Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Proste k i l są równoległe.

Podaj miarę stopniową kąta \alpha.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Suma miar kątów n kąta jest równa 8100^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Dwa boki trójkąta maja długość 26 i 53. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 645/838 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Odcinek AB o długości 25 jest równoległy do odcinka CD, przy czym: |PA|=30 i |AC|=12:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trójkącie ABC poprowadzono odcinek DE równoległy do boku AB, przy czym |AB|=6 i |BE|:|EC|=4:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Odcinki DE i AB są równoległe, przy czym |DE|=\frac{1}{4} i |AB|=\frac{11}{12}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) W trójkącie prostokątnym ABC przyprostokątna AC ma długość \sqrt{58}, a wysokość AD opuszczona z wierzchołka kąta prostego A ma długość 7:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Obwody trójkątów podobnych T_1 i T_2 wynoszą odpowiednio 126 i 36. Najdłuższy bok trójkąta T_2 ma długość 27.

Oblicz długość najdłuższego boku trójkąta T_1.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Przedstawione na rysunku trójkąty ABC i PQR są podobne.
Oblicz długość boku AB trójkąta ABC.
Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 85^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Punkty o współrzędnych A=(1,-4), B=(-1,3) i C=(3,3) są wierzchołkami trójkąta.

Oblicz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm