Na płaszczyźnie zaznaczono n punktów w taki sposób, że żadne
trzy nie należą do tej samej prostej. Liczba wszystkich odcinków, których końcami są
dwa dowolne z tych punktów jest równa 231.
Wynacz liczbę n.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Odcinki AD i BE
przecinają się w punkcie C. W trójkątach
ABC i CDE zachodzą
związki: |\sphericalangle CAB|=|\sphericalangle CED|,
|AC|=5, |BC|=3,
|CE|=10, jak na rysunku.
Oblicz długość boku CD.
Odpowiedź:
|CD|=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pr-20027 ⋅ Poprawnie: 1/1 [100%]
(2 pkt)
W trójkącie równoramiennym ABC dane są długości boków:
|AC|=|BC|=40 i |AB|=48.
Na przedłużeniu boku AB zaznaczono taki punkt D,
że |DB|=84. Przez punkt A
poprowadzono prostą równoległą do boku BC, która przecięła odcinek
DC w punkcie E (zobacz rysunek):
Oblicz |DE|.
Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pr-20881 ⋅ Poprawnie: 86/65 [132%]