Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
39 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 280/375 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
10+9\sqrt{2} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 645/838 [76%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinek
AB o długości
20 jest
równoległy do odcinka
CD , przy czym:
|PA|=10 i
|AC|=7 :
Oblicz długość odcinka CD .
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
2\sqrt{5} , a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
2 :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
82^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pp-20778 ⋅ Poprawnie: 74/249 [29%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» W trójkącie
ABC dane są:
A=(-1,6) ,
C=(5,9) .
Punkt
D jest środkiem boku
AB , a
\overrightarrow{CD}=[-2, -6] .
Wierzchołek B tego trójkąta ma współrzędne
B=(x_B, y_B) . Podaj x_B .
Odpowiedź:
x_B=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Punkt
E=(x_E, y_E) jest środkiem
boku
BC tego trójkąta. Podaj
y_E .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20842 ⋅ Poprawnie: 95/179 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trójkąt
ABC ma obwód równy
34 .
Trójkąt
A_1B_1C_1 jest podobny do trójkąta
ABC w skali
4 aj ego dwa boki mają długość:
|A_1B_1|=12 i
|A_1C_1|=60 .
Jaką długość ma najkrótszy bok trójkąta ABC ?
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Jaką długość ma najdłuższy bok trójkąta
ABC ?
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« W trójkącie prostokątnym najkrótszy bok ma długość
\frac{13}{2} , a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
\frac{1}{2} .
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz obwód tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
(2 pkt)
W trójkącie równoramiennym
ABC dane są długości boków:
|AC|=|BC|=90 i
|AB|=108 .
Na przedłużeniu boku
AB zaznaczono taki punkt
D ,
że
|DB|=189 . Przez punkt
A
poprowadzono prostą równoległą do boku
BC , która przecięła odcinek
DC w punkcie
E (zobacz rysunek):
Oblicz |DE| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 105/225 [46%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Jedna z przyprostokątnych trójkąta prostokątnego ma długość
22 , a wysokość opuszczona na przeciwprostokątną
tego trójkata długość
11\sqrt{3} .
Oblicz długość drugiej przyprostokątnej tego trójkąta.
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W trójkącie dane są:
|AC|=34 oraz
|BC|=32 . Środkowe tego trójkata
AM i
BN
przecinają się pod kątem prostym.
Oblicz długość boku AB tego trójkąta.
Odpowiedź:
Rozwiąż