Podgląd testu : lo2@sp-08-planimetria-pp-6
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 368/443 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
40 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 279/374 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
10+6\sqrt{2} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/702 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równolegle, przy czym
|AP|=\frac{5}{6} ,
|BP|=\frac{2}{3} ,
|CP|=2 ,
|DP|=\frac{5}{2} ,
|AB|=2 :
Oblicz długość odcinka CD .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Prostokąt
ABCD o przekątnej długości
\frac{25}{2}\sqrt{13} jest podobny do prostokąta o bokach
długości
2 i
3 .
Oblicz obwód prostokąta ABCD .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 29/31 [93%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
« Dane są punkty
A=(-1,7) i
B=(4,2) .
Na odcinku
AB wyznacz taki punkt
P ,
aby
\overrightarrow{AP}=\overrightarrow{PB} . Wyznacz współrzędne punktu
P .
Podaj x_P .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20853 ⋅ Poprawnie: 55/757 [7%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
(2 pkt)
« W trójkącie równoramiennym
ABC o podstawie
AB , wysokość
AD
tworzy z jego podstawą kąt o mierze
\alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku
A w stosunku
1:k .
Wiedząc, że liczby
k i
\alpha
są naturalne dodatnie wykaż, że miara kąta
\alpha
jest dzielnikiem liczby
90 .
Podaj ilość takich k , które są liczbami nieparzystymi.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20725 ⋅ Poprawnie: 33/241 [13%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
« Trójkąt
ABC na rysunku jest równoramienny, a
zielony czworokąt jest kwadratem, przy czym
|AB|=32 i
|BC|=34 :
Oblicz pole powierzchni tego kwadratu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Obwód trójkąta prostokątnego ma długość
\frac{77}{2} , a
stosunek długość przyprostokątnych tego trójkąta jest równy
33:56 .
Oblicz długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{35}{4} ,
|AB|=14 ,
|AD|=7 i
|BC|=\frac{21}{4} .
Ramiona trapezu przedłużono
do przecięcia w punkcie
O .
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O , a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20244 ⋅ Poprawnie: 59/154 [38%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W trójkącie prostokątnym najkrótszy bok ma długość
\frac{33}{2} , a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
\frac{9}{2} .
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz odległość punktu przecięcia się środkowych tego trójkąta od
wierzchołka kąta prostego.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W trójkącie dane są:
|AC|=40 oraz
|BC|=48 . Środkowe tego trójkata
AM i
BN
przecinają się pod kątem prostym.
Oblicz długość boku AB tego trójkąta.
Odpowiedź:
Rozwiąż