Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 157/206 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Obwód wielokąta jest równy
113 . Jedna z jego przekątnych
dzieli wielokąt na dwa wielokąty o obwodach
86
i
87 .
Oblicz długość tej przekątnej.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1 ,
\sqrt{2}+1 ,
2\sqrt{2} , jest:
Odpowiedzi:
A. nie istnieje
B. jest rozwartokątny
C. jest prostokątny
D. jest ostrokątny
Zadanie 3. 1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{1}{3} ,
|DC|=\frac{2}{3} i
|AB|=\frac{5}{12} :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10589 ⋅ Poprawnie: 100/160 [62%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Pięciokąt
ABCDE jest foremny.
Który z trójkątów nie jest podobny do trójkąta ABD :
Odpowiedzi:
A. BGI
B. EDB
C. ABG
D. ABI
Zadanie 5. 1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Punkty o współrzędnych
A=(-6,5) ,
B=(8,4) i
C=(0,6) są
wierzchołkami trójkąta.
Oblicz długość środkowej AD tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pp-20877 ⋅ Poprawnie: 15/24 [62%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Trzy liczby
2x+7 ,
x+7 i
4x+3 są długościami boków trójkąta równoramiennego.
Wyznacz najmniejszy możliwy L_{min} i największy możliwy
L_{max} obwód tego trójkąta.
Odpowiedzi:
Zadanie 7. 2 pkt ⋅ Numer: pp-20872 ⋅ Poprawnie: 15/31 [48%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Przekątne trapezu
ABCD przecinają się w punkcie
S , przez który poprowadzoną prostą prostopadłą do obu podstaw trapezu.
Prosta ta przecięła krótszą podstawę
CD w punkcie
E ,
a podstawę dłuższą
AB w punkcie
F tak, że
|EF|=12 ,
|SE|=3 i
|EC|=7 .
Oblicz długość przekątnej AC tego trapezu.
Odpowiedź:
|AC|=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20712 ⋅ Poprawnie: 61/135 [45%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Punkt
O jest środkiem okręgu na rysunku, przy czym
x=15 i
y=\frac{11}{4} :
Długość tego okręgu jest równa p\cdot \pi .
Podaj liczbę p .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 32/49 [65%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W trójkącie
ABC poprowadzono trzy proste równoległe do podstawy
AB , które podzieliły bok
BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
8 większa od długości jego podstawy
AB .
Oblicz |AB| .
Odpowiedź:
|AB|=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/182 [28%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie
środkowe o długościach
10 i
12 .
Podaj długość krótszej z przyprostokątnych tego trójkąta.
Odpowiedź:
min=
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c=
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Trójkąt na rysunku jest równoramienny o podstawie
AB
o długości
|AB|=10 i ramieniu
|BC|=13 :
Oblicz |MN| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż