Podgląd testu : lo2@sp-08-planimetria-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
34 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 158/207 [76%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Obwód wielokąta jest równy
126. Jedna z jego przekątnych
dzieli wielokąt na dwa wielokąty o obwodach
101
i
119.
Oblicz długość tej przekątnej.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1,
\sqrt{2}+1,
2+\sqrt{3}, jest:
Odpowiedzi:
|
A. nie istnieje
|
B. jest rozwartokątny
|
|
C. jest prostokątny
|
D. jest ostrokątny
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Zielone odcinki na rysunku sa równolegle, przy czym
|AP|=\frac{2}{3},
|BP|=\frac{1}{2},
|CP|=\frac{3}{2},
|DP|=2,
|AB|=\frac{3}{2}:
Oblicz długość odcinka CD.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
W trójkącie
ABC poprowadzono odcinek
DE równoległy do boku
AB, przy czym
|AB|=\frac{21}{4} i
|BE|:|EC|=4:
Oblicz długość odcinka DE.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 326/462 [70%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Odcinki
DE i
AB są
równoległe, przy czym
|CD|=\frac{7}{12} i
|CE|=\frac{7}{6}:
Oblicz x.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{11},
3\sqrt{11} i
4\sqrt{11} jest podobny do trójkąta
T_2. Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
|
A. \frac{6\sqrt{11}}{5},\frac{9\sqrt{11}}{5},\frac{12\sqrt{11}}{5}
|
B. \frac{4\sqrt{11}}{5},\frac{9\sqrt{11}}{5},\frac{8\sqrt{11}}{5}
|
|
C. \frac{4\sqrt{11}}{5},\frac{6\sqrt{11}}{5},\frac{12\sqrt{11}}{5}
|
D. \frac{6\sqrt{11}}{5},\frac{9\sqrt{11}}{5},\frac{8\sqrt{11}}{5}
|
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
2\sqrt{13}, a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
6:
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Oblicz długość odcinka
x:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Odcinki
AM i
CN są wysokościami trójkąta
ABC.
Zatem:
Odpowiedzi:
|
A. |\sphericalangle BSN|=|\sphericalangle CAM|
|
B. |\sphericalangle BAM|=|\sphericalangle ASN|
|
|
C. |\sphericalangle CAM|=|\sphericalangle ACN|
|
D. |\sphericalangle BAM|=|\sphericalangle BCN|
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
76^{\circ}.
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11394 ⋅ Poprawnie: 208/324 [64%] |
Rozwiąż |
Podpunkt 12.1 (0.5 pkt)
Dany jest punkt
B=(4,-5) oraz wektor
\overrightarrow{AB}=[1, -3]. Wyznacz środek odcinka
S_{AB}=(x_S, y_S).
Podaj x_S.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)