Podgląd testu : lo2@sp-08-planimetria-pp-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 256/332 [77%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
12 razy większa
od liczby jego boków.
Wyznacz n.
Odpowiedź:
n=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
20^{\circ}.
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 279/374 [74%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
6+5\sqrt{2}.
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 644/837 [76%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Odcinek
AB o długości
14 jest
równoległy do odcinka
CD, przy czym:
|PA|=21 i
|AC|=18:
Oblicz długość odcinka CD.
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{2}{3},
|DC|=\frac{7}{12} i
|AB|=\frac{5}{12}:
Oblicz długość odcinka DE.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AP|=\frac{3}{4},
|BP|=\frac{5}{6} i
|CP|=\frac{9}{4}:
Oblicz długość odcinka DP.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 8. 1 pkt ⋅ Numer: pp-10589 ⋅ Poprawnie: 100/160 [62%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
«« Pięciokąt
ABCDE jest foremny.
Który z trójkątów nie jest podobny do trójkąta ABD:
Odpowiedzi:
|
A. EDB
|
B. ABG
|
|
C. BGI
|
D. ABI
|
|
Zadanie 9. 1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
«« Obwody trójkątów podobnych
T_1 i
T_2 wynoszą odpowiednio
99
i
18. Najdłuższy bok trójkąta
T_2 ma długość
15.
Oblicz długość najdłuższego boku trójkąta T_1.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%] |
Rozwiąż |
Podpunkt 10.1 (1 pkt)
Przedstawione na rysunku trójkąty
ABC i
PQR są podobne.
Oblicz długość boku
AB trójkąta
ABC.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%] |
Rozwiąż |
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
64^{\circ}.
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 12. 1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%] |
Rozwiąż |
Podpunkt 12.1 (1 pkt)
Punkt
S=(-5,4) jest środkiem odcinka
AB takiego, że punkt
A=(x_A, y_A)
należy do osi
Oy, a punkt
B=(x_B, y_B)
należy do osi
Ox.
Wyznacz współrzędne y_A i x_B.
Odpowiedzi: