Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Suma miar kątów n kąta jest równa 2880^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 16, 20, 24 T/N : 4\sqrt{10}, 4\sqrt{6}, 4\sqrt{5}
T/N : 4+4\sqrt{2}, -4+4\sqrt{2}, 8\sqrt{2}  
Zadanie 3.  1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{11}{12}, |DC|=\frac{1}{6} i |AB|=\frac{7}{12}:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11583 ⋅ Poprawnie: 10/55 [18%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 «« Punkty E i F dzielą przyprostokątne trójkąta ABC w stosunku: |CE|:|CA|=|BF|:|BA|=\frac{1}{6}, przy czym: P_{\triangle MCE}=1 i P_{\triangle NFB}=3:

Oblicz pole powierzchni trójkąta ABC.

Odpowiedź:
P_{\triangle ABC}= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=\left(3,-\frac{5}{2}\right) jest środkiem odcinka AB, przy czym A=(6,-8), a punkt B ma współrzędne (x_B, y_B).

Wyznacz współrzędne punktu B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 6.  3 pkt ⋅ Numer: pr-20832 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty P=(x_P, y_P), Q=(x_Q, y_Q) oraz R=(x_R, y_R) sa środkami boków trójkąta o bokach odpowiednio AB, BC i AC.

Podaj sumę obu współrzędnych wierzchołka A tego trójkąta.

Dane
x_P=5
y_P=-2
x_Q=6
y_Q=1
x_R=1
y_R=-1
Odpowiedź:
x_A+y_A= (wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
 Punkt S=(x_S,y_S) jest środkiem ciężkości tego trójkąta.

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 6.3 (1 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20725 ⋅ Poprawnie: 33/241 [13%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Trójkąt ABC na rysunku jest równoramienny, a zielony czworokąt jest kwadratem, przy czym |AB|=20 i |BC|=26:

Oblicz pole powierzchni tego kwadratu.

Odpowiedź:
P_{\square}=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Boki trójkąta prostokątnego mają długości: a, 6 i 16.

Podaj najmniejszą możliwą wartość a.

Odpowiedź:
a_{min}= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Podaj największą możliwą wartość a.
Odpowiedź:
a_{max}= \cdot
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 (2 pkt) W trójkącie równoramiennym ABC dane są długości boków: |AC|=|BC|=80 i |AB|=96. Na przedłużeniu boku AB zaznaczono taki punkt D, że |DB|=168. Przez punkt A poprowadzono prostą równoległą do boku BC, która przecięła odcinek DC w punkcie E (zobacz rysunek):

Oblicz |DE|.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/183 [27%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie środkowe o długościach 5 i 8.

Podaj długość krótszej z przyprostokątnych tego trójkąta.

Odpowiedź:
min= (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c= (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Trójkąt na rysunku jest równoramienny o podstawie AB o długości |AB|=28 i ramieniu |BC|=50:

Oblicz |MN|.

Odpowiedź:
|MN|=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Oblicz |MP|.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « W trójkącie dane są: |AC|=10 oraz |BC|=12. Środkowe tego trójkata AM i BN przecinają się pod kątem prostym.

Oblicz długość boku AB tego trójkąta.

Odpowiedź:
|AB|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm