Podgląd testu : lo2@sp-08-planimetria-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 281/479 [58%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 157/206 [76%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Obwód wielokąta jest równy
130 . Jedna z jego przekątnych
dzieli wielokąt na dwa wielokąty o obwodach
104
i
82 .
Oblicz długość tej przekątnej.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Dwa boki trójkąta maja długość
6 i
13 . Trzeci bok tego trójkąta należy do przedziału
(a,b) .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 4. 1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 642/835 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Odcinek
AB o długości
17 jest
równoległy do odcinka
CD , przy czym:
|PA|=7 i
|AC|=14 :
Oblicz długość odcinka CD .
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{4} ,
|DE|=\frac{11}{12} i
|AB|=1 :
Oblicz długość odcinka DC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Odcinki
DE i
AB
są równoległe, przy czym
|DE|=\frac{1}{4} i
|AB|=\frac{11}{12} :
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%]
Rozwiąż
Podpunkt 7.1 (0.5 pkt)
W trapezie podstawy mają długość
11 i
24 , a wysokość ma długość
10 .
Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.
Podaj krótszą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (0.5 pkt)
Podaj dłuższą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
\sqrt{53} , a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
2 :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Obwody trójkątów podobnych
T_1 i
T_2 wynoszą odpowiednio
51
i
6 . Najdłuższy bok trójkąta
T_2 ma długość
4 .
Oblicz długość najdłuższego boku trójkąta T_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Trójkąt
ABC ma obwód o długości
31 . Punkty
A_1 ,
B_1 i
C_1 są środkami
boków trójkąta
ABC .
Trójkąt
PQR , podobny do trójkąta
A_1B_1C_1 w skali
\frac{3}{2} .
Oblicz długość obwodu trójkąta PQR .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
51^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 1 pkt ⋅ Numer: pp-11394 ⋅ Poprawnie: 208/324 [64%]
Rozwiąż
Podpunkt 12.1 (0.5 pkt)
Dany jest punkt
B=(-3,1) oraz wektor
\overrightarrow{AB}=[1, -3] . Wyznacz środek odcinka
S_{AB}=(x_S, y_S) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż