Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 257/333 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 W n kącie liczba przekątnych jest 19 razy większa od liczby jego boków.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Trójkąt równoramienny prostokątny ma przeciwprostokątną długości 8+10\sqrt{2}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Odcinki DE i AB są równoległe, przy czym |DE|=\frac{1}{6} i |AB|=\frac{1}{2}:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt T_1 o bokach długości 2\sqrt{7}, 3\sqrt{7} i 4\sqrt{7} jest podobny do trójkąta T_2. Trójkąt T_2 ma boki o długościach:
Odpowiedzi:
A. \frac{4\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5} B. \frac{4\sqrt{7}}{5},\frac{6\sqrt{7}}{5},\frac{12\sqrt{7}}{5}
C. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{8\sqrt{7}}{5} D. \frac{6\sqrt{7}}{5},\frac{9\sqrt{7}}{5},\frac{12\sqrt{7}}{5}
Zadanie 5.  1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=\left(-\frac{7}{2},-\frac{9}{2}\right) jest środkiem odcinka AB, przy czym A=(-6,-4), a punkt B ma współrzędne (x_B, y_B).

Wyznacz współrzędne punktu B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20778 ⋅ Poprawnie: 74/249 [29%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 » W trójkącie ABC dane są: A=(-2,7), C=(4,10). Punkt D jest środkiem boku AB, a \overrightarrow{CD}=[-2, -6].

Wierzchołek B tego trójkąta ma współrzędne B=(x_B, y_B). Podaj x_B.

Odpowiedź:
x_B= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Punkt E=(x_E, y_E) jest środkiem boku BC tego trójkąta. Podaj y_E.
Odpowiedź:
y_E=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20870 ⋅ Poprawnie: 30/46 [65%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Podstawa AB trójkąta ostrokątnego ma długość 36 cm, a wysokość opuszczona na tę podstawę ma długość 34 cm. W ten trójkąt wpisano kwadrat tak, że dwa jego wierzchołki należą do jego podstawy AB, a dwa - do boków AC i BC.

Oblicz długość boku tego kwadratu.

Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Boki trójkąta prostokątnego mają długości: a, 6 i 16.

Podaj najmniejszą możliwą wartość a.

Odpowiedź:
a_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największą możliwą wartość a.
Odpowiedź:
a_{max}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « W trapezie dane są długości podstaw i ramion: |CD|=\frac{15}{2}, |AB|=12, |AD|=6 i |BC|=\frac{9}{2}. Ramiona trapezu przedłużono do przecięcia w punkcie O.

Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt O, a dwa pozostałe są końcami dłuższej podstawy trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20244 ⋅ Poprawnie: 59/154 [38%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W trójkącie prostokątnym najkrótszy bok ma długość 6, a najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o 2.

Oblicz długość dłuższej przyprostokątnej tego trójkąta.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz odległość punktu przecięcia się środkowych tego trójkąta od wierzchołka kąta prostego.
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W trójkąt prostokątny wpisano okrąg, który jest styczny do przeciwprostokątnej w punkcie M.

Oblicz |AM|.

Odpowiedź:
|AM|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm