Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 281/479 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Proste k i l są równoległe.

Podaj miarę stopniową kąta \alpha.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 157/206 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Obwód wielokąta jest równy 114. Jedna z jego przekątnych dzieli wielokąt na dwa wielokąty o obwodach 99 i 97.

Oblicz długość tej przekątnej.

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dwa boki trójkąta maja długość 16 i 33. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 642/835 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Odcinek AB o długości 21 jest równoległy do odcinka CD, przy czym: |PA|=28 i |AC|=8:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{2}{3}, |DE|=\frac{1}{4} i |AB|=\frac{11}{12}:

Oblicz długość odcinka DC.

Odpowiedź:
|DC|=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Odcinki DE i AB są równoległe, przy czym |DE|=\frac{1}{4} i |AB|=\frac{11}{12}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 548/1156 [47%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) W trójkącie prostokątnym ABC przyprostokątna AC ma długość \sqrt{29}, a wysokość AD opuszczona z wierzchołka kąta prostego A ma długość 5:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 490/626 [78%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Obwody trójkątów podobnych T_1 i T_2 wynoszą odpowiednio 36 i 24. Najdłuższy bok trójkąta T_2 ma długość 15.

Oblicz długość najdłuższego boku trójkąta T_1.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W trójkącie równoramiennym ABC o wysokościach CD i AE podstawa AB ma długość 48, a odcinek BE ma długość \frac{144}{5}.

Oblicz długość odcinka AC.

Odpowiedź:
|AC|= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 68^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Punkt S=(5,-3) jest środkiem odcinka AB takiego, że punkt A=(x_A, y_A) należy do osi Oy, a punkt B=(x_B, y_B) należy do osi Ox.

Wyznacz współrzędne y_A i x_B.

Odpowiedzi:
y_A= (wpisz liczbę całkowitą)
x_B= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm