Podgląd testu : lo2@sp-08-planimetria-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 256/332 [77%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
9 razy większa
od liczby jego boków.
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 374/475 [78%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Suma miar kątów
n kąta jest równa
3960^{\circ} .
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 4 , 5 , 6
T/N : 2 , 3 , 4
T/N : \sqrt{10} , \sqrt{6} , \sqrt{5}
Zadanie 4. 1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 644/837 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Odcinek
AB o długości
12 jest
równoległy do odcinka
CD , przy czym:
|PA|=18 i
|AC|=15 :
Oblicz długość odcinka CD .
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{3} ,
|DC|=\frac{5}{12} i
|DE|=\frac{2}{3} :
Oblicz długość odcinka AB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 325/461 [70%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Odcinki
DE i
AB są
równoległe, przy czym
|CD|=\frac{7}{12} i
|CE|=\frac{5}{12} :
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.
Podaj liczby a i b .
Odpowiedzi:
Zadanie 8. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
\sqrt{13} , a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
2 :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{3} , przy czym:
P_{\triangle MCE}=2 i
P_{\triangle NFB}=4 :
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W trójkącie równoramiennym
ABC o wysokościach
CD i
AE podstawa
AB ma długość
20 ,
a odcinek
BE ma długość
\frac{100}{13} .
Oblicz długość odcinka AC .
Odpowiedź:
|AC|=
(wpisz liczbę całkowitą)
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
55^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%]
Rozwiąż
Podpunkt 12.1 (0.5 pkt)
Punkt
S=\left(-\frac{3}{2},\frac{13}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[-1,-2] . Wyznacz współrzędne punktu
A .
Podaj x_A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż