Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 256/332 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 W n kącie liczba przekątnych jest 19 razy większa od liczby jego boków.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : \sqrt{10}, \sqrt{6}, \sqrt{5} T/N : 2, 3, 4
T/N : 4, 5, 6  
Zadanie 3.  1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Odcinki DE i AB są równoległe, przy czym |DE|=\frac{5}{12} i |AB|=1:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Oblicz długość odcinka x:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt B=(2,-3). Punkt A spełnia równanie \overrightarrow{AB}=-3\vec{u}. Zatem:
Odpowiedzi:
A. A=(18,14) B. A=(11,-18)
C. A=(-7,12) D. A=(15,-25)
Zadanie 6.  2 pkt ⋅ Numer: pr-20574 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty P=(x_p, y_p), Q=(x_q, y_q) i R=(x_r, y_r) są środkami boków odpowiednio AB, BC i AC trójkąta ABC. Wierzchołek C tego trójkąta ma współrzędne C=(x_c, y_c).

Podaj y_c.

Dane
x_p=1=1.0000000000
y_p=\frac{45}{4}=11.25000000000000
x_q=\frac{65}{4}=16.25000000000000
y_q=14=14.0000000000
x_r=\frac{13}{4}=3.25000000000000
y_r=\frac{71}{4}=17.75000000000000
Odpowiedź:
y_c=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Punkt S=(x_s, y_s) jest środkiem ciężkości tego trójkąta.

Podaj x_s.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20248 ⋅ Poprawnie: 85/131 [64%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Do jednego z ramion kąta o wierzchołku O należą punkty A i B, a do drugiego ramienia kąta punkty C i D. Wiadomo, że AC\parallel BD oraz |AO|=9, |AC|=3 i |BD|=5.

Wyznacz długość odcinka AB.

Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « W trójkącie prostokątnym najkrótszy bok ma długość 10, a najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o 2.

Oblicz długość dłuższej przyprostokątnej tego trójkąta.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 (2 pkt) W trójkącie równoramiennym ABC dane są długości boków: |AC|=|BC|=30 i |AB|=36. Na przedłużeniu boku AB zaznaczono taki punkt D, że |DB|=63. Przez punkt A poprowadzono prostą równoległą do boku BC, która przecięła odcinek DC w punkcie E (zobacz rysunek):

Oblicz |DE|.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20240 ⋅ Poprawnie: 73/182 [40%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
« Wyznacz miary kątów trójkąta pokazanego na rysunku:

Podaj miarę stopniową najmniejszego kąta tego trójkąta.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj miarę największego kąta tego trójkąta.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Trójkąt na rysunku jest równoboczny i obwód trójkąta SEF spełnia warunek L_{SEF}=4:

Wyznacz skalę podobieństwa \triangle EFS do \triangle AEF.

Odpowiedź:
k= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Obwód trójkąta SEF jest równy 4. Wyznacz |AB| i wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b,c\in \mathbb{Z} i c jest najmniejsze możliwe.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
« Punkt E jest środkiem przeciwprostokątnej AB trójkąta ABC. Odcinek DE ma długość 1, jak na rysunku.

Oblicz obwód trójkąta ABC.

Odpowiedź:
L_{\triangle ABC}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm