Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 256/332 [77%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
W
n kącie liczba przekątnych jest
11 razy większa
od liczby jego boków.
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 2\sqrt{10} , 2\sqrt{6} , 2\sqrt{5}
T/N : 14 , 14 , 20
T/N : 8 , 10 , 12
Zadanie 3. 1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie
ABC poprowadzono odcinek
DE równoległy do boku
AB , przy czym
|AB|=\frac{15}{4} i
|BE|:|EC|=3 :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10589 ⋅ Poprawnie: 100/160 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Pięciokąt
ABCDE jest foremny.
Który z trójkątów nie jest podobny do trójkąta ABD :
Odpowiedzi:
A. EDB
B. ABG
C. ABI
D. BGI
Zadanie 5. 1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Punkt
S=(4,3) jest środkiem odcinka
AB takiego, że punkt
A=(x_A, y_A)
należy do osi
Oy , a punkt
B=(x_B, y_B)
należy do osi
Ox .
Wyznacz współrzędne y_A i x_B .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20853 ⋅ Poprawnie: 55/757 [7%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
(2 pkt)
« W trójkącie równoramiennym
ABC o podstawie
AB , wysokość
AD
tworzy z jego podstawą kąt o mierze
\alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku
A w stosunku
1:k .
Wiedząc, że liczby
k i
\alpha
są naturalne dodatnie wykaż, że miara kąta
\alpha
jest dzielnikiem liczby
90 .
Wyznacz największą możliwą wartość k , która jest kwadratem liczby naturalnej.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20725 ⋅ Poprawnie: 32/240 [13%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Trójkąt
ABC na rysunku jest równoramienny, a
zielony czworokąt jest kwadratem, przy czym
|AB|=12 i
|BC|=10 :
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Boki trójkąta prostokątnego mają długości:
a ,
6 i
12 .
Podaj najmniejszą możliwą wartość a .
Odpowiedź:
a_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą możliwą wartość
a .
Odpowiedź:
a_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W trójkącie
ABC odcinek
EF
jest symetralną boku
AB oraz
|AD|=7 ,
|DB|=35 i
|BC|=37 :
Wyznacz długości odcinków CF i
FB . Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20240 ⋅ Poprawnie: 73/182 [40%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Wyznacz miary kątów trójkąta pokazanego na rysunku:
Podaj miarę stopniową najmniejszego kąta tego trójkąta.
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj miarę największego kąta tego trójkąta.
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« Punkt
E jest środkiem przeciwprostokątnej
AB trójkąta
ABC .
Odcinek
DE ma długość 1, jak na rysunku.
Oblicz obwód trójkąta ABC .
Odpowiedź:
L_{\triangle ABC}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż