Podgląd testu : lo2@sp-08-planimetria-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 256/332 [77%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
14 razy większa
od liczby jego boków.
Wyznacz n.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
45^{\circ}.
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1,
\sqrt{2}+1,
2+\sqrt{2}, jest:
Odpowiedzi:
A. jest prostokątny
|
B. nie istnieje
|
C. jest rozwartokątny
|
D. jest ostrokątny
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 639/861 [74%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Odcinki
BC i
EF
na rysunku są równoległe, przy czym
|AC|=\frac{11}{2} i
|BC|=7:
Oblicz długość odcinka EF.
Odpowiedź:
|EF|=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{2},
|DE|=\frac{1}{3} i
|AB|=\frac{2}{3}:
Oblicz długość odcinka DC.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Odcinki
DE i
AB
są równoległe, przy czym
|DE|=\frac{1}{4} i
|AB|=\frac{2}{3}:
Oblicz x.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
W trapezie podstawy mają długość
13 i
24, a wysokość ma długość
7.
Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.
Podaj krótszą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Podaj dłuższą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
«« Prostokąt
ABCD o przekątnej długości
9\sqrt{13} jest podobny do prostokąta o bokach
długości
2 i
3.
Oblicz obwód prostokąta ABCD.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{5}, przy czym:
P_{\triangle MCE}=2 i
P_{\triangle NFB}=1:
Oblicz pole powierzchni trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 73/126 [57%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Odcinki
AM i
CN są wysokościami trójkąta
ABC.
Zatem:
Odpowiedzi:
A. |\sphericalangle BAM|=|\sphericalangle ASN|
|
B. |\sphericalangle BSN|=|\sphericalangle CAM|
|
C. |\sphericalangle CAM|=|\sphericalangle ACN|
|
D. |\sphericalangle BAM|=|\sphericalangle BCN|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
71^{\circ}.
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 238/349 [68%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
» Punkty o współrzędnych
A=(-5,-5),
B=(4,8) i
C=(2,-6) są
wierzchołkami trójkąta.
Oblicz długość środkowej AD tego trójkąta.
Odpowiedź: