Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt zewnętrzny wielokąta foremnego ma miarę 8^{\circ}.

Ile przekątnych ma ten wielokąt?

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 21, 21, 30 T/N : 12, 15, 18
T/N : 3+3\sqrt{2}, -3+3\sqrt{2}, 6\sqrt{2}  
Zadanie 3.  1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równolegle, przy czym |AP|=\frac{5}{6}, |BP|=\frac{2}{3}, |CP|=\frac{8}{3}, |DP|=\frac{10}{3}, |AB|=\frac{4}{3}:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Przedstawione na rysunku trójkąty ABC i PQR są podobne.
Oblicz długość boku AB trójkąta ABC.
Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-11597 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wektory \vec{u}=[m-n+4,-m-2] oraz \vec{v}=[m+n+4, n+4] są przeciwne.

Wyznacz wartości parametrów m i n.

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20780 ⋅ Poprawnie: 70/218 [32%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W trójkącie ABC dane są: A=(6,-2), B=(-3,-3) i C=(1,-7). Oblicz długości boków tego trójkąta.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle ABC}=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Oblicz długość promienia okręgu opisanego na tym trójkącie.
Odpowiedź:
R= \cdot
(wpisz trzy liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20917 ⋅ Poprawnie: 35/51 [68%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Trójkąt ABC jest prostokątny. Na boku AC tego trójkąta zbudowano kwadrat, natomiast bok AB przedłużono tak, że |\angle EHA|=90^{\circ}.

Wiedząc, że |BC|=21 oraz bok kwadratu ma długość 20 oblicz pole powierzchni trójkąta EHA.

Odpowiedź:
P_{\triangle EHA}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20712 ⋅ Poprawnie: 62/136 [45%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Punkt O jest środkiem okręgu na rysunku, przy czym x=25 i y=\frac{75}{4}:

Długość tego okręgu jest równa p\cdot \pi.

Podaj liczbę p.

Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 (2 pkt) W trójkącie równoramiennym ABC dane są długości boków: |AC|=|BC|=70 i |AB|=84. Na przedłużeniu boku AB zaznaczono taki punkt D, że |DB|=147. Przez punkt A poprowadzono prostą równoległą do boku BC, która przecięła odcinek DC w punkcie E (zobacz rysunek):

Oblicz |DE|.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20240 ⋅ Poprawnie: 73/182 [40%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
« Wyznacz miary kątów trójkąta pokazanego na rysunku:

Podaj miarę stopniową najmniejszego kąta tego trójkąta.

Odpowiedź:
min= (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Podaj miarę największego kąta tego trójkąta.
Odpowiedź:
max= (wpisz liczbę całkowitą)
Zadanie 11.  4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W trójkąt prostokątny wpisano okrąg, który jest styczny do przeciwprostokątnej w punkcie M.

Oblicz |AM|.

Odpowiedź:
|AM|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « W trójkącie ABC dane są: |AC|=29, |BC|=29 i |AB|=40. Wyznacz długości środkowych trójkąta ABC.

Podaj długość najkrótszej z środkowych tego trójkąta.

Odpowiedź:
d_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
d_{max}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm