Z punktu leżącego na zewnątrz kąta ABC o mierze
63^{\circ} poprowadzono prostą równoległą do półprostej
BA^{\rightarrow} oraz prostą prostopadłą do półprostej
BC^{\rightarrow}.
Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.
Odpowiedź:
\alpha\ [^{\circ}]=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
» Do jednego z ramion kąta o wierzchołku O
należą punkty A i B, a do
drugiego ramienia kąta punkty C i
D. Wiadomo, że
AC\parallel BD oraz |AO|=8,
|AC|=4 i |BD|=6.
Wyznacz długość odcinka AB.
Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
W trójkącie ABC poprowadzono trzy proste równoległe do podstawy
AB, które podzieliły bok BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
36 większa od długości jego podstawy AB.
Oblicz |AB|.
Odpowiedź:
|AB|=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pp-20710 ⋅ Poprawnie: 59/195 [30%]