Trójkąt ABC ma obwód o długości
65. Punkty A_1,
B_1 i C_1 są środkami
boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta
A_1B_1C_1 w skali \frac{3}{2}.
Oblicz długość obwodu trójkąta PQR.
Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 5.1 pkt ⋅ Numer: pp-11394 ⋅ Poprawnie: 208/324 [64%]
(2 pkt)
« W trójkącie równoramiennym ABC o podstawie
AB, wysokość AD
tworzy z jego podstawą kąt o mierze
\alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku
A w stosunku 1:k.
Wiedząc, że liczby k i \alpha
są naturalne dodatnie wykaż, że miara kąta \alpha
jest dzielnikiem liczby 90.
Podaj ilość takich k, które są liczbami nieparzystymi.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20726 ⋅ Poprawnie: 66/253 [26%]
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{35}{4},
|AB|=14,
|AD|=7 i
|BC|=\frac{21}{4}.
Ramiona trapezu przedłużono
do przecięcia w punkcie O.
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O, a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20240 ⋅ Poprawnie: 73/182 [40%]