Przekątne trapezu ABCD przecinają się w punkcie
S, przez który poprowadzoną prostą prostopadłą do obu podstaw trapezu.
Prosta ta przecięła krótszą podstawę CD w punkcie E,
a podstawę dłuższą AB w punkcie F tak, że
|EF|=48, |SE|=8 i
|EC|=11.
Oblicz długość przekątnej AC tego trapezu.
Odpowiedź:
|AC|=\cdot√
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{25}{4},
|AB|=10,
|AD|=5 i
|BC|=\frac{15}{4}.
Ramiona trapezu przedłużono
do przecięcia w punkcie O.
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O, a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
L_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20871 ⋅ Poprawnie: 29/41 [70%]
Podstawa trójkąta równoramiennego ma długość 48, a punkt
przecięcia się środkowych tego trójkąta znajduje się w odległości
\frac{70}{3} od tej podstawy.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=(wpisz liczbę całkowitą)
Zadanie 11.4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%]