Podgląd testu : lo2@sp-08-planimetria-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 281/479 [58%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
20^{\circ}.
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 279/374 [74%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
5+3\sqrt{2}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Odcinki
BC i
EF
na rysunku są równoległe, przy czym
|AC|=\frac{9}{2} i
|BC|=17:
Oblicz długość odcinka EF.
Odpowiedź:
|EF|=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{2},
|DC|=\frac{1}{3} i
|AB|=\frac{3}{4}:
Oblicz długość odcinka DE.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 325/461 [70%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Odcinki
DE i
AB są
równoległe, przy czym
|CD|=\frac{5}{12} i
|CE|=\frac{2}{3}:
Oblicz x.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 329/432 [76%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{7},
3\sqrt{7} i
4\sqrt{7} jest podobny do trójkąta
T_2. Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
|
A. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{12\sqrt{7}}{5}
|
B. \frac{4\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5}
|
|
C. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5}
|
D. \frac{4\sqrt{7}}{5},\frac{6\sqrt{7}}{5},\frac{12\sqrt{7}}{5}
|
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
«« Prostokąt
ABCD o przekątnej długości
6\sqrt{13} jest podobny do prostokąta o bokach
długości
2 i
3.
Oblicz obwód prostokąta ABCD.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
Oblicz długość odcinka
x:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Przedstawione na rysunku trójkąty
ABC i
PQR są podobne.
Oblicz długość boku
AB trójkąta
ABC.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
61^{\circ}.
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 29/31 [93%] |
Rozwiąż |
Podpunkt 12.1 (0.5 pkt)
« Dane są punkty
A=(-6,0) i
B=(-1,-5).
Na odcinku
AB wyznacz taki punkt
P,
aby
\overrightarrow{AP}=\overrightarrow{PB}. Wyznacz współrzędne punktu
P.
Podaj x_P.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)