Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11567 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Z punktu leżącego na zewnątrz kąta ABC o mierze 54^{\circ} poprowadzono prostą równoległą do półprostej BA^{\rightarrow} oraz prostą prostopadłą do półprostej BC^{\rightarrow}.

Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 20 i 41. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{1}{6}, |DE|=\frac{2}{3} i |AB|=1:

Oblicz długość odcinka DC.

Odpowiedź:
|DC|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W trójkącie równoramiennym ABC o wysokościach CD i AE podstawa AB ma długość 80, a odcinek BE ma długość \frac{1600}{29}.

Oblicz długość odcinka AC.

Odpowiedź:
|AC|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Punkt S=\left(-\frac{5}{2},\frac{21}{2}\right) jest punktem wspólnym odcinka AB i jego symetralnej, przy czym \overrightarrow{BS}=[6,-1]. Wyznacz współrzędne punktu A.

Podaj x_A.

Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20779 ⋅ Poprawnie: 139/337 [41%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W trójkącie ABC dane są: A=(6,5), B=(-3,4) i C=(1,0). Oblicz długości boków tego trójkąta.

Podaj długość boku najkrótszego.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj długość boku najdłuższego.
Odpowiedź:
max= \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20788 ⋅ Poprawnie: 35/86 [40%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » W trójkącie ABC kąt przy wierzchołku A jest prosty i zachodzi warunek |AB|:|AC|=\frac{7}{4}. Wysokość tego trojkąta opuszczona z wierzchołka kąta prostego dzieli przeciwprostokątną na odcinki BD i DC, których stosunek długości jest większy od 1.

Oblicz |BD|:|DC|.

Odpowiedź:
|BD|:|DC|=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « W trójkącie prostokątnym najkrótszy bok ma długość 6, a najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o 2.

Oblicz długość dłuższej przyprostokątnej tego trójkąta.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 (2 pkt) W trójkącie równoramiennym ABC dane są długości boków: |AC|=|BC|=70 i |AB|=84. Na przedłużeniu boku AB zaznaczono taki punkt D, że |DB|=147. Przez punkt A poprowadzono prostą równoległą do boku BC, która przecięła odcinek DC w punkcie E (zobacz rysunek):

Oblicz |DE|.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 104/224 [46%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « Jedna z przyprostokątnych trójkąta prostokątnego ma długość 16, a wysokość opuszczona na przeciwprostokątną tego trójkata długość 8\sqrt{3}.

Oblicz długość drugiej przyprostokątnej tego trójkąta.

Odpowiedź:
b= \cdot
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Trójkąt na rysunku jest równoboczny i obwód trójkąta SEF spełnia warunek L_{SEF}=32:

Wyznacz skalę podobieństwa \triangle EFS do \triangle AEF.

Odpowiedź:
k= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Obwód trójkąta SEF jest równy 32. Wyznacz |AB| i wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b,c\in \mathbb{Z} i c jest najmniejsze możliwe.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm