Podgląd testu : lo2@sp-08-planimetria-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Suma miar kątów
n kąta jest równa
6300^{\circ} .
Wyznacz n .
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 6 , 3 , 3\sqrt{5}
T/N : 21 , 21 , 30
T/N : 3\sqrt{10} , 3\sqrt{6} , 3\sqrt{5}
Zadanie 3. 1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinki
BC i
EF
na rysunku są równoległe, przy czym
|AC|=\frac{9}{2} i
|BC|=19 :
Oblicz długość odcinka EF .
Odpowiedź:
|EF|=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10585 ⋅ Poprawnie: 264/397 [66%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
« Przedstawione na rysunku trójkąty są podobne.
Podaj liczby a i b .
Odpowiedzi:
Zadanie 5. 1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt
B=(2,-3) . Punkt A spełnia
równanie \overrightarrow{AB}=-3\vec{u} .
Zatem:
Odpowiedzi:
A. A=(18,14)
B. A=(15,-25)
C. A=(11,-18)
D. A=(-7,12)
Zadanie 6. 2 pkt ⋅ Numer: pp-20779 ⋅ Poprawnie: 139/337 [41%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« W trójkącie
ABC dane są:
A=(6,-2) ,
B=(-3,-3)
i
C=(1,-7) . Oblicz długości boków tego trójkąta.
Podaj długość boku najkrótszego.
Odpowiedź:
min=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Podaj długość boku najdłuższego.
Odpowiedź:
max=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20872 ⋅ Poprawnie: 15/31 [48%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Przekątne trapezu
ABCD przecinają się w punkcie
S , przez który poprowadzoną prostą prostopadłą do obu podstaw trapezu.
Prosta ta przecięła krótszą podstawę
CD w punkcie
E ,
a podstawę dłuższą
AB w punkcie
F tak, że
|EF|=12 ,
|SE|=3 i
|EC|=8 .
Oblicz długość przekątnej AC tego trapezu.
Odpowiedź:
|AC|=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pr-20027 ⋅ Poprawnie: 1/1 [100%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Przeciwprostokątna trójkąta prostokątnego ma długość
373 , a jedna z przyprostokątnych jest o
23 dłuższa od drugiej.
Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 9. 3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%]
Rozwiąż
Podpunkt 9.1 (1 pkt)
W trójkącie
ABC odcinek
EF
jest symetralną boku
AB oraz
|AD|=1 ,
|DB|=45 i
|BC|=53 :
Wyznacz długości odcinków CF i
FB . Podaj długość krótszego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/183 [27%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
« Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie
środkowe o długościach
5 i
6 .
Podaj długość krótszej z przyprostokątnych tego trójkąta.
Odpowiedź:
min=
(liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c=
(liczba zapisana dziesiętnie)
Zadanie 11. 4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W trójkąt prostokątny wpisano okrąg, który jest styczny do
przeciwprostokątnej w punkcie
M .
Oblicz |AM| .
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« W trójkącie dane są:
|AC|=30 oraz
|BC|=48 . Środkowe tego trójkata
AM i
BN
przecinają się pod kątem prostym.
Oblicz długość boku AB tego trójkąta.
Odpowiedź:
Rozwiąż