Podgląd testu : lo2@sp-08-planimetria-pp-6
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1,
\sqrt{2}+1,
2+\sqrt{3}, jest:
Odpowiedzi:
|
A. jest rozwartokątny
|
B. jest prostokątny
|
|
C. jest ostrokątny
|
D. nie istnieje
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równolegle, przy czym
|AP|=\frac{5}{6},
|BP|=\frac{1}{3},
|CP|=1,
|DP|=\frac{5}{2},
|AB|=\frac{11}{4}:
Oblicz długość odcinka CD.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
«« Prostokąt
ABCD o przekątnej długości
12\sqrt{13} jest podobny do prostokąta o bokach
długości
2 i
3.
Oblicz obwód prostokąta ABCD.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Punkt
S=\left(\frac{11}{2},-\frac{3}{2}\right) jest środkiem odcinka
AB, przy czym
A=(4,-4),
a punkt
B ma współrzędne
(x_B, y_B).
Wyznacz współrzędne punktu B.
Odpowiedzi:
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20239 ⋅ Poprawnie: 322/471 [68%] |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
» Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch
pozostałych kątów, których miary różnią się o
40^{\circ}.
Oblicz miarę najmniejszego kąta tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Oblicz miarę największego kąta tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20238 ⋅ Poprawnie: 126/171 [73%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Na boku
AC trójkąta równobocznego
ABC wybrano punkt
M
w taki sposób, że
|AM|=|CN| oraz
|MB|=10\sqrt{3}.
Oblicz |MN|.
Odpowiedź:
|MN|=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Boki trójkąta prostokątnego mają długości:
a,
6 i
18.
Podaj najmniejszą możliwą wartość a.
Odpowiedź:
a_{min}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą możliwą wartość
a.
Odpowiedź:
a_{max}=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 9. 3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%] |
Rozwiąż |
Podpunkt 9.1 (1 pkt)
W trójkącie
ABC odcinek
EF
jest symetralną boku
AB oraz
|AD|=3,
|DB|=45 i
|BC|=53:
Wyznacz długości odcinków CF i
FB. Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 105/225 [46%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Jedna z przyprostokątnych trójkąta prostokątnego ma długość
22, a wysokość opuszczona na przeciwprostokątną
tego trójkata długość
11\sqrt{3}.
Oblicz długość drugiej przyprostokątnej tego trójkąta.
Odpowiedź:
b=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%] |
Rozwiąż |
Podpunkt 11.1 (4 pkt)
« W trójkącie dane są:
|AC|=30 oraz
|BC|=36. Środkowe tego trójkata
AM i
BN
przecinają się pod kątem prostym.
Oblicz długość boku AB tego trójkąta.
Odpowiedź: