Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielokąt wypukły ma 36 boków.

Wyznacz ilość przekątnych tego wielokąta.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 22 i 45. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AP|=\frac{5}{4}, |BP|=\frac{3}{4} i |CP|=\frac{10}{3}:

Oblicz długość odcinka DP.

Odpowiedź:
|DP|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Przedstawione na rysunku trójkąty ABC i PQR są podobne.
Oblicz długość boku AB trójkąta ABC.
Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/53 [54%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Punkt S=\left(\frac{17}{2},\frac{7}{2}\right) jest punktem wspólnym odcinka AB i jego symetralnej, przy czym \overrightarrow{BS}=[-5,3]. Wyznacz współrzędne punktu A.

Podaj x_A.

Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20778 ⋅ Poprawnie: 74/249 [29%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » W trójkącie ABC dane są: A=(-2,1), C=(4,4). Punkt D jest środkiem boku AB, a \overrightarrow{CD}=[-2, -6].

Wierzchołek B tego trójkąta ma współrzędne B=(x_B, y_B). Podaj x_B.

Odpowiedź:
x_B= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Punkt E=(x_E, y_E) jest środkiem boku BC tego trójkąta. Podaj y_E.
Odpowiedź:
y_E=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20867 ⋅ Poprawnie: 39/60 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Obwód trójkąta prostokątnego jest równy 3 cm. Spodek najkrótszej wysokości dzieli przeciwprostokątną na dwa odcinki w stosunku 9:16.

Podaj długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20241 ⋅ Poprawnie: 231/405 [57%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie równoramiennym AC oraz BC są ramionami oraz. |AC|=\sqrt{31}, |BC|=\sqrt{31} i |AB|=4\sqrt{6}:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 107/211 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » W trapezie ABCD, AB\parallel CD oraz dane są długości trzech odcinków: |AB|=13, CD=\frac{39}{4} i |AD|=5:

O ile należy wydłużyć ramię AD, aby przecięło się z przedłużeniem ramienia BC:

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 105/225 [46%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Jedna z przyprostokątnych trójkąta prostokątnego ma długość 20, a wysokość opuszczona na przeciwprostokątną tego trójkata długość 10\sqrt{3}.

Oblicz długość drugiej przyprostokątnej tego trójkąta.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Trójkąt na rysunku jest równoramienny o podstawie AB o długości |AB|=66 i ramieniu |BC|=65:

Oblicz |MN|.

Odpowiedź:
|MN|=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Oblicz |MP|.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm