Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt zewnętrzny wielokąta foremnego ma miarę 30^{\circ}.

Ile przekątnych ma ten wielokąt?

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2+\sqrt{3}, jest:
Odpowiedzi:
A. jest ostrokątny B. nie istnieje
C. jest prostokątny D. jest rozwartokątny
Zadanie 3.  1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AP|=\frac{3}{2}, |BP|=\frac{1}{4} i |CP|=3:

Oblicz długość odcinka DP.

Odpowiedź:
|DP|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10589 ⋅ Poprawnie: 100/160 [62%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
«« Pięciokąt ABCDE jest foremny.

Który z trójkątów nie jest podobny do trójkąta ABD:

Odpowiedzi:
A. ABI B. ABG
C. EDB D. BGI
Zadanie 5.  1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 » Punkty o współrzędnych A=(2,-1), B=(1,4) i C=(5,-6) są wierzchołkami trójkąta.

Oblicz długość środkowej AD tego trójkąta.

Odpowiedź:
|AD|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20779 ⋅ Poprawnie: 139/337 [41%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W trójkącie ABC dane są: A=(9,-3), B=(0,-4) i C=(4,-8). Oblicz długości boków tego trójkąta.

Podaj długość boku najkrótszego.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj długość boku najdłuższego.
Odpowiedź:
max= \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20247 ⋅ Poprawnie: 38/58 [65%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Punkt D jest środkiem boku AB oraz |DC|=|CB|=|BE|.

Wiedząc, że |AC|=2 oblicz |DE|.

Odpowiedź:
|DE|= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « W trójkącie prostokątnym najkrótszy bok ma długość 7, a najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o 1.

Oblicz długość dłuższej przyprostokątnej tego trójkąta.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 33/50 [66%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W trójkącie ABC poprowadzono trzy proste równoległe do podstawy AB, które podzieliły bok BC na cztery odcinki równej długości. Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o 40 większa od długości jego podstawy AB.

Oblicz |AB|.

Odpowiedź:
|AB|= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/183 [27%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie środkowe o długościach 5 i 6.

Podaj długość krótszej z przyprostokątnych tego trójkąta.

Odpowiedź:
min= (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c= (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Trójkąt na rysunku jest równoboczny i obwód trójkąta SEF spełnia warunek L_{SEF}=128:

Wyznacz skalę podobieństwa \triangle EFS do \triangle AEF.

Odpowiedź:
k= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Obwód trójkąta SEF jest równy 128. Wyznacz |AB| i wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b,c\in \mathbb{Z} i c jest najmniejsze możliwe.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm