Podgląd testu : lo2@sp-08-planimetria-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10475 ⋅ Poprawnie: 282/480 [58%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Proste
k i
l są równoległe.
Podaj miarę stopniową kąta \alpha .
Odpowiedź:
\alpha\ [^{\circ}]=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 12 , 15 , 18
T/N : 6 , 3 , 3\sqrt{5}
T/N : 3\sqrt{10} , 3\sqrt{6} , 3\sqrt{5}
Zadanie 3. 1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 477/703 [67%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równolegle, przy czym
|AP|=1 ,
|BP|=\frac{3}{4} ,
|CP|=\frac{3}{2} ,
|DP|=2 ,
|AB|=\frac{2}{3} :
Oblicz długość odcinka CD .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Trójkąt
ABC ma obwód o długości
53 . Punkty
A_1 ,
B_1 i
C_1 są środkami
boków trójkąta
ABC .
Trójkąt
PQR , podobny do trójkąta
A_1B_1C_1 w skali
\frac{3}{2} .
Oblicz długość obwodu trójkąta PQR .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt
B=(2,-3) . Punkt A spełnia
równanie \overrightarrow{AB}=-3\vec{u} .
Zatem:
Odpowiedzi:
A. A=(11,-18)
B. A=(15,-25)
C. A=(18,14)
D. A=(-7,12)
Zadanie 6. 2 pkt ⋅ Numer: pp-20239 ⋅ Poprawnie: 322/471 [68%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch
pozostałych kątów, których miary różnią się o
50^{\circ} .
Oblicz miarę najmniejszego kąta tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Oblicz miarę największego kąta tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20842 ⋅ Poprawnie: 95/179 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trójkąt
ABC ma obwód równy
35 .
Trójkąt
A_1B_1C_1 jest podobny do trójkąta
ABC w skali
3 aj ego dwa boki mają długość:
|A_1B_1|=15 i
|A_1C_1|=39 .
Jaką długość ma najkrótszy bok trójkąta ABC ?
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Jaką długość ma najdłuższy bok trójkąta
ABC ?
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20714 ⋅ Poprawnie: 93/160 [58%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Czworokąt na rysunku jest prostokątem, w którym
|DP|:|PC|=\frac{1}{6} :
Oceń, czy kąt
\alpha jest prosty, ostry czy rozwarty:
Jeśli kąt \alpha jest prosty wpisz
0 , jeśli ostry wpisz 1 ,
jeśli rozwarty wpisz 2 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pr-20026 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny
o podstawie długości
54 i ramieniu długości
45 , jest prostokątem:
Oblicz jego obwód.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20710 ⋅ Poprawnie: 59/195 [30%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC kąt przy wierzchołku
A jest prosty oraz
|AB|=30 i
|AC|=16 . Odcinek
AE jest środkową tego trójkąta, zaś
odcinek
AF jego wysokością.
Oblicz |EF| .
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W trójkąt prostokątny wpisano okrąg, który jest styczny do
przeciwprostokątnej w punkcie
M .
Oblicz |AM| .
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« W trójkącie
ABC dane są:
|AC|=34 ,
|BC|=34 i
|AB|=60 .
Wyznacz długości środkowych trójkąta
ABC .
Podaj długość najkrótszej z środkowych tego trójkąta.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
Rozwiąż