Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11567 ⋅ Poprawnie: 47/76 [61%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Z punktu leżącego na zewnątrz kąta ABC o mierze 28^{\circ} poprowadzono prostą równoległą do półprostej BA^{\rightarrow} oraz prostą prostopadłą do półprostej BC^{\rightarrow}.

Podaj miarę stopniową większego z kątów, pod jakimi przecinają się te proste.

Odpowiedź:
\alpha\ [^{\circ}]= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 2, 3, 4 T/N : \sqrt{10}, \sqrt{6}, \sqrt{5}
T/N : 7, 7, 10  
Zadanie 3.  1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AP|=\frac{5}{6}, |BP|=\frac{13}{12} i |CP|=\frac{25}{9}:

Oblicz długość odcinka DP.

Odpowiedź:
|DP|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 515/646 [79%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Obwody trójkątów podobnych T_1 i T_2 wynoszą odpowiednio 33 i 6. Najdłuższy bok trójkąta T_2 ma długość 4.

Oblicz długość najdłuższego boku trójkąta T_1.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-11596 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wektory \vec{u}=[2m+n-9, m-3n] oraz \vec{v}=[m, -n+8] są równe.

Wyznacz wartości parametrów m i n

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20297 ⋅ Poprawnie: 73/142 [51%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
Punkty A=(-1,8) oraz B=(2,4) dzielą odcinek MN na trzy równe części i są położone na odcinku w kolejności M, A, B i N. Wyznacz końce tego odcinka.

Podaj sumę współrzędnych punktu M=(x_M,y_M).

Odpowiedź:
x_M+y_M= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Podaj sumę współrzędnych punktu N=(x_N,y_N).
Odpowiedź:
x_N+y_N= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20867 ⋅ Poprawnie: 39/60 [65%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Obwód trójkąta prostokątnego jest równy 6 cm. Spodek najkrótszej wysokości dzieli przeciwprostokątną na dwa odcinki w stosunku 9:16.

Podaj długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « W trójkącie prostokątnym najkrótszy bok ma długość \frac{9}{2}, a najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o \frac{1}{2}.

Oblicz długość dłuższej przyprostokątnej tego trójkąta.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny o podstawie długości 40 i ramieniu długości 52, jest prostokątem:

Oblicz jego obwód.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20871 ⋅ Poprawnie: 29/41 [70%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 Podstawa trójkąta równoramiennego ma długość 18, a punkt przecięcia się środkowych tego trójkąta znajduje się w odległości \frac{40}{3} od tej podstawy.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Trójkąt na rysunku jest równoboczny i obwód trójkąta SEF spełnia warunek L_{SEF}=4:

Wyznacz skalę podobieństwa \triangle EFS do \triangle AEF.

Odpowiedź:
k= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Obwód trójkąta SEF jest równy 4. Wyznacz |AB| i wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b,c\in \mathbb{Z} i c jest najmniejsze możliwe.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « W trójkącie ABC dane są: |AC|=41, |BC|=41 i |AB|=80. Wyznacz długości środkowych trójkąta ABC.

Podaj długość najkrótszej z środkowych tego trójkąta.

Odpowiedź:
d_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
d_{max}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm