Podgląd testu : lo2@sp-08-planimetria-pp-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11567 ⋅ Poprawnie: 47/76 [61%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Z punktu leżącego na zewnątrz kąta
ABC o mierze
23^{\circ} poprowadzono prostą równoległą do półprostej
BA^{\rightarrow} oraz prostą prostopadłą do półprostej
BC^{\rightarrow} .
Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
10^{\circ} .
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 3. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1 ,
\sqrt{2}+1 ,
2\sqrt{2} , jest:
Odpowiedzi:
A. jest rozwartokątny
B. jest prostokątny
C. jest ostrokątny
D. nie istnieje
Zadanie 4. 1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 644/837 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Odcinek
AB o długości
9 jest
równoległy do odcinka
CD , przy czym:
|PA|=18 i
|AC|=30 :
Oblicz długość odcinka CD .
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
Zadanie 5. 1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{6} ,
|DE|=\frac{7}{12} i
|AB|=\frac{3}{4} :
Oblicz długość odcinka DC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Odcinki
DE i
AB
są równoległe, przy czym
|DE|=\frac{1}{6} i
|AB|=\frac{7}{12} :
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 329/432 [76%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{19} ,
3\sqrt{19} i
4\sqrt{19} jest podobny do trójkąta
T_2 . Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
A. \frac{6\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{8\sqrt{19}}{5}
B. \frac{6\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{12\sqrt{19}}{5}
C. \frac{4\sqrt{19}}{5},\frac{6\sqrt{19}}{5},\frac{12\sqrt{19}}{5}
D. \frac{4\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{8\sqrt{19}}{5}
Zadanie 8. 1 pkt ⋅ Numer: pp-10589 ⋅ Poprawnie: 100/160 [62%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
«« Pięciokąt
ABCDE jest foremny.
Który z trójkątów nie jest podobny do trójkąta ABD :
Odpowiedzi:
A. ABG
B. ABI
C. EDB
D. BGI
Zadanie 9. 1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
«« Punkty
E i
F dzielą
przyprostokątne trójkąta
ABC w stosunku:
|CE|:|CA|=|BF|:|BA|=\frac{1}{2} , przy czym:
P_{\triangle MCE}=3 i
P_{\triangle NFB}=5 :
Oblicz pole powierzchni trójkąta ABC .
Odpowiedź:
P_{\triangle ABC}=
(wpisz liczbę całkowitą)
Zadanie 10. 1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Przedstawione na rysunku trójkąty
ABC i
PQR są podobne.
Oblicz długość boku
AB trójkąta
ABC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%]
Rozwiąż
Podpunkt 11.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
48^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 12. 1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%]
Rozwiąż
Podpunkt 12.1 (0.5 pkt)
Punkt
S=\left(-\frac{3}{2},\frac{21}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[5,-5] . Wyznacz współrzędne punktu
A .
Podaj x_A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 12.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż