Podgląd testu : lo2@sp-08-planimetria-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych
jest równa
17 boków.
Ile boków ma wielokąt o mniejszej liczbie boków?
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
6 i
13 . Trzeci bok tego trójkąta należy do przedziału
(a,b) .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10600 ⋅ Poprawnie: 326/462 [70%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinki
DE i
AB są
równoległe, przy czym
|CD|=\frac{3}{4} i
|CE|=\frac{1}{2} :
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10581 ⋅ Poprawnie: 74/127 [58%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Odcinki
AM i
CN są wysokościami trójkąta
ABC .
Zatem:
Odpowiedzi:
A. |\sphericalangle BSN|=|\sphericalangle CAM|
B. |\sphericalangle BAM|=|\sphericalangle ASN|
C. |\sphericalangle BAM|=|\sphericalangle BCN|
D. |\sphericalangle CAM|=|\sphericalangle ACN|
Zadanie 5. 1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Punkt
S=\left(-\frac{13}{2},\frac{17}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[3,1] . Wyznacz współrzędne punktu
A .
Podaj x_A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20239 ⋅ Poprawnie: 322/471 [68%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch
pozostałych kątów, których miary różnią się o
45^{\circ} .
Oblicz miarę najmniejszego kąta tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Oblicz miarę największego kąta tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20249 ⋅ Poprawnie: 40/141 [28%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Na ramieniu kąta ostrego o wierzchołku
A zaznaczono
odcinki
AB i
BC , na
drugim ramieniu odcinki
AD i
DE . Odcinki mają długości:
|AB|=3 ,
|BC|=33 ,
|AD|=9 i
|DE|=3 .
Wyznacz skalę podobieństwa trójkątów
ACD i
ABE .
Podaj skalę k\in(0,1] .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20241 ⋅ Poprawnie: 231/405 [57%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
W trójkącie równoramiennym
AC oraz
BC są ramionami oraz.
|AC|=\sqrt{15} ,
|BC|=\sqrt{15} i
|AB|=4 :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
P_{\triangle}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 107/211 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» W trapezie
ABCD ,
AB\parallel CD oraz dane są długości trzech odcinków:
|AB|=15 ,
CD=\frac{45}{4} i
|AD|=22 :
O ile należy wydłużyć ramię AD , aby przecięło
się z przedłużeniem ramienia BC :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20881 ⋅ Poprawnie: 86/65 [132%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
W trójkącie równoramiennym
ABC podstawa
AB
ma długość
6 , a wysokość
CD ma
taką samą długośc jak odcinek łączący punkt
D ze środkiem boku
BC .
Oblicz długość wysokości CD .
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Trójkąt na rysunku jest równoramienny o podstawie
AB
o długości
|AB|=64 i ramieniu
|BC|=68 :
Oblicz |MN| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« Punkt
E jest środkiem przeciwprostokątnej
AB trójkąta
ABC .
Odcinek
DE ma długość 1, jak na rysunku.
Oblicz obwód trójkąta ABC .
Odpowiedź:
L_{\triangle ABC}=
+
\cdot
√
(wpisz trzy liczby całkowite)
Rozwiąż