Podgląd testu : lo2@sp-08-planimetria-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
23 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
12 i
25 . Trzeci bok tego trójkąta należy do przedziału
(a,b) .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10605 ⋅ Poprawnie: 168/277 [60%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AD|=\frac{5}{6} ,
|DE|=\frac{1}{3} i
|AB|=1 :
Oblicz długość odcinka DC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{5} ,
3\sqrt{5} i
4\sqrt{5} jest podobny do trójkąta
T_2 . Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
A. \frac{4\sqrt{5}}{5},\frac{6\sqrt{5}}{5},\frac{12\sqrt{5}}{5}
B. \frac{4\sqrt{5}}{5},\frac{9\sqrt{5}}{5},\frac{8\sqrt{5}}{5}
C. \frac{6\sqrt{5}}{5},\frac{9\sqrt{5}}{5},\frac{8\sqrt{5}}{5}
D. \frac{6\sqrt{5}}{5},\frac{9\sqrt{5}}{5},\frac{12\sqrt{5}}{5}
Zadanie 5. 1 pkt ⋅ Numer: pp-11394 ⋅ Poprawnie: 208/324 [64%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Dany jest punkt
B=(0,-2) oraz wektor
\overrightarrow{AB}=[1, -3] . Wyznacz środek odcinka
S_{AB}=(x_S, y_S) .
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 3 pkt ⋅ Numer: pr-20832 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
P=(x_P, y_P) ,
Q=(x_Q, y_Q)
oraz
R=(x_R, y_R) sa środkami boków trójkąta o
bokach odpowiednio
AB ,
BC
i
AC .
Podaj sumę obu współrzędnych wierzchołka A tego
trójkąta.
Dane
x_P=-1
y_P=5
x_Q=0
y_Q=8
x_R=-5
y_R=6
Odpowiedź:
x_A+y_A=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Punkt
S=(x_S,y_S) jest środkiem ciężkości tego trójkąta.
Podaj x_S .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.3 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20867 ⋅ Poprawnie: 39/60 [65%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Obwód trójkąta prostokątnego jest równy
4 cm.
Spodek najkrótszej wysokości dzieli przeciwprostokątną na dwa odcinki w stosunku
9:16 .
Podaj długość najkrótszego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
Podaj długość najdłuższego boku tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20714 ⋅ Poprawnie: 93/160 [58%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Czworokąt na rysunku jest prostokątem, w którym
|DP|:|PC|=\frac{1}{5} :
Oceń, czy kąt
\alpha jest prosty, ostry czy rozwarty:
Jeśli kąt \alpha jest prosty wpisz
0 , jeśli ostry wpisz 1 ,
jeśli rozwarty wpisz 2 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{15}{4} ,
|AB|=6 ,
|AD|=3 i
|BC|=\frac{9}{4} .
Ramiona trapezu przedłużono
do przecięcia w punkcie
O .
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O , a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20871 ⋅ Poprawnie: 29/41 [70%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
Podstawa trójkąta równoramiennego ma długość
40 , a punkt
przecięcia się środkowych tego trójkąta znajduje się w odległości
7 od tej podstawy.
Oblicz długość obwodu tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 11. 4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Trójkąt na rysunku jest równoramienny o podstawie
AB
o długości
|AB|=48 i ramieniu
|BC|=40 :
Oblicz |MN| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« W trójkącie
ABC dane są:
|AC|=29 ,
|BC|=29 i
|AB|=40 .
Wyznacz długości środkowych trójkąta
ABC .
Podaj długość najkrótszej z środkowych tego trójkąta.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
Rozwiąż