Podgląd testu : lo2@sp-08-planimetria-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 157/206 [76%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Obwód wielokąta jest równy
106. Jedna z jego przekątnych
dzieli wielokąt na dwa wielokąty o obwodach
86
i
100.
Oblicz długość tej przekątnej.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
|
T/N : 21, 21, 30
|
T/N : 12, 15, 18
|
|
T/N : 3\sqrt{10}, 3\sqrt{6}, 3\sqrt{5}
|
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
« Odcinki
DE i
AB
są równoległe, przy czym
|DE|=\frac{1}{3} i
|AB|=\frac{11}{12}:
Oblicz x.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-10589 ⋅ Poprawnie: 100/160 [62%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
«« Pięciokąt
ABCDE jest foremny.
Który z trójkątów nie jest podobny do trójkąta ABD:
Odpowiedzi:
|
A. BGI
|
B. ABI
|
|
C. ABG
|
D. EDB
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%] |
Rozwiąż |
Podpunkt 5.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
66^{\circ}.
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
|
Zadanie 6. 2 pkt ⋅ Numer: pp-20200 ⋅ Poprawnie: 60/116 [51%] |
Rozwiąż |
Podpunkt 6.1 (2 pkt)
Czworokąt
ABCD jest kwadratem, a zielone trójkąty
są równoboczne:
Podaj miarę najmniejszego kąta między czerwonymi odcinkami.
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20238 ⋅ Poprawnie: 125/170 [73%] |
Rozwiąż |
Podpunkt 7.1 (2 pkt)
Na boku
AC trójkąta równobocznego
ABC wybrano punkt
M
w taki sposób, że
|AM|=|CN| oraz
|MB|=6\sqrt{2}.
Oblicz |MN|.
Odpowiedź:
|MN|=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
» Boki trójkąta prostokątnego mają długości:
a,
6 i
13.
Podaj najmniejszą możliwą wartość a.
Odpowiedź:
a_{min}=
\cdot√
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą możliwą wartość
a.
Odpowiedź:
a_{max}=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
« W trapezie dane są długości podstaw i ramion:
|CD|=5,
|AB|=8,
|AD|=4 i
|BC|=3.
Ramiona trapezu przedłużono
do przecięcia w punkcie
O.
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O, a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pr-20881 ⋅ Poprawnie: 86/65 [132%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
W trójkącie równoramiennym
ABC podstawa
AB
ma długość
3, a wysokość
CD ma
taką samą długośc jak odcinek łączący punkt
D ze środkiem boku
BC.
Oblicz długość wysokości CD.
Odpowiedź:
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
« Trójkąt na rysunku jest równoboczny i obwód trójkąta
SEF
spełnia warunek
L_{SEF}=16:
Wyznacz skalę podobieństwa \triangle EFS
do \triangle AEF.
Odpowiedź:
Podpunkt 11.2 (2 pkt)
Obwód trójkąta
SEF jest równy
16. Wyznacz
|AB| i wynik
zapisz w postaci
a+b\sqrt{c}, gdzie
a,b,c\in \mathbb{Z} i
c
jest najmniejsze możliwe.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%] |
Rozwiąż |
Podpunkt 12.1 (2 pkt)
« W trójkącie
ABC dane są:
|AC|=17,
|BC|=17 i
|AB|=16.
Wyznacz długości środkowych trójkąta
ABC.
Podaj długość najkrótszej z środkowych tego trójkąta.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź: