Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-4

Zadanie 1.  1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 374/475 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Suma miar kątów n kąta jest równa 7380^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 24 i 49. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{11}{12}, |DE|=\frac{1}{4} i |AB|=\frac{5}{12}:

Oblicz długość odcinka DC.

Odpowiedź:
|DC|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Oblicz długość odcinka x:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-2,5) jest środkiem odcinka AB takiego, że punkt A=(x_A, y_A) należy do osi Oy, a punkt B=(x_B, y_B) należy do osi Ox.

Wyznacz współrzędne y_A i x_B.

Odpowiedzi:
y_A= (wpisz liczbę całkowitą)
x_B= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20778 ⋅ Poprawnie: 74/249 [29%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » W trójkącie ABC dane są: A=(-1,-2), C=(5,1). Punkt D jest środkiem boku AB, a \overrightarrow{CD}=[-2, -6].

Wierzchołek B tego trójkąta ma współrzędne B=(x_B, y_B). Podaj x_B.

Odpowiedź:
x_B= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Punkt E=(x_E, y_E) jest środkiem boku BC tego trójkąta. Podaj y_E.
Odpowiedź:
y_E=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20868 ⋅ Poprawnie: 36/78 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego dzieli przeciwprostokątną na dwa odcinki, z których jeden jest o 6 krótszy od tej wysokości, a drugi o 12 od niej dłuższy.

Oblicz długość przeciwprostokątnej tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość najkrótszej wysokości tego trójkąta.
Odpowiedź:
h= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku 3:4, a obwód tego trójkąta ma długość 288.

Wyznacz długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/182 [28%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 « Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie środkowe o długościach 10 i 12.

Podaj długość krótszej z przyprostokątnych tego trójkąta.

Odpowiedź:
min= (liczba zapisana dziesiętnie)
Podpunkt 9.2 (1 pkt)
 Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c= (liczba zapisana dziesiętnie)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm