Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielokąt wypukły ma 25 boków.

Wyznacz ilość przekątnych tego wielokąta.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Suma miar kątów n kąta jest równa 5220^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Trójkąt równoramienny prostokątny ma przeciwprostokątną długości 6+10\sqrt{2}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Zielone odcinki na rysunku sa równolegle, przy czym |AP|=\frac{3}{4}, |BP|=\frac{1}{2}, |CP|=2, |DP|=3, |AB|=\frac{5}{3}:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 W trójkącie ABC poprowadzono odcinek DE równoległy do boku AB, przy czym |AB|=\frac{15}{4} i |BE|:|EC|=6:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 326/462 [70%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Odcinki DE i AB są równoległe, przy czym |CD|=\frac{17}{12} i |CE|=\frac{3}{4}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%] Rozwiąż 
Podpunkt 7.1 (0.5 pkt)
 W trapezie podstawy mają długość 10 i 15, a wysokość ma długość 8. Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.

Podaj krótszą z tych odległości.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
 Podaj dłuższą z tych odległości.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10589 ⋅ Poprawnie: 100/160 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
«« Pięciokąt ABCDE jest foremny.

Który z trójkątów nie jest podobny do trójkąta ABD:

Odpowiedzi:
A. ABI B. EDB
C. ABG D. BGI
Zadanie 9.  1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Obwody trójkątów podobnych T_1 i T_2 wynoszą odpowiednio 153 i 18. Najdłuższy bok trójkąta T_2 ma długość 16.

Oblicz długość najdłuższego boku trójkąta T_1.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W trójkącie równoramiennym ABC o wysokościach CD i AE podstawa AB ma długość 28, a odcinek BE ma długość \frac{196}{25}.

Oblicz długość odcinka AC.

Odpowiedź:
|AC|= (wpisz liczbę całkowitą)
Zadanie 11.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 64^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%] Rozwiąż 
Podpunkt 12.1 (0.5 pkt)
 Punkt S=\left(-\frac{11}{2},\frac{27}{2}\right) jest punktem wspólnym odcinka AB i jego symetralnej, przy czym \overrightarrow{BS}=[6,-2]. Wyznacz współrzędne punktu A.

Podaj x_A.

Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.5 pkt)
 Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm