Z punktu leżącego na zewnątrz kąta ABC o mierze
22^{\circ} poprowadzono prostą równoległą do półprostej
BA^{\rightarrow} oraz prostą prostopadłą do półprostej
BC^{\rightarrow}.
Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.
Odpowiedź:
\alpha\ [^{\circ}]=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 279/374 [74%]
« Punkty A=(0,8),
B=(4,11) i C=(5,14)
są trzema kolejnymi wierzchołkami równoległoboku
ABCD (odwrotnie do wskazówek zegara).
Wyznacz współrzedne punktu S=(x_S, y_S),
w którym przecinają się przekątne tego równoległoboku.
Podaj x_S.
Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.25 pkt)
Podaj y_S.
Odpowiedź:
y_S=(wpisz liczbę całkowitą)
Podpunkt 6.3 (0.5 pkt)
Oblicz |BD|.
Odpowiedź:
|BD|=(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20869 ⋅ Poprawnie: 42/89 [47%]
Boki trójkąta rozwartokątnego ABC mają długości:
|AB|=20, |BC|=13 i
|AC|=11. Na boku AB zaznaczono
punkt D w taki sposób, że
|\sphericalangle CDB|=|\sphericalangle ACB|.
Oblicz długość odcinka CD.
Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Oblicz długość odcinka DB.
Odpowiedź:
|BD|=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%]
Podstawa trójkąta równoramiennego ma długość 24, a punkt
przecięcia się środkowych tego trójkąta znajduje się w odległości
\frac{35}{3} od tej podstawy.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%]