Podgląd testu : lo2@sp-08-planimetria-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma miar kątów
n kąta jest równa
4680^{\circ} .
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Trójkąt równoramienny prostokątny ma przeciwprostokątną długości
5+8\sqrt{2} .
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{5}{12} ,
|DC|=\frac{5}{6} i
|DE|=\frac{1}{2} :
Oblicz długość odcinka AB .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%]
Rozwiąż
Podpunkt 4.1 (0.5 pkt)
W trapezie podstawy mają długość
1 i
21 , a wysokość ma długość
20 .
Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.
Podaj krótszą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
Podaj dłuższą z tych odległości.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11394 ⋅ Poprawnie: 208/324 [64%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Dany jest punkt
B=(-1,0) oraz wektor
\overrightarrow{AB}=[1, -3] . Wyznacz środek odcinka
S_{AB}=(x_S, y_S) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20779 ⋅ Poprawnie: 139/337 [41%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W trójkącie
ABC dane są:
A=(2,5) ,
B=(-7,4)
i
C=(-3,0) . Oblicz długości boków tego trójkąta.
Podaj długość boku najkrótszego.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj długość boku najdłuższego.
Odpowiedź:
max=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20868 ⋅ Poprawnie: 36/78 [46%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego dzieli
przeciwprostokątną na dwa odcinki, z których jeden jest o
6 krótszy od tej wysokości,
a drugi o
15 od niej dłuższy.
Oblicz długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość najkrótszej wysokości tego trójkąta.
Odpowiedź:
h=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« W trójkącie prostokątnym najkrótszy bok ma długość
10 , a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
4 .
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz obwód tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 33/50 [66%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W trójkącie
ABC poprowadzono trzy proste równoległe do podstawy
AB , które podzieliły bok
BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
14 większa od długości jego podstawy
AB .
Oblicz |AB| .
Odpowiedź:
|AB|=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pp-20244 ⋅ Poprawnie: 59/154 [38%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
W trójkącie prostokątnym najkrótszy bok ma długość
10 , a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
4 .
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Oblicz odległość punktu przecięcia się środkowych tego trójkąta od
wierzchołka kąta prostego.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Trójkąt na rysunku jest równoramienny o podstawie
AB
o długości
|AB|=48 i ramieniu
|BC|=40 :
Oblicz |MN| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« W trójkącie dane są:
|AC|=10 oraz
|BC|=12 . Środkowe tego trójkata
AM i
BN
przecinają się pod kątem prostym.
Oblicz długość boku AB tego trójkąta.
Odpowiedź:
Rozwiąż