Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma miar kątów
n kąta jest równa
4680^{\circ} .
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1 ,
\sqrt{2}+1 ,
2+\sqrt{2} , jest:
Odpowiedzi:
A. jest ostrokątny
B. nie istnieje
C. jest prostokątny
D. jest rozwartokątny
Zadanie 3. 1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie
ABC poprowadzono odcinek
DE równoległy do boku
AB , przy czym
|AB|=\frac{15}{4} i
|BE|:|EC|=5 :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.
Podaj liczby a i b .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pp-11394 ⋅ Poprawnie: 208/324 [64%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Dany jest punkt
B=(-1,0) oraz wektor
\overrightarrow{AB}=[1, -3] . Wyznacz środek odcinka
S_{AB}=(x_S, y_S) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20876 ⋅ Poprawnie: 10/22 [45%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Trzy liczby
x+5 ,
+1-x i
4x+24 są długościami boków trójkąta, gdy liczba liczba
x należy do przedziału
(p,q) .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20247 ⋅ Poprawnie: 38/58 [65%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Punkt
D jest środkiem boku
AB oraz
|DC|=|CB|=|BE| .
Wiedząc, że |AC|=2 oblicz
|DE| .
Odpowiedź:
|DE|=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Obwód trójkąta prostokątnego ma długość
12 , a
stosunek długość przyprostokątnych tego trójkąta jest równy
3:4 .
Oblicz długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 33/50 [66%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W trójkącie
ABC poprowadzono trzy proste równoległe do podstawy
AB , które podzieliły bok
BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
14 większa od długości jego podstawy
AB .
Oblicz |AB| .
Odpowiedź:
|AB|=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20240 ⋅ Poprawnie: 73/182 [40%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz miary kątów trójkąta pokazanego na rysunku:
Podaj miarę stopniową najmniejszego kąta tego trójkąta.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj miarę największego kąta tego trójkąta.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Punkt
E jest środkiem przeciwprostokątnej
AB trójkąta
ABC .
Odcinek
DE ma długość 1, jak na rysunku.
Oblicz obwód trójkąta ABC .
Odpowiedź:
L_{\triangle ABC}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż