Podgląd testu : lo2@sp-08-planimetria-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
16 i
33 . Trzeci bok tego trójkąta należy do przedziału
(a,b) .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinki
BC i
EF
na rysunku są równoległe, przy czym
|AC|=\frac{11}{2} i
|BC|=9 :
Oblicz długość odcinka EF .
Odpowiedź:
|EF|=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{17} ,
3\sqrt{17} i
4\sqrt{17} jest podobny do trójkąta
T_2 . Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
A. \frac{6\sqrt{17}}{5},\frac{9\sqrt{17}}{5},\frac{12\sqrt{17}}{5}
B. \frac{4\sqrt{17}}{5},\frac{9\sqrt{17}}{5},\frac{8\sqrt{17}}{5}
C. \frac{6\sqrt{17}}{5},\frac{9\sqrt{17}}{5},\frac{8\sqrt{17}}{5}
D. \frac{4\sqrt{17}}{5},\frac{6\sqrt{17}}{5},\frac{12\sqrt{17}}{5}
Zadanie 5. 1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt
B=(2,-3) . Punkt A spełnia
równanie \overrightarrow{AB}=-3\vec{u} .
Zatem:
Odpowiedzi:
A. A=(15,-25)
B. A=(18,14)
C. A=(-7,12)
D. A=(11,-18)
Zadanie 6. 1 pkt ⋅ Numer: pp-20777 ⋅ Poprawnie: 145/401 [36%]
Rozwiąż
Podpunkt 6.1 (0.25 pkt)
« Punkty
A=(-9,-2) ,
B=(-5,1) i
C=(-4,4)
są trzema kolejnymi wierzchołkami równoległoboku
ABCD (odwrotnie do wskazówek zegara).
Wyznacz współrzedne punktu
S=(x_S, y_S) ,
w którym przecinają się przekątne tego równoległoboku.
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (0.25 pkt)
Odpowiedź:
y_S=
(wpisz liczbę całkowitą)
Podpunkt 6.3 (0.5 pkt)
Odpowiedź:
|BD|=
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20235 ⋅ Poprawnie: 129/233 [55%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Korzystając z danych na rysunku oraz wiedząc, że
a=18
i
b=5 , oblicz długość zielonego odcinka:
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
« W trójkącie prostokątnym najkrótszy bok ma długość
10 , a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
4 .
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz obwód tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 107/211 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» W trapezie
ABCD ,
AB\parallel CD oraz dane są długości trzech odcinków:
|AB|=6 ,
CD=\frac{9}{2} i
|AD|=18 :
O ile należy wydłużyć ramię AD , aby przecięło
się z przedłużeniem ramienia BC :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 105/225 [46%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« Jedna z przyprostokątnych trójkąta prostokątnego ma długość
14 , a wysokość opuszczona na przeciwprostokątną
tego trójkata długość
7\sqrt{3} .
Oblicz długość drugiej przyprostokątnej tego trójkąta.
Odpowiedź:
b=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W trójkąt prostokątny wpisano okrąg, który jest styczny do
przeciwprostokątnej w punkcie
M .
Oblicz |AM| .
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« W trójkącie
ABC dane są:
|AC|=29 ,
|BC|=29 i
|AB|=40 .
Wyznacz długości środkowych trójkąta
ABC .
Podaj długość najkrótszej z środkowych tego trójkąta.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
Rozwiąż