblicz długość najdłuższego boku trójkąta T_1.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Przedstawione na rysunku trójkąty ABC i PQR są podobne.
Oblicz długość boku AB trójkąta ABC.
Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 46^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Punkty o współrzędnych A=(2,-1), B=(6,3) i C=(-8,-5) są wierzchołkami trójkąta.

Oblicz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm