Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 368/443 [83%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Wielokąt wypukły ma 18 boków.

Wyznacz ilość przekątnych tego wielokąta.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 4, 5, 6 T/N : \sqrt{10}, \sqrt{6}, \sqrt{5}
T/N : 2, 3, 4  
Zadanie 3.  1 pkt ⋅ Numer: pp-10602 ⋅ Poprawnie: 476/701 [67%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równolegle, przy czym |AP|=\frac{2}{3}, |BP|=1, |CP|=2, |DP|=\frac{4}{3}, |AB|=\frac{5}{6}:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
Oblicz długość odcinka x:
Odpowiedź:
x=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-11597 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wektory \vec{u}=[m-n-5,-m+7] oraz \vec{v}=[m+n-5, n+4] są przeciwne.

Wyznacz wartości parametrów m i n.

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20574 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty P=(x_p, y_p), Q=(x_q, y_q) i R=(x_r, y_r) są środkami boków odpowiednio AB, BC i AC trójkąta ABC. Wierzchołek C tego trójkąta ma współrzędne C=(x_c, y_c).

Podaj y_c.

Dane
x_p=0=0.0000000000
y_p=-\frac{11}{4}=-2.75000000000000
x_q=\frac{9}{4}=2.25000000000000
y_q=0=0.0000000000
x_r=\frac{9}{4}=2.25000000000000
y_r=\frac{15}{4}=3.75000000000000
Odpowiedź:
y_c=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Punkt S=(x_s, y_s) jest środkiem ciężkości tego trójkąta.

Podaj x_s.

Odpowiedź:
x_s=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20723 ⋅ Poprawnie: 75/136 [55%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dane są punkty na okręgu takie, że |AP|=2, |PB|=3 i |CP|=\frac{2}{7}:

Oblicz |PD|.

Odpowiedź:
|PD|=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pr-20027 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 8.1 (2 pkt)
 Przeciwprostokątna trójkąta prostokątnego ma długość 181, a jedna z przyprostokątnych jest o 161 dłuższa od drugiej.

Oblicz obwód tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 (2 pkt) W trójkącie równoramiennym ABC dane są długości boków: |AC|=|BC|=30 i |AB|=36. Na przedłużeniu boku AB zaznaczono taki punkt D, że |DB|=63. Przez punkt A poprowadzono prostą równoległą do boku BC, która przecięła odcinek DC w punkcie E (zobacz rysunek):

Oblicz |DE|.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20708 ⋅ Poprawnie: 99/200 [49%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 » Wysokości trójkąta prostokątnego mają długości \frac{24}{5}, 6 i 8. Wyznacz długości odcinków, na jakie wysokość opuszczona na przeciwprostokątną podzieliła tę przeciwprostokątną.

Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Trójkąt na rysunku jest równoboczny i obwód trójkąta SEF spełnia warunek L_{SEF}=4:

Wyznacz skalę podobieństwa \triangle EFS do \triangle AEF.

Odpowiedź:
k= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Obwód trójkąta SEF jest równy 4. Wyznacz |AB| i wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b,c\in \mathbb{Z} i c jest najmniejsze możliwe.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
« Punkt E jest środkiem przeciwprostokątnej AB trójkąta ABC. Odcinek DE ma długość 1, jak na rysunku.

Oblicz obwód trójkąta ABC.

Odpowiedź:
L_{\triangle ABC}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm