Podgląd testu : lo2@sp-08-planimetria-pp-4
Zadanie 1. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
10^{\circ} .
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 2+2\sqrt{2} , -2+2\sqrt{2} , 4\sqrt{2}
T/N : 14 , 14 , 20
T/N : 8 , 10 , 12
Zadanie 3. 1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie
ABC poprowadzono odcinek
DE równoległy do boku
AB , przy czym
|AB|=3 i
|BE|:|EC|=4 :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 490/626 [78%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Obwody trójkątów podobnych
T_1 i
T_2 wynoszą odpowiednio
42
i
12 . Najdłuższy bok trójkąta
T_2 ma długość
9 .
Oblicz długość najdłuższego boku trójkąta T_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11394 ⋅ Poprawnie: 208/324 [64%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Dany jest punkt
B=(-1,-6) oraz wektor
\overrightarrow{AB}=[1, -3] . Wyznacz środek odcinka
S_{AB}=(x_S, y_S) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20297 ⋅ Poprawnie: 72/141 [51%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
A=(-1,8) oraz
B=(2,4) dzielą odcinek
MN
na trzy równe części i są położone na odcinku w kolejności
M ,
A ,
B i
N .
Wyznacz końce tego odcinka.
Podaj sumę współrzędnych punktu M=(x_M,y_M) .
Odpowiedź:
x_M+y_M=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj sumę współrzędnych punktu N=(x_N,y_N) .
Odpowiedź:
x_N+y_N=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20248 ⋅ Poprawnie: 85/131 [64%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Do jednego z ramion kąta o wierzchołku
O
należą punkty
A i
B , a do
drugiego ramienia kąta punkty
C i
D . Wiadomo, że
AC\parallel BD oraz
|AO|=4 ,
|AC|=6 i
|BD|=8 .
Wyznacz długość odcinka AB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 105/209 [50%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
» W trapezie
ABCD ,
AB\parallel CD oraz dane są długości trzech odcinków:
|AB|=7 ,
CD=\frac{25}{4} i
|AD|=11 :
O ile należy wydłużyć ramię AD , aby przecięło
się z przedłużeniem ramienia BC :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 103/223 [46%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Jedna z przyprostokątnych trójkąta prostokątnego ma długość
8 , a wysokość opuszczona na przeciwprostokątną
tego trójkata długość
4\sqrt{3} .
Oblicz długość drugiej przyprostokątnej tego trójkąta.
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Rozwiąż