Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
9^{\circ} .
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 12 , 15 , 18
T/N : 6 , 3 , 3\sqrt{5}
T/N : 3\sqrt{10} , 3\sqrt{6} , 3\sqrt{5}
Zadanie 3. 1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinki
BC i
EF
na rysunku są równoległe, przy czym
|AC|=\frac{11}{2} i
|BC|=17 :
Oblicz długość odcinka EF .
Odpowiedź:
|EF|=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 73/126 [57%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Odcinki
AM i
CN są wysokościami trójkąta
ABC .
Zatem:
Odpowiedzi:
A. |\sphericalangle BSN|=|\sphericalangle CAM|
B. |\sphericalangle BAM|=|\sphericalangle ASN|
C. |\sphericalangle BAM|=|\sphericalangle BCN|
D. |\sphericalangle CAM|=|\sphericalangle ACN|
Zadanie 5. 1 pkt ⋅ Numer: pp-11394 ⋅ Poprawnie: 208/324 [64%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Dany jest punkt
B=(2,0) oraz wektor
\overrightarrow{AB}=[1, -3] . Wyznacz środek odcinka
S_{AB}=(x_S, y_S) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20877 ⋅ Poprawnie: 15/24 [62%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Trzy liczby
2x+13 ,
x+10 i
4x+15 są długościami boków trójkąta równoramiennego.
Wyznacz najmniejszy możliwy L_{min} i największy możliwy
L_{max} obwód tego trójkąta.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20726 ⋅ Poprawnie: 66/253 [26%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Zielony czworokąt na rysunku jest kwadratem oraz
|AC|=10 i
|BC|=26 :
Jakim procentem pola powierzchni trójkąta ABC
jest pole powierzchni tego kwadratu. Wynik zaokrąglij do jednego procenta.
Odpowiedź:
p=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20241 ⋅ Poprawnie: 230/404 [56%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie równoramiennym
AC oraz
BC są ramionami oraz.
|AC|=\sqrt{30} ,
|BC|=\sqrt{30} i
|AB|=6\sqrt{2} :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{25}{4} ,
|AB|=10 ,
|AD|=5 i
|BC|=\frac{15}{4} .
Ramiona trapezu przedłużono
do przecięcia w punkcie
O .
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O , a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20708 ⋅ Poprawnie: 100/201 [49%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
» Wysokości trójkąta prostokątnego mają długości
\frac{12}{5} ,
4 i
3 . Wyznacz długości odcinków, na jakie wysokość
opuszczona na przeciwprostokątną podzieliła tę przeciwprostokątną.
Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Punkt
E jest środkiem przeciwprostokątnej
AB trójkąta
ABC .
Odcinek
DE ma długość 1, jak na rysunku.
Oblicz obwód trójkąta ABC .
Odpowiedź:
L_{\triangle ABC}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż