Podgląd testu : lo2@sp-08-planimetria-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 4 , 5 , 6
T/N : \sqrt{10} , \sqrt{6} , \sqrt{5}
T/N : 7 , 7 , 10
Zadanie 3. 1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 326/462 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinki
DE i
AB są
równoległe, przy czym
|CD|=\frac{1}{6} i
|CE|=\frac{1}{2} :
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
3\sqrt{5} , a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
3 :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-11597 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 5.1 (1 pkt)
Wektory
\vec{u}=[m-n-6,-m+8]
oraz
\vec{v}=[m+n-6, n+4] są przeciwne.
Wyznacz wartości parametrów m i n .
Odpowiedzi:
Zadanie 6. 2 pkt ⋅ Numer: pp-20239 ⋅ Poprawnie: 322/471 [68%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch
pozostałych kątów, których miary różnią się o
35^{\circ} .
Oblicz miarę najmniejszego kąta tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Oblicz miarę największego kąta tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20722 ⋅ Poprawnie: 69/145 [47%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Trójkąt na rysunku jest równoramienny o podstawie
AB , przy czym
|CD|=\frac{161}{17} oraz
|DB|=\frac{128}{17} :
Oblicz |AB| .
Odpowiedź:
Zadanie 8. 2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku
3:4 , a obwód tego trójkąta ma długość
576 .
Wyznacz długość najkrótszego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
(2 pkt)
W trójkącie równoramiennym
ABC dane są długości boków:
|AC|=|BC|=30 i
|AB|=36 .
Na przedłużeniu boku
AB zaznaczono taki punkt
D ,
że
|DB|=63 . Przez punkt
A
poprowadzono prostą równoległą do boku
BC , która przecięła odcinek
DC w punkcie
E (zobacz rysunek):
Oblicz |DE| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20710 ⋅ Poprawnie: 59/195 [30%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC kąt przy wierzchołku
A jest prosty oraz
|AB|=4 i
|AC|=3 . Odcinek
AE jest środkową tego trójkąta, zaś
odcinek
AF jego wysokością.
Oblicz |EF| .
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W trójkąt prostokątny wpisano okrąg, który jest styczny do
przeciwprostokątnej w punkcie
M .
Oblicz |AM| .
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« W trójkącie
ABC dane są:
|AC|=5 ,
|BC|=5 i
|AB|=8 .
Wyznacz długości środkowych trójkąta
ABC .
Podaj długość najkrótszej z środkowych tego trójkąta.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
Rozwiąż