Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10479 ⋅ Poprawnie: 257/333 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 W n kącie liczba przekątnych jest 13 razy większa od liczby jego boków.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2+\sqrt{2}, jest:
Odpowiedzi:
A. nie istnieje B. jest rozwartokątny
C. jest prostokątny D. jest ostrokątny
Zadanie 3.  1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 W trójkącie ABC poprowadzono odcinek DE równoległy do boku AB, przy czym |AB|=\frac{9}{2} i |BE|:|EC|=5:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt ABC ma obwód o długości 49. Punkty A_1, B_1 i C_1 są środkami boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta A_1B_1C_1 w skali \frac{3}{2}.

Oblicz długość obwodu trójkąta PQR.

Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pr-11596 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Wektory \vec{u}=[2m+n+9, m-3n-3] oraz \vec{v}=[m, -n+8] są równe.

Wyznacz wartości parametrów m i n

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pp-20877 ⋅ Poprawnie: 15/24 [62%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Trzy liczby 2x+11, x+9 i 4x+11 są długościami boków trójkąta równoramiennego.

Wyznacz najmniejszy możliwy L_{min} i największy możliwy L_{max} obwód tego trójkąta.

Odpowiedzi:
L_{min}= (wpisz liczbę całkowitą)
L_{max}= (wpisz liczbę całkowitą)
Zadanie 7.  2 pkt ⋅ Numer: pp-20238 ⋅ Poprawnie: 126/171 [73%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 Na boku AC trójkąta równobocznego ABC wybrano punkt M w taki sposób, że |AM|=|CN| oraz |MB|=6\sqrt{5}.

Oblicz |MN|.

Odpowiedź:
|MN|= \cdot
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20713 ⋅ Poprawnie: 367/726 [50%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku 28:45, a obwód tego trójkąta ma długość 882.

Wyznacz długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 33/50 [66%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W trójkącie ABC poprowadzono trzy proste równoległe do podstawy AB, które podzieliły bok BC na cztery odcinki równej długości. Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o 24 większa od długości jego podstawy AB.

Oblicz |AB|.

Odpowiedź:
|AB|= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20709 ⋅ Poprawnie: 77/246 [31%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dane są długości boków trójkąta 117, 180 i 189. Zbadaj, czy trójkąt ten jest prostokątny, ostrokątny czy rozwartokątny.

Jeśli trójkąt jest prostokątny wpisz 1, jeśli ostrokątny wpisz 2, jeśli rozwartokątny wpisz 3.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Wyznacz długość wysokości opuszczonej na najdłuższy bok tego trójkąta.
Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W trójkąt prostokątny wpisano okrąg, który jest styczny do przeciwprostokątnej w punkcie M.

Oblicz |AM|.

Odpowiedź:
|AM|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30135 ⋅ Poprawnie: 72/127 [56%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
« Punkt E jest środkiem przeciwprostokątnej AB trójkąta ABC. Odcinek DE ma długość 1, jak na rysunku.

Oblicz obwód trójkąta ABC.

Odpowiedź:
L_{\triangle ABC}= + \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm