Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Proste k i l są równoległe.

Podaj miarę stopniową kąta \alpha.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 158/207 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Obwód wielokąta jest równy 109. Jedna z jego przekątnych dzieli wielokąt na dwa wielokąty o obwodach 90 i 101.

Oblicz długość tej przekątnej.

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Trójkąt równoramienny prostokątny ma przeciwprostokątną długości 6+2\sqrt{2}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 645/838 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Odcinek AB o długości 21 jest równoległy do odcinka CD, przy czym: |PA|=6 i |AC|=10:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trójkącie ABC poprowadzono odcinek DE równoległy do boku AB, przy czym |AB|=\frac{9}{2} i |BE|:|EC|=3:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AP|=\frac{11}{12}, |BP|=\frac{1}{6} i |CP|=\frac{22}{9}:

Oblicz długość odcinka DP.

Odpowiedź:
|DP|=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 «« Prostokąt ABCD o przekątnej długości 8\sqrt{13} jest podobny do prostokąta o bokach długości 2 i 3.

Oblicz obwód prostokąta ABCD.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Punkty E i F dzielą przyprostokątne trójkąta ABC w stosunku: |CE|:|CA|=|BF|:|BA|=\frac{1}{4}, przy czym: P_{\triangle MCE}=1 i P_{\triangle NFB}=3:

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 10.  1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Odcinki AM i CN są wysokościami trójkąta ABC.

Zatem:

Odpowiedzi:
A. |\sphericalangle BAM|=|\sphericalangle ASN| B. |\sphericalangle BAM|=|\sphericalangle BCN|
C. |\sphericalangle CAM|=|\sphericalangle ACN| D. |\sphericalangle BSN|=|\sphericalangle CAM|
Zadanie 11.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 67^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 30/32 [93%] Rozwiąż 
Podpunkt 12.1 (0.5 pkt)
 « Dane są punkty A=(-3,-3) i B=(2,-8). Na odcinku AB wyznacz taki punkt P, aby \overrightarrow{AP}=\overrightarrow{PB}. Wyznacz współrzędne punktu P.

Podaj x_P.

Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.5 pkt)
 Podaj y_P.
Odpowiedź:
y_P=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm