Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11567 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Z punktu leżącego na zewnątrz kąta ABC o mierze 22^{\circ} poprowadzono prostą równoległą do półprostej BA^{\rightarrow} oraz prostą prostopadłą do półprostej BC^{\rightarrow}.

Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Kąt zewnętrzny wielokąta foremnego ma miarę 36^{\circ}.

Ile przekątnych ma ten wielokąt?

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2\sqrt{2}, jest:
Odpowiedzi:
A. nie istnieje B. jest prostokątny
C. jest ostrokątny D. jest rozwartokątny
Zadanie 4.  1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 476/701 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zielone odcinki na rysunku sa równolegle, przy czym |AP|=1, |BP|=\frac{1}{3}, |CP|=\frac{4}{3}, |DP|=4, |AB|=\frac{10}{3}:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trójkącie ABC poprowadzono odcinek DE równoległy do boku AB, przy czym |AB|=\frac{9}{4} i |BE|:|EC|=4:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 325/461 [70%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Odcinki DE i AB są równoległe, przy czym |CD|=\frac{5}{12} i |CE|=\frac{3}{2}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 8.  1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 548/1156 [47%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 (1 pkt) W trójkącie prostokątnym ABC przyprostokątna AC ma długość 2\sqrt{5}, a wysokość AD opuszczona z wierzchołka kąta prostego A ma długość 2:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 9.  1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
Oblicz długość odcinka x:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 73/126 [57%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
Odcinki AM i CN są wysokościami trójkąta ABC.

Zatem:

Odpowiedzi:
A. |\sphericalangle BAM|=|\sphericalangle BCN| B. |\sphericalangle BAM|=|\sphericalangle ASN|
C. |\sphericalangle CAM|=|\sphericalangle ACN| D. |\sphericalangle BSN|=|\sphericalangle CAM|
Zadanie 11.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 48^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Punkt S=(6,-4) jest środkiem odcinka AB takiego, że punkt A=(x_A, y_A) należy do osi Oy, a punkt B=(x_B, y_B) należy do osi Ox.

Wyznacz współrzędne y_A i x_B.

Odpowiedzi:
y_A= (wpisz liczbę całkowitą)
x_B= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm