Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 158/207 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Obwód wielokąta jest równy
112 . Jedna z jego przekątnych
dzieli wielokąt na dwa wielokąty o obwodach
92
i
94 .
Oblicz długość tej przekątnej.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1 ,
\sqrt{2}+1 ,
2+\sqrt{2} , jest:
Odpowiedzi:
A. jest ostrokątny
B. jest prostokątny
C. nie istnieje
D. jest rozwartokątny
Zadanie 3. 1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równolegle, przy czym
|AP|=\frac{3}{4} ,
|BP|=1 ,
|CP|=2 ,
|DP|=\frac{3}{2} ,
|AB|=\frac{7}{6} :
Oblicz długość odcinka CD .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trójkąt
ABC ma obwód o długości
43 . Punkty
A_1 ,
B_1 i
C_1 są środkami
boków trójkąta
ABC .
Trójkąt
PQR , podobny do trójkąta
A_1B_1C_1 w skali
\frac{3}{2} .
Oblicz długość obwodu trójkąta PQR .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
62^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20778 ⋅ Poprawnie: 74/249 [29%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» W trójkącie
ABC dane są:
A=(-6,-2) ,
C=(0,1) .
Punkt
D jest środkiem boku
AB , a
\overrightarrow{CD}=[-2, -6] .
Wierzchołek B tego trójkąta ma współrzędne
B=(x_B, y_B) . Podaj x_B .
Odpowiedź:
x_B=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Punkt
E=(x_E, y_E) jest środkiem
boku
BC tego trójkąta. Podaj
y_E .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20788 ⋅ Poprawnie: 35/86 [40%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» W trójkącie
ABC kąt przy wierzchołku
A jest prosty i zachodzi warunek
|AB|:|AC|=\frac{4}{3} . Wysokość tego trojkąta opuszczona
z wierzchołka kąta prostego dzieli przeciwprostokątną na odcinki
BD i
DC , których stosunek
długości jest większy od
1 .
Oblicz |BD|:|DC| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Obwód trójkąta prostokątnego ma długość
6 , a
stosunek długość przyprostokątnych tego trójkąta jest równy
3:4 .
Oblicz długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 107/211 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» W trapezie
ABCD ,
AB\parallel CD oraz dane są długości trzech odcinków:
|AB|=19 ,
CD=\frac{73}{4} i
|AD|=9 :
O ile należy wydłużyć ramię AD , aby przecięło
się z przedłużeniem ramienia BC :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20711 ⋅ Poprawnie: 132/271 [48%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC kąt przy wierzchołku
A jest prosty oraz
|AB|=8 i
|AC|=15 .
Oblicz odległość środka ciężkości trójkąta ABC
od punktu A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Trójkąt na rysunku jest równoramienny o podstawie
AB
o długości
|AB|=16 i ramieniu
|BC|=17 :
Oblicz |MN| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż