Podgląd testu : lo2@sp-08-planimetria-pr-3
|
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 369/444 [83%] |
Rozwiąż |
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
37 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
|
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] |
Rozwiąż |
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
|
T/N : 8, 12, 16
|
T/N : 4\sqrt{10}, 4\sqrt{6}, 4\sqrt{5}
|
|
T/N : 8, 4, 4\sqrt{5}
|
|
|
Zadanie 3. 1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 645/838 [76%] |
Rozwiąż |
Podpunkt 3.1 (1 pkt)
Odcinek
AB o długości
11 jest
równoległy do odcinka
CD, przy czym:
|PA|=22 i
|AC|=28:
Oblicz długość odcinka CD.
Odpowiedź:
|CD|=
(wpisz liczbę całkowitą)
|
Zadanie 4. 1 pkt ⋅ Numer: pp-11435 ⋅ Poprawnie: 330/433 [76%] |
Rozwiąż |
Podpunkt 4.1 (1 pkt)
Trójkąt
T_1 o bokach długości
2\sqrt{19},
3\sqrt{19} i
4\sqrt{19} jest podobny do trójkąta
T_2. Trójkąt
T_2 ma boki
o długościach:
Odpowiedzi:
|
A. \frac{4\sqrt{19}}{5},\frac{6\sqrt{19}}{5},\frac{12\sqrt{19}}{5}
|
B. \frac{6\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{12\sqrt{19}}{5}
|
|
C. \frac{6\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{8\sqrt{19}}{5}
|
D. \frac{4\sqrt{19}}{5},\frac{9\sqrt{19}}{5},\frac{8\sqrt{19}}{5}
|
|
Zadanie 5. 1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 30/32 [93%] |
Rozwiąż |
Podpunkt 5.1 (0.5 pkt)
« Dane są punkty
A=(-8,7) i
B=(-3,2).
Na odcinku
AB wyznacz taki punkt
P,
aby
\overrightarrow{AP}=\overrightarrow{PB}. Wyznacz współrzędne punktu
P.
Podaj x_P.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 6. 3 pkt ⋅ Numer: pr-20832 ⋅ Poprawnie: 0/0 |
Rozwiąż |
Podpunkt 6.1 (1 pkt)
Punkty
P=(x_P, y_P),
Q=(x_Q, y_Q)
oraz
R=(x_R, y_R) sa środkami boków trójkąta o
bokach odpowiednio
AB,
BC
i
AC.
Podaj sumę obu współrzędnych wierzchołka A tego
trójkąta.
Dane
x_P=6
y_P=9
x_Q=7
y_Q=12
x_R=2
y_R=10
Odpowiedź:
x_A+y_A=
(wpisz liczbę całkowitą)
Podpunkt 6.2 (1 pkt)
Punkt
S=(x_S,y_S) jest środkiem ciężkości tego trójkąta.
Podaj x_S.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.3 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 7. 2 pkt ⋅ Numer: pp-20842 ⋅ Poprawnie: 95/179 [53%] |
Rozwiąż |
Podpunkt 7.1 (1 pkt)
Trójkąt
ABC ma obwód równy
36.
Trójkąt
A_1B_1C_1 jest podobny do trójkąta
ABC w skali
4 aj ego dwa boki mają długość:
|A_1B_1|=24 i
|A_1C_1|=60.
Jaką długość ma najkrótszy bok trójkąta ABC?
Odpowiedź:
min=
(wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
Jaką długość ma najdłuższy bok trójkąta
ABC?
Odpowiedź:
max=
(wpisz liczbę całkowitą)
|
Zadanie 8. 2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%] |
Rozwiąż |
Podpunkt 8.1 (1 pkt)
« W trójkącie prostokątnym najkrótszy bok ma długość
\frac{13}{2}, a
najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o
\frac{1}{2}.
Oblicz długość dłuższej przyprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Oblicz obwód tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 9. 2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 107/211 [50%] |
Rozwiąż |
Podpunkt 9.1 (2 pkt)
» W trapezie
ABCD,
AB\parallel CD oraz dane są długości trzech odcinków:
|AB|=21,
CD=\frac{81}{4} i
|AD|=13:
O ile należy wydłużyć ramię AD, aby przecięło
się z przedłużeniem ramienia BC:
Odpowiedź:
(wpisz dwie liczby całkowite)
|
Zadanie 10. 2 pkt ⋅ Numer: pp-20236 ⋅ Poprawnie: 105/225 [46%] |
Rozwiąż |
Podpunkt 10.1 (2 pkt)
« Jedna z przyprostokątnych trójkąta prostokątnego ma długość
20, a wysokość opuszczona na przeciwprostokątną
tego trójkata długość
10\sqrt{3}.
Oblicz długość drugiej przyprostokątnej tego trójkąta.
Odpowiedź:
b=
\cdot√
(wpisz dwie liczby całkowite)
|
Zadanie 11. 4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%] |
Rozwiąż |
Podpunkt 11.1 (2 pkt)
« Trójkąt na rysunku jest równoboczny i obwód trójkąta
SEF
spełnia warunek
L_{SEF}=128:
Wyznacz skalę podobieństwa \triangle EFS
do \triangle AEF.
Odpowiedź:
Podpunkt 11.2 (2 pkt)
Obwód trójkąta
SEF jest równy
128. Wyznacz
|AB| i wynik
zapisz w postaci
a+b\sqrt{c}, gdzie
a,b,c\in \mathbb{Z} i
c
jest najmniejsze możliwe.
Podaj liczby a i b.
Odpowiedzi:
|
Zadanie 12. 4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%] |
Rozwiąż |
Podpunkt 12.1 (4 pkt)
« W trójkącie dane są:
|AC|=20 oraz
|BC|=24. Środkowe tego trójkata
AM i
BN
przecinają się pod kątem prostym.
Oblicz długość boku AB tego trójkąta.
Odpowiedź: