Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 256/332 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 W n kącie liczba przekątnych jest 9 razy większa od liczby jego boków.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 10 i 21. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 639/861 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinki BC i EF na rysunku są równoległe, przy czym |AC|=\frac{9}{2} i |BC|=10:

Oblicz długość odcinka EF.

Odpowiedź:
|EF|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt ABC ma obwód o długości 39. Punkty A_1, B_1 i C_1 są środkami boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta A_1B_1C_1 w skali \frac{3}{2}.

Oblicz długość obwodu trójkąta PQR.

Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 29/31 [93%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 « Dane są punkty A=(-7,-1) i B=(-2,-6). Na odcinku AB wyznacz taki punkt P, aby \overrightarrow{AP}=\overrightarrow{PB}. Wyznacz współrzędne punktu P.

Podaj x_P.

Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_P.
Odpowiedź:
y_P=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20853 ⋅ Poprawnie: 55/757 [7%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 (2 pkt) « W trójkącie równoramiennym ABC o podstawie AB, wysokość AD tworzy z jego podstawą kąt o mierze \alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku A w stosunku 1:k. Wiedząc, że liczby k i \alpha są naturalne dodatnie wykaż, że miara kąta \alpha jest dzielnikiem liczby 90.

Wyznacz największą możliwą wartość k, która jest liczbą pierwszą.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20917 ⋅ Poprawnie: 35/51 [68%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Trójkąt ABC jest prostokątny. Na boku AC tego trójkąta zbudowano kwadrat, natomiast bok AB przedłużono tak, że |\angle EHA|=90^{\circ}.

Wiedząc, że |BC|=12 oraz bok kwadratu ma długość 5 oblicz pole powierzchni trójkąta EHA.

Odpowiedź:
P_{\triangle EHA}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku 12:5, a obwód tego trójkąta ma długość 120.

Wyznacz długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 105/209 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » W trapezie ABCD, AB\parallel CD oraz dane są długości trzech odcinków: |AB|=16, CD=\frac{63}{4} i |AD|=18:

O ile należy wydłużyć ramię AD, aby przecięło się z przedłużeniem ramienia BC:

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20871 ⋅ Poprawnie: 29/41 [70%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Podstawa trójkąta równoramiennego ma długość 10, a punkt przecięcia się środkowych tego trójkąta znajduje się w odległości 4 od tej podstawy.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Trójkąt na rysunku jest równoboczny i obwód trójkąta SEF spełnia warunek L_{SEF}=8:

Wyznacz skalę podobieństwa \triangle EFS do \triangle AEF.

Odpowiedź:
k= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Obwód trójkąta SEF jest równy 8. Wyznacz |AB| i wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b,c\in \mathbb{Z} i c jest najmniejsze możliwe.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm