Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 368/443 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielokąt wypukły ma 17 boków.

Wyznacz ilość przekątnych tego wielokąta.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 157/206 [76%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Obwód wielokąta jest równy 129. Jedna z jego przekątnych dzieli wielokąt na dwa wielokąty o obwodach 94 i 95.

Oblicz długość tej przekątnej.

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 279/374 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Trójkąt równoramienny prostokątny ma przeciwprostokątną długości 3+5\sqrt{2}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Odcinki BC i EF na rysunku są równoległe, przy czym |AC|=\frac{15}{2} i |BC|=13:

Oblicz długość odcinka EF.

Odpowiedź:
|EF|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{1}{4}, |DE|=\frac{1}{2} i |AB|=\frac{11}{12}:

Oblicz długość odcinka DC.

Odpowiedź:
|DC|=
(wpisz dwie liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Odcinki DE i AB są równoległe, przy czym |DE|=\frac{1}{6} i |AB|=\frac{7}{12}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 7.  1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 329/432 [76%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Trójkąt T_1 o bokach długości 2\sqrt{7}, 3\sqrt{7} i 4\sqrt{7} jest podobny do trójkąta T_2. Trójkąt T_2 ma boki o długościach:
Odpowiedzi:
A. \frac{4\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5} B. \frac{4\sqrt{7}}{5},\frac{6\sqrt{7}}{5},\frac{12\sqrt{7}}{5}
C. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5} D. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{12\sqrt{7}}{5}
Zadanie 8.  1 pkt ⋅ Numer: pp-10589 ⋅ Poprawnie: 100/160 [62%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
«« Pięciokąt ABCDE jest foremny.

Który z trójkątów nie jest podobny do trójkąta ABD:

Odpowiedzi:
A. ABI B. ABG
C. EDB D. BGI
Zadanie 9.  1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 «« Obwody trójkątów podobnych T_1 i T_2 wynoszą odpowiednio 42 i 12. Najdłuższy bok trójkąta T_2 ma długość 8.

Oblicz długość najdłuższego boku trójkąta T_1.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 10.  1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Trójkąt ABC ma obwód o długości 33. Punkty A_1, B_1 i C_1 są środkami boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta A_1B_1C_1 w skali \frac{3}{2}.

Oblicz długość obwodu trójkąta PQR.

Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 11.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 52^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 » Punkty o współrzędnych A=(2,-6), B=(0,5) i C=(4,-5) są wierzchołkami trójkąta.

Oblicz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm