Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Proste k i l są równoległe.

Podaj miarę stopniową kąta \alpha.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Suma miar kątów n kąta jest równa 4680^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 14, 14, 20 T/N : 8, 10, 12
T/N : 2\sqrt{10}, 2\sqrt{6}, 2\sqrt{5}  
Zadanie 4.  1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Odcinki BC i EF na rysunku są równoległe, przy czym |AC|=\frac{15}{2} i |BC|=13:

Oblicz długość odcinka EF.

Odpowiedź:
|EF|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{1}{2}, |DC|=\frac{1}{3} i |DE|=\frac{7}{12}:

Oblicz długość odcinka AB.

Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Odcinki DE i AB są równoległe, przy czym |DE|=\frac{1}{4} i |AB|=\frac{5}{6}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trójkąt T_1 o bokach długości 2\sqrt{7}, 3\sqrt{7} i 4\sqrt{7} jest podobny do trójkąta T_2. Trójkąt T_2 ma boki o długościach:
Odpowiedzi:
A. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{12\sqrt{7}}{5} B. \frac{4\sqrt{7}}{5},\frac{6\sqrt{7}}{5},\frac{12\sqrt{7}}{5}
C. \frac{4\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5} D. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5}
Zadanie 8.  1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Prostokąt ABCD o przekątnej długości 6\sqrt{13} jest podobny do prostokąta o bokach długości 2 i 3.

Oblicz obwód prostokąta ABCD.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Obwody trójkątów podobnych T_1 i T_2 wynoszą odpowiednio 45 i 18. Najdłuższy bok trójkąta T_2 ma długość 16.

Oblicz długość najdłuższego boku trójkąta T_1.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W trójkącie równoramiennym ABC o wysokościach CD i AE podstawa AB ma długość 12, a odcinek BE ma długość \frac{36}{5}.

Oblicz długość odcinka AC.

Odpowiedź:
|AC|= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 60^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Punkty o współrzędnych A=(7,6), B=(5,4) i C=(-1,8) są wierzchołkami trójkąta.

Oblicz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm