Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 257/333 [77%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
10 razy większa
od liczby jego boków.
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
5+7\sqrt{2} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{2} ,
|DC|=\frac{3}{4} i
|AB|=\frac{1}{4} :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
\sqrt{41} , a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
4 :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=\left(-\frac{1}{2},\frac{1}{2}\right) jest środkiem odcinka
AB , przy czym
A=(-4,-7) ,
a punkt
B ma współrzędne
(x_B, y_B) .
Wyznacz współrzędne punktu B .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20876 ⋅ Poprawnie: 10/22 [45%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Trzy liczby
x+6 ,
-x i
4x+28 są długościami boków trójkąta, gdy liczba liczba
x należy do przedziału
(p,q) .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20870 ⋅ Poprawnie: 30/46 [65%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Podstawa
AB trójkąta ostrokątnego ma długość
20 cm,
a wysokość opuszczona na tę podstawę ma długość
18 cm. W ten trójkąt
wpisano kwadrat tak, że dwa jego wierzchołki należą do jego podstawy
AB ,
a dwa - do boków
AC i
BC .
Oblicz długość boku tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« W trójkącie prostokątnym najkrótszy bok ma długość
\frac{3}{2} , a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
\frac{1}{2} .
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz obwód tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 107/211 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» W trapezie
ABCD ,
AB\parallel CD oraz dane są długości trzech odcinków:
|AB|=14 ,
CD=\frac{51}{4} i
|AD|=7 :
O ile należy wydłużyć ramię AD , aby przecięło
się z przedłużeniem ramienia BC :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20709 ⋅ Poprawnie: 77/246 [31%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dane są długości boków trójkąta
106 ,
150 i
176 . Zbadaj, czy
trójkąt ten jest prostokątny, ostrokątny czy rozwartokątny.
Jeśli trójkąt jest prostokątny wpisz 1 ,
jeśli ostrokątny wpisz 2 , jeśli rozwartokątny
wpisz 3 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Wyznacz długość wysokości opuszczonej na najdłuższy bok tego trójkąta.
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Punkt
E jest środkiem przeciwprostokątnej
AB trójkąta
ABC .
Odcinek
DE ma długość 1, jak na rysunku.
Oblicz obwód trójkąta ABC .
Odpowiedź:
L_{\triangle ABC}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż