Podgląd testu : lo2@sp-08-planimetria-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
23 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
45^{\circ} .
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1 ,
\sqrt{2}+1 ,
2+\sqrt{2} , jest:
Odpowiedzi:
A. jest rozwartokątny
B. jest prostokątny
C. jest ostrokątny
D. nie istnieje
Zadanie 4. 1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Odcinki
BC i
EF
na rysunku są równoległe, przy czym
|AC|=\frac{9}{2} i
|BC|=8 :
Oblicz długość odcinka EF .
Odpowiedź:
|EF|=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{2} ,
|DC|=\frac{1}{4} i
|AB|=\frac{2}{3} :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 326/462 [70%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Odcinki
DE i
AB są
równoległe, przy czym
|CD|=\frac{1}{4} i
|CE|=\frac{2}{3} :
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.
Podaj liczby a i b .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-10589 ⋅ Poprawnie: 100/160 [62%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
«« Pięciokąt
ABCDE jest foremny.
Który z trójkątów nie jest podobny do trójkąta ABD :
Odpowiedzi:
A. BGI
B. EDB
C. ABG
D. ABI
Zadanie 9. 1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Obwody trójkątów podobnych
T_1 i
T_2 wynoszą odpowiednio
27
i
18 . Najdłuższy bok trójkąta
T_2 ma długość
13 .
Oblicz długość najdłuższego boku trójkąta T_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W trójkącie równoramiennym
ABC o wysokościach
CD i
AE podstawa
AB ma długość
12 ,
a odcinek
BE ma długość
\frac{36}{5} .
Oblicz długość odcinka CD .
Odpowiedź:
|AC|=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
60^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%]
Rozwiąż
Podpunkt 12.1 (0.5 pkt)
Punkt
S=\left(\frac{1}{2},\frac{1}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[-1,1] . Wyznacz współrzędne punktu
A .
Podaj x_A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż