Podgląd testu : lo2@sp-08-planimetria-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 157/206 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Obwód wielokąta jest równy
119 . Jedna z jego przekątnych
dzieli wielokąt na dwa wielokąty o obwodach
85
i
86 .
Oblicz długość tej przekątnej.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 279/374 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
2+3\sqrt{2} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{6} ,
|DC|=\frac{1}{4} i
|AB|=\frac{11}{12} :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10589 ⋅ Poprawnie: 100/160 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Pięciokąt
ABCDE jest foremny.
Który z trójkątów nie jest podobny do trójkąta ABD :
Odpowiedzi:
A. ABI
B. EDB
C. BGI
D. ABG
Zadanie 5. 1 pkt ⋅ Numer: pp-11394 ⋅ Poprawnie: 208/324 [64%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Dany jest punkt
B=(-4,-7) oraz wektor
\overrightarrow{AB}=[1, -3] . Wyznacz środek odcinka
S_{AB}=(x_S, y_S) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20778 ⋅ Poprawnie: 74/249 [29%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» W trójkącie
ABC dane są:
A=(-10,-2) ,
C=(-4,1) .
Punkt
D jest środkiem boku
AB , a
\overrightarrow{CD}=[-2, -6] .
Wierzchołek B tego trójkąta ma współrzędne
B=(x_B, y_B) . Podaj x_B .
Odpowiedź:
x_B=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Punkt
E=(x_E, y_E) jest środkiem
boku
BC tego trójkąta. Podaj
y_E .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20248 ⋅ Poprawnie: 85/131 [64%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Do jednego z ramion kąta o wierzchołku
O
należą punkty
A i
B , a do
drugiego ramienia kąta punkty
C i
D . Wiadomo, że
AC\parallel BD oraz
|AO|=2 ,
|AC|=3 i
|BD|=9 .
Wyznacz długość odcinka AB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{5}{4} ,
|AB|=2 ,
|AD|=1 i
|BC|=\frac{3}{4} .
Ramiona trapezu przedłużono
do przecięcia w punkcie
O .
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O , a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20711 ⋅ Poprawnie: 132/271 [48%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W trójkącie
ABC kąt przy wierzchołku
A jest prosty oraz
|AB|=90 i
|AC|=56 .
Oblicz odległość środka ciężkości trójkąta ABC
od punktu A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż