Z punktu leżącego na zewnątrz kąta ABC o mierze
54^{\circ} poprowadzono prostą równoległą do półprostej
BA^{\rightarrow} oraz prostą prostopadłą do półprostej
BC^{\rightarrow}.
Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.
Odpowiedź:
\alpha\ [^{\circ}]=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Punkt S=\left(-\frac{5}{2},\frac{21}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[6,-1]. Wyznacz współrzędne punktu A.
Podaj x_A.
Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20779 ⋅ Poprawnie: 139/337 [41%]
» W trójkącie ABC kąt przy wierzchołku
A jest prosty i zachodzi warunek |AB|:|AC|=\frac{7}{4}. Wysokość tego trojkąta opuszczona
z wierzchołka kąta prostego dzieli przeciwprostokątną na odcinki
BD i DC, których stosunek
długości jest większy od 1.
Oblicz |BD|:|DC|.
Odpowiedź:
|BD|:|DC|=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
(2 pkt)
W trójkącie równoramiennym ABC dane są długości boków:
|AC|=|BC|=70 i |AB|=84.
Na przedłużeniu boku AB zaznaczono taki punkt D,
że |DB|=147. Przez punkt A
poprowadzono prostą równoległą do boku BC, która przecięła odcinek
DC w punkcie E (zobacz rysunek):
Oblicz |DE|.
Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 104/224 [46%]