Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 257/333 [77%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
15 razy większa
od liczby jego boków.
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 4 , 6 , 8
T/N : 2+2\sqrt{2} , -2+2\sqrt{2} , 4\sqrt{2}
T/N : 8 , 10 , 12
Zadanie 3. 1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AP|=\frac{5}{6} ,
|BP|=\frac{2}{3} i
|CP|=\frac{25}{9} :
Oblicz długość odcinka DP .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Obwody trójkątów podobnych
T_1 i
T_2 wynoszą odpowiednio
63
i
18 . Najdłuższy bok trójkąta
T_2 ma długość
14 .
Oblicz długość najdłuższego boku trójkąta T_1 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11394 ⋅ Poprawnie: 208/324 [64%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Dany jest punkt
B=(3,2) oraz wektor
\overrightarrow{AB}=[1, -3] . Wyznacz środek odcinka
S_{AB}=(x_S, y_S) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20779 ⋅ Poprawnie: 139/337 [41%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W trójkącie
ABC dane są:
A=(6,7) ,
B=(-3,6)
i
C=(1,2) . Oblicz długości boków tego trójkąta.
Podaj długość boku najkrótszego.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj długość boku najdłuższego.
Odpowiedź:
max=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20249 ⋅ Poprawnie: 40/141 [28%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Na ramieniu kąta ostrego o wierzchołku
A zaznaczono
odcinki
AB i
BC , na
drugim ramieniu odcinki
AD i
DE . Odcinki mają długości:
|AB|=3 ,
|BC|=\frac{47}{3} ,
|AD|=7 i
|DE|=1 .
Wyznacz skalę podobieństwa trójkątów
ACD i
ABE .
Podaj skalę k\in(0,1] .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20714 ⋅ Poprawnie: 93/160 [58%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Czworokąt na rysunku jest prostokątem, w którym
|DP|:|PC|=\frac{1}{5} :
Oceń, czy kąt
\alpha jest prosty, ostry czy rozwarty:
Jeśli kąt \alpha jest prosty wpisz
0 , jeśli ostry wpisz 1 ,
jeśli rozwarty wpisz 2 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 33/50 [66%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W trójkącie
ABC poprowadzono trzy proste równoległe do podstawy
AB , które podzieliły bok
BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
20 większa od długości jego podstawy
AB .
Oblicz |AB| .
Odpowiedź:
|AB|=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20240 ⋅ Poprawnie: 73/182 [40%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz miary kątów trójkąta pokazanego na rysunku:
Podaj miarę stopniową najmniejszego kąta tego trójkąta.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj miarę największego kąta tego trójkąta.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W trójkącie dane są:
|AC|=20 oraz
|BC|=24 . Środkowe tego trójkata
AM i
BN
przecinają się pod kątem prostym.
Oblicz długość boku AB tego trójkąta.
Odpowiedź:
Rozwiąż