Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pp-6

Zadanie 1.  1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 256/332 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 W n kącie liczba przekątnych jest 9 razy większa od liczby jego boków.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 10 i 21. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 644/837 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinek AB o długości 9 jest równoległy do odcinka CD, przy czym: |PA|=27 i |AC|=15:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 73/126 [57%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Odcinki AM i CN są wysokościami trójkąta ABC.

Zatem:

Odpowiedzi:
A. |\sphericalangle BSN|=|\sphericalangle CAM| B. |\sphericalangle BAM|=|\sphericalangle BCN|
C. |\sphericalangle CAM|=|\sphericalangle ACN| D. |\sphericalangle BAM|=|\sphericalangle ASN|
Zadanie 5.  1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Punkt S=\left(-\frac{17}{2},\frac{33}{2}\right) jest punktem wspólnym odcinka AB i jego symetralnej, przy czym \overrightarrow{BS}=[5,-5]. Wyznacz współrzędne punktu A.

Podaj x_A.

Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20779 ⋅ Poprawnie: 139/337 [41%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W trójkącie ABC dane są: A=(0,6), B=(-9,5) i C=(-5,1). Oblicz długości boków tego trójkąta.

Podaj długość boku najkrótszego.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj długość boku najdłuższego.
Odpowiedź:
max= \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20724 ⋅ Poprawnie: 65/356 [18%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 «« Punkt M dzieli bok AB trójkąta na rysunku w stosunku 1:5. Ponadto |AC|=24 i |BC|=40:

Oblicz |BN|:|CN|.

Odpowiedź:
|BN|:|CN|=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Boki trójkąta prostokątnego mają długości: a, 6 i 10.

Podaj najmniejszą możliwą wartość a.

Odpowiedź:
a_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największą możliwą wartość a.
Odpowiedź:
a_{max}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 106/210 [50%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 » W trapezie ABCD, AB\parallel CD oraz dane są długości trzech odcinków: |AB|=8, CD=\frac{31}{4} i |AD|=20:

O ile należy wydłużyć ramię AD, aby przecięło się z przedłużeniem ramienia BC:

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20240 ⋅ Poprawnie: 73/182 [40%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
« Wyznacz miary kątów trójkąta pokazanego na rysunku:

Podaj miarę stopniową najmniejszego kąta tego trójkąta.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj miarę największego kąta tego trójkąta.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W trójkącie dane są: |AC|=10 oraz |BC|=16. Środkowe tego trójkata AM i BN przecinają się pod kątem prostym.

Oblicz długość boku AB tego trójkąta.

Odpowiedź:
|AB|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm