Podgląd testu : lo2@sp-08-planimetria-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
31 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
30^{\circ}.
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
|
T/N : 6, 3, 3\sqrt{5}
|
T/N : 3\sqrt{10}, 3\sqrt{6}, 3\sqrt{5}
|
|
T/N : 21, 21, 30
|
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Zielone odcinki na rysunku sa równolegle, przy czym
|AP|=\frac{2}{3},
|BP|=\frac{3}{4},
|CP|=\frac{9}{4},
|DP|=2,
|AB|=\frac{11}{4}:
Oblicz długość odcinka CD.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{11}{12},
|DC|=\frac{1}{6} i
|DE|=\frac{3}{4}:
Oblicz długość odcinka AB.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
« Odcinki
DE i
AB
są równoległe, przy czym
|DE|=\frac{1}{6} i
|AB|=\frac{3}{4}:
Oblicz x.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1180 [48%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
\sqrt{61}, a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
5:
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
«« Obwody trójkątów podobnych
T_1 i
T_2 wynoszą odpowiednio
156
i
24. Najdłuższy bok trójkąta
T_2 ma długość
20.
Oblicz długość najdłuższego boku trójkąta T_1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Odcinki
AM i
CN są wysokościami trójkąta
ABC.
Zatem:
Odpowiedzi:
|
A. |\sphericalangle BAM|=|\sphericalangle BCN|
|
B. |\sphericalangle CAM|=|\sphericalangle ACN|
|
|
C. |\sphericalangle BAM|=|\sphericalangle ASN|
|
D. |\sphericalangle BSN|=|\sphericalangle CAM|
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
71^{\circ}.
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Punkt
S=\left(3,\frac{11}{2}\right) jest środkiem odcinka
AB, przy czym
A=(2,4),
a punkt
B ma współrzędne
(x_B, y_B).
Wyznacz współrzędne punktu B.
Odpowiedzi: