Podgląd testu : lo2@sp-08-planimetria-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
24 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 158/207 [76%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Obwód wielokąta jest równy
119 . Jedna z jego przekątnych
dzieli wielokąt na dwa wielokąty o obwodach
96
i
97 .
Oblicz długość tej przekątnej.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 2\sqrt{10} , 2\sqrt{6} , 2\sqrt{5}
T/N : 14 , 14 , 20
T/N : 2+2\sqrt{2} , -2+2\sqrt{2} , 4\sqrt{2}
Zadanie 4. 1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zielone odcinki na rysunku sa równolegle, przy czym
|AP|=\frac{1}{2} ,
|BP|=1 ,
|CP|=4 ,
|DP|=2 ,
|AB|=\frac{8}{3} :
Oblicz długość odcinka CD .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{2} ,
|DC|=1 i
|DE|=\frac{1}{6} :
Oblicz długość odcinka AB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Odcinki
DE i
AB
są równoległe, przy czym
|DE|=\frac{1}{6} i
|AB|=\frac{3}{4} :
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{13} ,
3\sqrt{13} i
4\sqrt{13} jest podobny do trójkąta
T_2 . Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
A. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
B. \frac{4\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
C. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
D. \frac{4\sqrt{13}}{5},\frac{6\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
Zadanie 8. 1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
«« Prostokąt
ABCD o przekątnej długości
\frac{15}{2}\sqrt{13} jest podobny do prostokąta o bokach
długości
2 i
3 .
Oblicz obwód prostokąta ABCD .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
Oblicz długość odcinka
x :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Trójkąt
ABC ma obwód o długości
43 . Punkty
A_1 ,
B_1 i
C_1 są środkami
boków trójkąta
ABC .
Trójkąt
PQR , podobny do trójkąta
A_1B_1C_1 w skali
\frac{3}{2} .
Oblicz długość obwodu trójkąta PQR .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
62^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%]
Rozwiąż
Podpunkt 12.1 (0.5 pkt)
Punkt
S=\left(-\frac{9}{2},\frac{29}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[5,-2] . Wyznacz współrzędne punktu
A .
Podaj x_A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż