Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-6

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10480  
Podpunkt 1.1 (1 pkt)
 Suma miar kątów n kąta jest równa 3960^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10583  
Podpunkt 2.1 (1 pkt)
 « Trójkąt równoramienny prostokątny ma przeciwprostokątną długości 3+4\sqrt{2}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10603  
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{1}{3}, |DC|=\frac{5}{12} i |AB|=\frac{1}{6}:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10585  
Podpunkt 4.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10791  
Podpunkt 5.1 (1 pkt)
 Punkt S=\left(\frac{7}{2},\frac{15}{2}\right) jest środkiem odcinka AB, przy czym A=(7,8), a punkt B ma współrzędne (x_B, y_B).

Wyznacz współrzędne punktu B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20239  
Podpunkt 6.1 (1 pkt)
 » Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch pozostałych kątów, których miary różnią się o \alpha.

Oblicz miarę najmniejszego kąta tego trójkąta.

Dane
\alpha=30^{\circ}
Odpowiedź:
\beta_{min}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz miarę największego kąta tego trójkąta.
Odpowiedź:
\beta_{max}=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20725  
Podpunkt 7.1 (2 pkt)
 « Trójkąt ABC na rysunku jest równoramienny, a zielony czworokąt jest kwadratem:

Oblicz pole powierzchni tego kwadratu.

Dane
|AB|=32
|BC|=34
Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20713  
Podpunkt 8.1 (1 pkt)
 « Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku 56:33, a obwód tego trójkąta ma długość 1078.

Wyznacz długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  (3 pkt) [ Dodaj do testu ]  Numer zadania: pp-20252  
Podpunkt 9.1 (1 pkt)
 W trójkącie ABC odcinek EF jest symetralną boku AB oraz |AD|=2, |DB|=140 i |BC|=149:

Wyznacz długości odcinków CF i FB. Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20709  
Podpunkt 10.1 (1 pkt)
 Dane są długości boków trójkąta 13, 20 i 21. Zbadaj, czy trójkąt ten jest prostokątny, ostrokątny czy rozwartokątny.

Jeśli trójkąt jest prostokątny wpisz 1, jeśli ostrokątny wpisz 2, jeśli rozwartokątny wpisz 3.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Wyznacz długość wysokości opuszczonej na najdłuższy bok tego trójkąta.
Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30299  
Podpunkt 11.1 (2 pkt)
 « Wyznacz długości środkowych trójkąta ABC.

Podaj długość najkrótszej z środkowych tego trójkąta.

Dane
|AC|=74
|BC|=74
|AB|=140
Odpowiedź:
d_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
d_{max}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm