Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
15^{\circ} .
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
4 i
9 . Trzeci bok tego trójkąta należy do przedziału
(a,b) .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{6} ,
|DC|=\frac{11}{12} i
|AB|=\frac{7}{12} :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz długość odcinka
x :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
48^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 1 pkt ⋅ Numer: pp-20777 ⋅ Poprawnie: 145/401 [36%]
Rozwiąż
Podpunkt 6.1 (0.25 pkt)
« Punkty
A=(-7,2) ,
B=(-3,5) i
C=(-2,8)
są trzema kolejnymi wierzchołkami równoległoboku
ABCD (odwrotnie do wskazówek zegara).
Wyznacz współrzedne punktu
S=(x_S, y_S) ,
w którym przecinają się przekątne tego równoległoboku.
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.25 pkt)
Odpowiedź:
y_S=
(wpisz liczbę całkowitą)
Podpunkt 6.3 (0.5 pkt)
Odpowiedź:
|BD|=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20867 ⋅ Poprawnie: 39/60 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Obwód trójkąta prostokątnego jest równy
4 cm.
Spodek najkrótszej wysokości dzieli przeciwprostokątną na dwa odcinki w stosunku
9:16 .
Podaj długość najkrótszego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« W trójkącie prostokątnym najkrótszy bok ma długość
\frac{7}{2} , a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
\frac{1}{2} .
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz obwód tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W trójkącie
ABC odcinek
EF
jest symetralną boku
AB oraz
|AD|=5 ,
|DB|=117 i
|BC|=125 :
Wyznacz długości odcinków CF i
FB . Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20710 ⋅ Poprawnie: 59/195 [30%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC kąt przy wierzchołku
A jest prosty oraz
|AB|=24 i
|AC|=7 . Odcinek
AE jest środkową tego trójkąta, zaś
odcinek
AF jego wysokością.
Oblicz |EF| .
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Trójkąt na rysunku jest równoboczny i obwód trójkąta
SEF
spełnia warunek
L_{SEF}=2 :
Wyznacz skalę podobieństwa \triangle EFS
do \triangle AEF .
Odpowiedź:
Podpunkt 11.2 (2 pkt)
Obwód trójkąta
SEF jest równy
2 . Wyznacz
|AB| i wynik
zapisz w postaci
a+b\sqrt{c} , gdzie
a,b,c\in \mathbb{Z} i
c
jest najmniejsze możliwe.
Podaj liczby a i b .
Odpowiedzi:
Rozwiąż