Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
36 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 8 , 4 , 4\sqrt{5}
T/N : 16 , 20 , 24
T/N : 8 , 12 , 16
Zadanie 3. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{5}{6} ,
|DC|=\frac{5}{12} i
|AB|=\frac{1}{3} :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trójkąt
ABC ma obwód o długości
59 . Punkty
A_1 ,
B_1 i
C_1 są środkami
boków trójkąta
ABC .
Trójkąt
PQR , podobny do trójkąta
A_1B_1C_1 w skali
\frac{3}{2} .
Oblicz długość obwodu trójkąta PQR .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(4,-2) jest środkiem odcinka
AB takiego, że punkt
A=(x_A, y_A)
należy do osi
Oy , a punkt
B=(x_B, y_B)
należy do osi
Ox .
Wyznacz współrzędne y_A i x_B .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20297 ⋅ Poprawnie: 73/142 [51%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
A=(-1,8) oraz
B=(2,4) dzielą odcinek
MN
na trzy równe części i są położone na odcinku w kolejności
M ,
A ,
B i
N .
Wyznacz końce tego odcinka.
Podaj sumę współrzędnych punktu M=(x_M,y_M) .
Odpowiedź:
x_M+y_M=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj sumę współrzędnych punktu N=(x_N,y_N) .
Odpowiedź:
x_N+y_N=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20726 ⋅ Poprawnie: 66/253 [26%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Zielony czworokąt na rysunku jest kwadratem oraz
|AC|=6 i
|BC|=10 :
Jakim procentem pola powierzchni trójkąta ABC
jest pole powierzchni tego kwadratu. Wynik zaokrąglij do jednego procenta.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku
4:3 , a obwód tego trójkąta ma długość
324 .
Wyznacz długość najkrótszego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 33/50 [66%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W trójkącie
ABC poprowadzono trzy proste równoległe do podstawy
AB , które podzieliły bok
BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
34 większa od długości jego podstawy
AB .
Oblicz |AB| .
Odpowiedź:
|AB|=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20711 ⋅ Poprawnie: 132/271 [48%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC kąt przy wierzchołku
A jest prosty oraz
|AB|=48 i
|AC|=55 .
Oblicz odległość środka ciężkości trójkąta ABC
od punktu A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« W trójkącie
ABC dane są:
|AC|=45 ,
|BC|=45 i
|AB|=72 .
Wyznacz długości środkowych trójkąta
ABC .
Podaj długość najkrótszej z środkowych tego trójkąta.
Odpowiedź:
Podpunkt 11.2 (2 pkt)
Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
Rozwiąż