Punkt S=\left(\frac{9}{2},\frac{33}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[-5,-4]. Wyznacz współrzędne punktu A.
Podaj x_A.
Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20779 ⋅ Poprawnie: 139/337 [41%]
Wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego dzieli
przeciwprostokątną na dwa odcinki, z których jeden jest o 18 krótszy od tej wysokości,
a drugi o 20 od niej dłuższy.
Oblicz długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c=(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Oblicz długość najkrótszej wysokości tego trójkąta.
Odpowiedź:
h=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
(2 pkt)
W trójkącie równoramiennym ABC dane są długości boków:
|AC|=|BC|=40 i |AB|=48.
Na przedłużeniu boku AB zaznaczono taki punkt D,
że |DB|=84. Przez punkt A
poprowadzono prostą równoległą do boku BC, która przecięła odcinek
DC w punkcie E (zobacz rysunek):
Oblicz |DE|.
Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20244 ⋅ Poprawnie: 59/154 [38%]