Punkt S=\left(\frac{13}{2},\frac{3}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[-3,1]. Wyznacz współrzędne punktu A.
Podaj x_A.
Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20778 ⋅ Poprawnie: 74/249 [29%]
» W trójkącie ABC kąt przy wierzchołku
A jest prosty i zachodzi warunek |AB|:|AC|=\frac{5}{4}. Wysokość tego trojkąta opuszczona
z wierzchołka kąta prostego dzieli przeciwprostokątną na odcinki
BD i DC, których stosunek
długości jest większy od 1.
Oblicz |BD|:|DC|.
Odpowiedź:
|BD|:|DC|=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{25}{4},
|AB|=10,
|AD|=5 i
|BC|=\frac{15}{4}.
Ramiona trapezu przedłużono
do przecięcia w punkcie O.
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O, a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20244 ⋅ Poprawnie: 59/154 [38%]