Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 3\sqrt{10} , 3\sqrt{6} , 3\sqrt{5}
T/N : 6 , 9 , 12
T/N : 6 , 3 , 3\sqrt{5}
Zadanie 3. 1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{4} ,
|DE|=\frac{1}{3} i
|AB|=\frac{5}{12} :
Oblicz długość odcinka DC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Prostokąt
ABCD o przekątnej długości
\frac{21}{2}\sqrt{13} jest podobny do prostokąta o bokach
długości
2 i
3 .
Oblicz obwód prostokąta ABCD .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=\left(-3,\frac{3}{2}\right) jest środkiem odcinka
AB , przy czym
A=(-4,-3) ,
a punkt
B ma współrzędne
(x_B, y_B) .
Wyznacz współrzędne punktu B .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20239 ⋅ Poprawnie: 322/471 [68%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch
pozostałych kątów, których miary różnią się o
55^{\circ} .
Oblicz miarę najmniejszego kąta tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Oblicz miarę największego kąta tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20842 ⋅ Poprawnie: 95/179 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trójkąt
ABC ma obwód równy
42 .
Trójkąt
A_1B_1C_1 jest podobny do trójkąta
ABC w skali
3 aj ego dwa boki mają długość:
|A_1B_1|=42 i
|A_1C_1|=45 .
Jaką długość ma najkrótszy bok trójkąta ABC ?
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Jaką długość ma najdłuższy bok trójkąta
ABC ?
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20714 ⋅ Poprawnie: 93/160 [58%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Czworokąt na rysunku jest prostokątem, w którym
|DP|:|PC|=\frac{1}{6} :
Oceń, czy kąt
\alpha jest prosty, ostry czy rozwarty:
Jeśli kąt \alpha jest prosty wpisz
0 , jeśli ostry wpisz 1 ,
jeśli rozwarty wpisz 2 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
(2 pkt)
W trójkącie równoramiennym
ABC dane są długości boków:
|AC|=|BC|=70 i
|AB|=84 .
Na przedłużeniu boku
AB zaznaczono taki punkt
D ,
że
|DB|=147 . Przez punkt
A
poprowadzono prostą równoległą do boku
BC , która przecięła odcinek
DC w punkcie
E (zobacz rysunek):
Oblicz |DE| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20709 ⋅ Poprawnie: 77/246 [31%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dane są długości boków trójkąta
53 ,
75 i
88 . Zbadaj, czy
trójkąt ten jest prostokątny, ostrokątny czy rozwartokątny.
Jeśli trójkąt jest prostokątny wpisz 1 ,
jeśli ostrokątny wpisz 2 , jeśli rozwartokątny
wpisz 3 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Wyznacz długość wysokości opuszczonej na najdłuższy bok tego trójkąta.
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W trójkącie dane są:
|AC|=26 oraz
|BC|=48 . Środkowe tego trójkata
AM i
BN
przecinają się pod kątem prostym.
Oblicz długość boku AB tego trójkąta.
Odpowiedź:
Rozwiąż