Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10375 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Na płaszczyźnie zaznaczono n punktów w taki sposób, że żadne trzy nie należą do tej samej prostej. Liczba wszystkich odcinków, których końcami są dwa dowolne z tych punktów jest równa 231.

Wynacz liczbę n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 2+2\sqrt{2}, -2+2\sqrt{2}, 4\sqrt{2} T/N : 2\sqrt{10}, 2\sqrt{6}, 2\sqrt{5}
T/N : 4, 2, 2\sqrt{5}  
Zadanie 3.  1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{3}{4}, |DE|=\frac{1}{3} i |AB|=\frac{11}{12}:

Oblicz długość odcinka DC.

Odpowiedź:
|DC|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10590 ⋅ Poprawnie: 517/649 [79%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Obwody trójkątów podobnych T_1 i T_2 wynoszą odpowiednio 42 i 12. Najdłuższy bok trójkąta T_2 ma długość 7.

Oblicz długość najdłuższego boku trójkąta T_1.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11510 ⋅ Poprawnie: 577/879 [65%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=(-3,-2) jest środkiem odcinka AB takiego, że punkt A=(x_A, y_A) należy do osi Oy, a punkt B=(x_B, y_B) należy do osi Ox.

Wyznacz współrzędne y_A i x_B.

Odpowiedzi:
y_A= (wpisz liczbę całkowitą)
x_B= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pp-20877 ⋅ Poprawnie: 15/24 [62%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Trzy liczby 2x-1, x+3 i 4x-13 są długościami boków trójkąta równoramiennego.

Wyznacz najmniejszy możliwy L_{min} i największy możliwy L_{max} obwód tego trójkąta.

Odpowiedzi:
L_{min}= (wpisz liczbę całkowitą)
L_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20246 ⋅ Poprawnie: 80/121 [66%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
Odcinki AD i BE przecinają się w punkcie C. W trójkątach ABC i CDE zachodzą związki: |\sphericalangle CAB|=|\sphericalangle CED|, |AC|=5, |BC|=3, |CE|=10, jak na rysunku.

Oblicz długość boku CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pr-20027 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Przeciwprostokątna trójkąta prostokątnego ma długość 761, a jedna z przyprostokątnych jest o 721 dłuższa od drugiej.

Oblicz obwód tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 (2 pkt) W trójkącie równoramiennym ABC dane są długości boków: |AC|=|BC|=40 i |AB|=48. Na przedłużeniu boku AB zaznaczono taki punkt D, że |DB|=84. Przez punkt A poprowadzono prostą równoległą do boku BC, która przecięła odcinek DC w punkcie E (zobacz rysunek):

Oblicz |DE|.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20881 ⋅ Poprawnie: 86/65 [132%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 W trójkącie równoramiennym ABC podstawa AB ma długość 9, a wysokość CD ma taką samą długośc jak odcinek łączący punkt D ze środkiem boku BC.

Oblicz długość wysokości CD.

Odpowiedź:
|CD|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Trójkąt na rysunku jest równoramienny o podstawie AB o długości |AB|=26 i ramieniu |BC|=85:

Oblicz |MN|.

Odpowiedź:
|MN|=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Oblicz |MP|.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « W trójkącie ABC dane są: |AC|=61, |BC|=61 i |AB|=120. Wyznacz długości środkowych trójkąta ABC.

Podaj długość najkrótszej z środkowych tego trójkąta.

Odpowiedź:
d_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
d_{max}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm