Podgląd testu : lo2@sp-08-planimetria-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11567 ⋅ Poprawnie: 48/77 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Z punktu leżącego na zewnątrz kąta
ABC o mierze
48^{\circ} poprowadzono prostą równoległą do półprostej
BA^{\rightarrow} oraz prostą prostopadłą do półprostej
BC^{\rightarrow} .
Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Suma miar kątów
n kąta jest równa
5940^{\circ} .
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
7+8\sqrt{2} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Zielone odcinki na rysunku sa równolegle, przy czym
|AP|=\frac{2}{3} ,
|BP|=\frac{5}{6} ,
|CP|=\frac{5}{2} ,
|DP|=2 ,
|AB|=\frac{5}{2} :
Oblicz długość odcinka CD .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{2}{3} ,
|DC|=\frac{5}{6} i
|AB|=\frac{5}{6} :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 326/462 [70%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Odcinki
DE i
AB są
równoległe, przy czym
|CD|=\frac{7}{6} i
|CE|=\frac{11}{12} :
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
W trapezie podstawy mają długość
11 i
12 , a wysokość ma długość
5 .
Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.
Podaj krótszą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Podaj dłuższą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
«« Prostokąt
ABCD o przekątnej długości
\frac{17}{2}\sqrt{13} jest podobny do prostokąta o bokach
długości
2 i
3 .
Oblicz obwód prostokąta ABCD .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{4} , przy czym:
P_{\triangle MCE}=3 i
P_{\triangle NFB}=5 :
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Trójkąt
ABC ma obwód o długości
49 . Punkty
A_1 ,
B_1 i
C_1 są środkami
boków trójkąta
ABC .
Trójkąt
PQR , podobny do trójkąta
A_1B_1C_1 w skali
\frac{3}{2} .
Oblicz długość obwodu trójkąta PQR .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
68^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Punkt
S=\left(2,-\frac{1}{2}\right) jest środkiem odcinka
AB , przy czym
A=(6,-6) ,
a punkt
B ma współrzędne
(x_B, y_B) .
Wyznacz współrzędne punktu B .
Odpowiedzi:
Rozwiąż