Podgląd testu : lo2@sp-08-planimetria-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11567 ⋅ Poprawnie: 48/77 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Z punktu leżącego na zewnątrz kąta
ABC o mierze
32^{\circ} poprowadzono prostą równoległą do półprostej
BA^{\rightarrow} oraz prostą prostopadłą do półprostej
BC^{\rightarrow} .
Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Suma miar kątów
n kąta jest równa
4140^{\circ} .
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1 ,
\sqrt{2}+1 ,
2\sqrt{2} , jest:
Odpowiedzi:
A. jest ostrokątny
B. jest rozwartokątny
C. nie istnieje
D. jest prostokątny
Zadanie 4. 1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 645/838 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Odcinek
AB o długości
14 jest
równoległy do odcinka
CD , przy czym:
|PA|=7 i
|AC|=23 :
Oblicz długość odcinka CD .
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{2} ,
|DE|=\frac{2}{3} i
|AB|=\frac{11}{12} :
Oblicz długość odcinka DC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AP|=\frac{3}{4} ,
|BP|=\frac{11}{12} i
|CP|=\frac{11}{4} :
Oblicz długość odcinka DP .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{19} ,
3\sqrt{19} i
4\sqrt{19} jest podobny do trójkąta
T_2 . Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
A. \frac{4\sqrt{19}}{5},\frac{6\sqrt{19}}{5},\frac{12\sqrt{19}}{5}
B. \frac{6\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{12\sqrt{19}}{5}
C. \frac{4\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{8\sqrt{19}}{5}
D. \frac{6\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{8\sqrt{19}}{5}
Zadanie 8. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
\sqrt{34} , a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
3 :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{3} , przy czym:
P_{\triangle MCE}=3 i
P_{\triangle NFB}=1 :
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W trójkącie równoramiennym
ABC o wysokościach
CD i
AE podstawa
AB ma długość
24 ,
a odcinek
BE ma długość
\frac{72}{5} .
Oblicz długość odcinka CD .
Odpowiedź:
|AC|=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
56^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%]
Rozwiąż
Podpunkt 12.1 (1 pkt)
Punkt
S=(-3,2) jest środkiem odcinka
AB takiego, że punkt
A=(x_A, y_A)
należy do osi
Oy , a punkt
B=(x_B, y_B)
należy do osi
Ox .
Wyznacz współrzędne y_A i x_B .
Odpowiedzi:
Rozwiąż