Podgląd testu : lo2@sp-08-planimetria-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 257/333 [77%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
19 razy większa
od liczby jego boków.
Wyznacz n.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
9^{\circ}.
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1,
\sqrt{2}+1,
2+\sqrt{2}, jest:
Odpowiedzi:
|
A. jest prostokątny
|
B. jest ostrokątny
|
|
C. nie istnieje
|
D. jest rozwartokątny
|
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Odcinki
BC i
EF
na rysunku są równoległe, przy czym
|AC|=\frac{11}{2} i
|BC|=20:
Oblicz długość odcinka EF.
Odpowiedź:
|EF|=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{4},
|DC|=\frac{7}{12} i
|DE|=\frac{5}{12}:
Oblicz długość odcinka AB.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AP|=1,
|BP|=\frac{3}{2} i
|CP|=3:
Oblicz długość odcinka DP.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{13},
3\sqrt{13} i
4\sqrt{13} jest podobny do trójkąta
T_2. Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
|
A. \frac{4\sqrt{13}}{5},\frac{6\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
|
B. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
|
|
C. \frac{4\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{8\sqrt{13}}{5}
|
D. \frac{6\sqrt{13}}{5},\frac{9\sqrt{13}}{5},\frac{12\sqrt{13}}{5}
|
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
«« Prostokąt
ABCD o przekątnej długości
\frac{19}{2}\sqrt{13} jest podobny do prostokąta o bokach
długości
2 i
3.
Oblicz obwód prostokąta ABCD.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
«« Obwody trójkątów podobnych
T_1 i
T_2 wynoszą odpowiednio
204
i
24. Najdłuższy bok trójkąta
T_2 ma długość
22.
Oblicz długość najdłuższego boku trójkąta T_1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
W trójkącie równoramiennym
ABC o wysokościach
CD i
AE podstawa
AB ma długość
20,
a odcinek
BE ma długość
\frac{100}{13}.
Oblicz długość odcinka AC.
Odpowiedź:
|AC|=
(wpisz liczbę całkowitą)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
70^{\circ}.
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
» Punkty o współrzędnych
A=(-1,-5),
B=(-6,7) i
C=(-8,-1) są
wierzchołkami trójkąta.
Oblicz długość środkowej AD tego trójkąta.
Odpowiedź: