Podgląd testu : lo2@sp-08-planimetria-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 257/333 [77%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
7 razy większa
od liczby jego boków.
Wyznacz n.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Suma miar kątów
n kąta jest równa
3780^{\circ}.
Wyznacz n.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
3+4\sqrt{2}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Zielone odcinki na rysunku sa równolegle, przy czym
|AP|=\frac{1}{2},
|BP|=\frac{1}{3},
|CP|=\frac{2}{3},
|DP|=1,
|AB|=\frac{7}{6}:
Oblicz długość odcinka CD.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{2}{3},
|DE|=\frac{1}{2} i
|AB|=\frac{11}{12}:
Oblicz długość odcinka DC.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AP|=\frac{5}{12},
|BP|=\frac{7}{12} i
|CP|=\frac{25}{36}:
Oblicz długość odcinka DP.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%] |
Rozwiąż |
Podpunkt 7.1 (0.5 pkt)
W trapezie podstawy mają długość
4 i
15, a wysokość ma długość
8.
Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.
Podaj krótszą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Podaj dłuższą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
«« Prostokąt
ABCD o przekątnej długości
4\sqrt{13} jest podobny do prostokąta o bokach
długości
2 i
3.
Oblicz obwód prostokąta ABCD.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
«« Obwody trójkątów podobnych
T_1 i
T_2 wynoszą odpowiednio
42
i
12. Najdłuższy bok trójkąta
T_2 ma długość
9.
Oblicz długość najdłuższego boku trójkąta T_1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Odcinki
AM i
CN są wysokościami trójkąta
ABC.
Zatem:
Odpowiedzi:
|
A. |\sphericalangle BAM|=|\sphericalangle BCN|
|
B. |\sphericalangle BAM|=|\sphericalangle ASN|
|
|
C. |\sphericalangle BSN|=|\sphericalangle CAM|
|
D. |\sphericalangle CAM|=|\sphericalangle ACN|
|
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
53^{\circ}.
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Punkt
S=\left(-\frac{11}{2},-\frac{1}{2}\right) jest środkiem odcinka
AB, przy czym
A=(-5,-3),
a punkt
B ma współrzędne
(x_B, y_B).
Wyznacz współrzędne punktu B.
Odpowiedzi: