Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 257/333 [77%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
10 razy większa
od liczby jego boków.
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
5+6\sqrt{2} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie
ABC poprowadzono odcinek
DE równoległy do boku
AB , przy czym
|AB|=\frac{15}{4} i
|BE|:|EC|=4 :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Odcinki
AM i
CN są wysokościami trójkąta
ABC .
Zatem:
Odpowiedzi:
A. |\sphericalangle BAM|=|\sphericalangle ASN|
B. |\sphericalangle CAM|=|\sphericalangle ACN|
C. |\sphericalangle BSN|=|\sphericalangle CAM|
D. |\sphericalangle BAM|=|\sphericalangle BCN|
Zadanie 5. 1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Punkty o współrzędnych
A=(8,-7) ,
B=(5,-5) i
C=(3,-3) są
wierzchołkami trójkąta.
Oblicz długość środkowej AD tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20876 ⋅ Poprawnie: 10/22 [45%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Trzy liczby
x+6 ,
-x i
4x+28 są długościami boków trójkąta, gdy liczba liczba
x należy do przedziału
(p,q) .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20869 ⋅ Poprawnie: 42/89 [47%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Boki trójkąta rozwartokątnego
ABC mają długości:
|AB|=37 ,
|BC|=13 i
|AC|=30 . Na boku
AB zaznaczono
punkt
D w taki sposób, że
|\sphericalangle CDB|=|\sphericalangle ACB| .
Oblicz długość odcinka CD .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Oblicz długość odcinka
DB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20712 ⋅ Poprawnie: 62/136 [45%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Punkt
O jest środkiem okręgu na rysunku, przy czym
x=14 i
y=\frac{33}{4} :
Długość tego okręgu jest równa p\cdot \pi .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{15}{4} ,
|AB|=6 ,
|AD|=3 i
|BC|=\frac{9}{4} .
Ramiona trapezu przedłużono
do przecięcia w punkcie
O .
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O , a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20244 ⋅ Poprawnie: 59/154 [38%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W trójkącie prostokątnym najkrótszy bok ma długość
3 , a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
1 .
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz odległość punktu przecięcia się środkowych tego trójkąta od
wierzchołka kąta prostego.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Trójkąt na rysunku jest równoramienny o podstawie
AB
o długości
|AB|=16 i ramieniu
|BC|=17 :
Oblicz |MN| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż