Podgląd testu : lo2@sp-08-planimetria-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/1 [0%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych
jest równa
20 boków.
Ile boków ma wielokąt o mniejszej liczbie boków?
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
10 i
21 . Trzeci bok tego trójkąta należy do przedziału
(a,b) .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10596 ⋅ Poprawnie: 219/351 [62%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Odcinki
DE i
AB
są równoległe, przy czym
|DE|=\frac{1}{3} i
|AB|=\frac{5}{6} :
Oblicz x .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10584 ⋅ Poprawnie: 391/480 [81%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Przedstawione na rysunku trójkąty
ABC i
PQR są podobne.
Oblicz długość boku
AB trójkąta
ABC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10790 ⋅ Poprawnie: 243/369 [65%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
» Punkty o współrzędnych
A=(0,-8) ,
B=(-8,-4) i
C=(8,-6) są
wierzchołkami trójkąta.
Oblicz długość środkowej AD tego trójkąta.
Odpowiedź:
Zadanie 6. 2 pkt ⋅ Numer: pr-20573 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Dane sa wektory:
\vec{a}=[a_x, a_y] ,
\vec{b}=[b_x, b_y] i
\vec{c}=[c_x, c_y] .
Wyznacz liczby rzeczywiste i
p i
q takie, że
p\cdot\vec{a}+q\cdot\vec{b}=\vec{c} .
Podaj p .
Dane
a_x=7
a_y=-2
b_x=-4
b_y=1
c_x=-1
c_y=10
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20842 ⋅ Poprawnie: 95/179 [53%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Trójkąt
ABC ma obwód równy
31 .
Trójkąt
A_1B_1C_1 jest podobny do trójkąta
ABC w skali
5 aj ego dwa boki mają długość:
|A_1B_1|=60 i
|A_1C_1|=65 .
Jaką długość ma najkrótszy bok trójkąta ABC ?
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Jaką długość ma najdłuższy bok trójkąta
ABC ?
Odpowiedź:
max=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20714 ⋅ Poprawnie: 93/160 [58%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Czworokąt na rysunku jest prostokątem, w którym
|DP|:|PC|=\frac{1}{4} :
Oceń, czy kąt
\alpha jest prosty, ostry czy rozwarty:
Jeśli kąt \alpha jest prosty wpisz
0 , jeśli ostry wpisz 1 ,
jeśli rozwarty wpisz 2 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20251 ⋅ Poprawnie: 75/238 [31%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
« W trapezie dane są długości podstaw i ramion:
|CD|=\frac{5}{2} ,
|AB|=4 ,
|AD|=2 i
|BC|=\frac{3}{2} .
Ramiona trapezu przedłużono
do przecięcia w punkcie
O .
Oblicz obwód trójkąta, którego jednym z wierzchołków jest punkt
O , a dwa pozostałe są końcami dłuższej podstawy
trapezu.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20024 ⋅ Poprawnie: 7/10 [70%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Punkt
E dzieli bok
AB trójkąta
ABC w stosunku
|AE|:|EB|=p . Odcinek
CE
przecina środkową tego trójkąta
AF w punkcie
S .
Oblicz \frac{|SE|}{|CS|} .
Wskazówka: dorysuj na rysunku taki odcinek, który umożliwi korzystanie
z twierdzenia Talesa
Dane
p=\frac{7}{9}=0.77777777777778
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Trójkąt na rysunku jest równoramienny o podstawie
AB
o długości
|AB|=22 i ramieniu
|BC|=61 :
Oblicz |MN| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« W trójkącie dane są:
|AC|=40 oraz
|BC|=48 . Środkowe tego trójkata
AM i
BN
przecinają się pod kątem prostym.
Oblicz długość boku AB tego trójkąta.
Odpowiedź:
Rozwiąż