Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych jest równa 27 boków.

Ile boków ma wielokąt o mniejszej liczbie boków?

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Trójkąt równoramienny prostokątny ma przeciwprostokątną długości 7+2\sqrt{2}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równolegle, przy czym |AP|=\frac{5}{6}, |BP|=1, |CP|=4, |DP|=\frac{10}{3}, |AB|=4:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/249 [44%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W trójkącie równoramiennym ABC o wysokościach CD i AE podstawa AB ma długość 20, a odcinek BE ma długość \frac{100}{13}.

Oblicz długość odcinka CD.

Odpowiedź:
|AC|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt B=(2,-3). Punkt A spełnia równanie \overrightarrow{AB}=-3\vec{u}. Zatem:
Odpowiedzi:
A. A=(-7,12) B. A=(15,-25)
C. A=(11,-18) D. A=(18,14)
Zadanie 6.  2 pkt ⋅ Numer: pp-20780 ⋅ Poprawnie: 70/218 [32%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W trójkącie ABC dane są: A=(6,-3), B=(-3,-4) i C=(1,-8). Oblicz długości boków tego trójkąta.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pr-20025 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 « Wysokość prostokąta wpisanego w trójkąt o podstawie długości 6 ma długość h:

Oblicz pole powierzchni tego prostokąta.

Dane
h=2.75
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
 Oblicz obwód tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pp-20241 ⋅ Poprawnie: 231/405 [57%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 W trójkącie równoramiennym AC oraz BC są ramionami oraz. |AC|=\sqrt{21}, |BC|=\sqrt{21} i |AB|=6\sqrt{2}:

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 2/2 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny o podstawie długości 24 i ramieniu długości 37, jest prostokątem:

Oblicz jego obwód.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pr-20024 ⋅ Poprawnie: 7/10 [70%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 » Punkt E dzieli bok AB trójkąta ABC w stosunku |AE|:|EB|=p. Odcinek CE przecina środkową tego trójkąta AF w punkcie S.

Oblicz \frac{|SE|}{|CS|}.

Wskazówka: dorysuj na rysunku taki odcinek, który umożliwi korzystanie z twierdzenia Talesa

Dane
p=\frac{3}{7}=0.42857142857143
Odpowiedź:
\frac{|SE|}{|CS|}=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Trójkąt na rysunku jest równoramienny o podstawie AB o długości |AB|=24 i ramieniu |BC|=37:

Oblicz |MN|.

Odpowiedź:
|MN|=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Oblicz |MP|.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « W trójkącie ABC dane są: |AC|=26, |BC|=26 i |AB|=20. Wyznacz długości środkowych trójkąta ABC.

Podaj długość najkrótszej z środkowych tego trójkąta.

Odpowiedź:
d_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
d_{max}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm