Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-4

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10481  
Podpunkt 1.1 (1 pkt)
 Obwód wielokąta jest równy 123. Jedna z jego przekątnych dzieli wielokąt na dwa wielokąty o obwodach 117 i 110.

Oblicz długość tej przekątnej.

Odpowiedź:
d= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11560  
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 4\sqrt{10}, 4\sqrt{6}, 4\sqrt{5} T/N : 4+4\sqrt{2}, -4+4\sqrt{2}, 8\sqrt{2}
T/N : 8, 12, 16  
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10595  
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AP|=\frac{17}{12}, |BP|=\frac{5}{6} i |CP|=\frac{187}{36}:

Oblicz długość odcinka DP.

Odpowiedź:
|DP|=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10588  
Podpunkt 4.1 (1 pkt)
 «« Prostokąt ABCD o przekątnej długości 12\sqrt{13} jest podobny do prostokąta o bokach długości 2 i 3.

Oblicz obwód prostokąta ABCD.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10790  
Podpunkt 5.1 (1 pkt)
 » Punkty o współrzędnych A=(5,-1), B=(4,8) i C=(6,-6) są wierzchołkami trójkąta.

Oblicz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20778  
Podpunkt 6.1 (1 pkt)
 » W trójkącie ABC dane są: A=(-1,-1), C=(5,2). Punkt D jest środkiem boku AB, a \overrightarrow{CD}=[-2, -6].

Wierzchołek B tego trójkąta ma współrzędne B=(x_B, y_B). Podaj x_B.

Odpowiedź:
x_B= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Punkt E=(x_E, y_E) jest środkiem boku BC tego trójkąta. Podaj y_E.
Odpowiedź:
y_E=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20843  
Podpunkt 7.1 (2 pkt)
 W trójkącie równoramiennym ABC dane są długości boków AB, AC i BC.

Oblicz odległość środka wysokości CD tego trójkąta od jego ramienia.

Dane
|AC|=34
|BC|=34
|AB|=32
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 8.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-20252  
Podpunkt 8.1 (1 pkt)
 W trójkącie ABC odcinek EF jest symetralną boku AB oraz |AD|=4, |DB|=132 i |BC|=157:

Wyznacz długości odcinków CF i FB. Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (2 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20240  
Podpunkt 9.1 (1 pkt)
« Wyznacz miary kątów trójkąta pokazanego na rysunku:

Podaj miarę stopniową najmniejszego kąta tego trójkąta.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 9.2 (1 pkt)
Podaj miarę największego kąta tego trójkąta.
Odpowiedź:
max= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm