Podgląd testu : lo2@sp-08-planimetria-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
9^{\circ}.
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1,
\sqrt{2}+1,
2+\sqrt{2}, jest:
Odpowiedzi:
|
A. nie istnieje
|
B. jest ostrokątny
|
|
C. jest rozwartokątny
|
D. jest prostokątny
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 645/838 [76%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Odcinek
AB o długości
9 jest
równoległy do odcinka
CD, przy czym:
|PA|=6 i
|AC|=16:
Oblicz długość odcinka CD.
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{7}{12},
|DC|=\frac{1}{2} i
|DE|=\frac{1}{6}:
Oblicz długość odcinka AB.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AP|=\frac{3}{4},
|BP|=\frac{2}{3} i
|CP|=1:
Oblicz długość odcinka DP.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{13},
3\sqrt{13} i
4\sqrt{13} jest podobny do trójkąta
T_2. Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
|
A. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
|
B. \frac{4\sqrt{13}}{5},\frac{6\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
|
|
C. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
|
D. \frac{4\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
|
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
\sqrt{29}, a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
2:
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{4}, przy czym:
P_{\triangle MCE}=2 i
P_{\triangle NFB}=1:
Oblicz pole powierzchni trójkąta ABC.
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
W trójkącie równoramiennym
ABC o wysokościach
CD i
AE podstawa
AB ma długość
48,
a odcinek
BE ma długość
\frac{144}{5}.
Oblicz długość odcinka AC.
Odpowiedź:
|AC|=
(wpisz liczbę całkowitą)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
64^{\circ}.
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
» Punkty o współrzędnych
A=(-8,0),
B=(8,-2) i
C=(-6,2) są
wierzchołkami trójkąta.
Oblicz długość środkowej AD tego trójkąta.
Odpowiedź: