Podgląd testu : lo2@sp-08-planimetria-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
29 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Suma miar kątów
n kąta jest równa
5940^{\circ} .
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
7+6\sqrt{2} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Odcinki
BC i
EF
na rysunku są równoległe, przy czym
|AC|=\frac{11}{2} i
|BC|=13 :
Oblicz długość odcinka EF .
Odpowiedź:
|EF|=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{2}{3} ,
|DC|=\frac{7}{12} i
|DE|=\frac{11}{12} :
Oblicz długość odcinka AB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 326/462 [70%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Odcinki
DE i
AB są
równoległe, przy czym
|CD|=\frac{5}{6} i
|CE|=\frac{11}{12} :
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.
Podaj liczby a i b .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-10589 ⋅ Poprawnie: 100/160 [62%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
«« Pięciokąt
ABCDE jest foremny.
Który z trójkątów nie jest podobny do trójkąta ABD :
Odpowiedzi:
A. ABG
B. EDB
C. BGI
D. ABI
Zadanie 9. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{4} , przy czym:
P_{\triangle MCE}=2 i
P_{\triangle NFB}=6 :
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Odcinki
AM i
CN są wysokościami trójkąta
ABC .
Zatem:
Odpowiedzi:
A. |\sphericalangle CAM|=|\sphericalangle ACN|
B. |\sphericalangle BAM|=|\sphericalangle BCN|
C. |\sphericalangle BAM|=|\sphericalangle ASN|
D. |\sphericalangle BSN|=|\sphericalangle CAM|
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
68^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%]
Rozwiąż
Podpunkt 12.1 (0.5 pkt)
Punkt
S=\left(\frac{15}{2},\frac{25}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[-5,-6] . Wyznacz współrzędne punktu
A .
Podaj x_A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż