Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 257/333 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 W n kącie liczba przekątnych jest 9 razy większa od liczby jego boków.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 3\sqrt{10}, 3\sqrt{6}, 3\sqrt{5} T/N : 3+3\sqrt{2}, -3+3\sqrt{2}, 6\sqrt{2}
T/N : 6, 9, 12  
Zadanie 3.  1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Odcinki DE i AB są równoległe, przy czym |DE|=\frac{1}{4} i |AB|=1:

Oblicz x.

Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W trójkącie równoramiennym ABC o wysokościach CD i AE podstawa AB ma długość 32, a odcinek BE ma długość \frac{256}{17}.

Oblicz długość odcinka CD.

Odpowiedź:
|AC|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 30/32 [93%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 « Dane są punkty A=(-2,2) i B=(3,-3). Na odcinku AB wyznacz taki punkt P, aby \overrightarrow{AP}=\overrightarrow{PB}. Wyznacz współrzędne punktu P.

Podaj x_P.

Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_P.
Odpowiedź:
y_P=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pr-20831 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dane są punkty: A=(1, -1), B=(4,-2) i C=(x_C,y_C). Wyznacz taki punkt D=(x_D, y_D), aby zachodziła równość 2\cdot\overrightarrow{AB}-3\cdot\overrightarrow{CD}=\overrightarrow{AC} .

Podaj x_D.

Dane
x_C=7
y_C=6
Odpowiedź:
x_D=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj y_D.
Odpowiedź:
y_D=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20722 ⋅ Poprawnie: 69/145 [47%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Trójkąt na rysunku jest równoramienny o podstawie AB, przy czym |CD|=\frac{161}{17} oraz |DB|=\frac{128}{17}:

Oblicz |AB|.

Odpowiedź:
|AB|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Boki trójkąta prostokątnego mają długości: a, 6 i 14.

Podaj najmniejszą możliwą wartość a.

Odpowiedź:
a_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największą możliwą wartość a.
Odpowiedź:
a_{max}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny o podstawie długości 32 i ramieniu długości 34, jest prostokątem:

Oblicz jego obwód.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20711 ⋅ Poprawnie: 132/271 [48%] Rozwiąż 
Podpunkt 10.1 (2 pkt)
 « W trójkącie ABC kąt przy wierzchołku A jest prosty oraz |AB|=36 i |AC|=27.

Oblicz odległość środka ciężkości trójkąta ABC od punktu A.

Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Trójkąt na rysunku jest równoboczny i obwód trójkąta SEF spełnia warunek L_{SEF}=32:

Wyznacz skalę podobieństwa \triangle EFS do \triangle AEF.

Odpowiedź:
k= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Obwód trójkąta SEF jest równy 32. Wyznacz |AB| i wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b,c\in \mathbb{Z} i c jest najmniejsze możliwe.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « W trójkącie ABC dane są: |AC|=34, |BC|=34 i |AB|=60. Wyznacz długości środkowych trójkąta ABC.

Podaj długość najkrótszej z środkowych tego trójkąta.

Odpowiedź:
d_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
d_{max}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm