Podgląd testu : lo2@sp-08-planimetria-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10481 ⋅ Poprawnie: 158/207 [76%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Obwód wielokąta jest równy
103 . Jedna z jego przekątnych
dzieli wielokąt na dwa wielokąty o obwodach
84
i
69 .
Oblicz długość tej przekątnej.
Odpowiedź:
d=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : \sqrt{10} , \sqrt{6} , \sqrt{5}
T/N : 1+\sqrt{2} , -1+\sqrt{2} , 2\sqrt{2}
T/N : 7 , 7 , 10
Zadanie 3. 1 pkt ⋅ Numer: pp-10594 ⋅ Poprawnie: 145/235 [61%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
W trójkącie
ABC poprowadzono odcinek
DE równoległy do boku
AB , przy czym
|AB|=\frac{9}{4} i
|BE|:|EC|=5 :
Oblicz długość odcinka DE .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 572/1179 [48%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
2\sqrt{10} , a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
2 :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pr-10233 ⋅ Poprawnie: 22/21 [104%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Dany jest wektor \vec{u}=[-3,5] oraz punkt
B=(2,-3) . Punkt A spełnia
równanie \overrightarrow{AB}=-3\vec{u} .
Zatem:
Odpowiedzi:
A. A=(15,-25)
B. A=(11,-18)
C. A=(18,14)
D. A=(-7,12)
Zadanie 6. 2 pkt ⋅ Numer: pp-20853 ⋅ Poprawnie: 55/757 [7%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
(2 pkt)
« W trójkącie równoramiennym
ABC o podstawie
AB , wysokość
AD
tworzy z jego podstawą kąt o mierze
\alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku
A w stosunku
1:k .
Wiedząc, że liczby
k i
\alpha
są naturalne dodatnie wykaż, że miara kąta
\alpha
jest dzielnikiem liczby
90 .
Wyznacz największą możliwą wartość k .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20843 ⋅ Poprawnie: 31/79 [39%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
|AC|=5
|BC|=5
|AB|=6
W trójkącie równoramiennym
ABC dane są długości boków
|AB|=6 ,
|AC|=5 i
|BC|=5 .
Oblicz odległość środka wysokości CD tego trójkąta
od jego ramienia.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20714 ⋅ Poprawnie: 93/160 [58%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Czworokąt na rysunku jest prostokątem, w którym
|DP|:|PC|=\frac{1}{4} :
Oceń, czy kąt
\alpha jest prosty, ostry czy rozwarty:
Jeśli kąt \alpha jest prosty wpisz
0 , jeśli ostry wpisz 1 ,
jeśli rozwarty wpisz 2 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
(2 pkt)
W trójkącie równoramiennym
ABC dane są długości boków:
|AC|=|BC|=20 i
|AB|=24 .
Na przedłużeniu boku
AB zaznaczono taki punkt
D ,
że
|DB|=42 . Przez punkt
A
poprowadzono prostą równoległą do boku
BC , która przecięła odcinek
DC w punkcie
E (zobacz rysunek):
Oblicz |DE| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20709 ⋅ Poprawnie: 77/246 [31%]
Rozwiąż
Podpunkt 10.1 (1 pkt)
Dane są długości boków trójkąta
13 ,
20 i
21 . Zbadaj, czy
trójkąt ten jest prostokątny, ostrokątny czy rozwartokątny.
Jeśli trójkąt jest prostokątny wpisz 1 ,
jeśli ostrokątny wpisz 2 , jeśli rozwartokątny
wpisz 3 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
Wyznacz długość wysokości opuszczonej na najdłuższy bok tego trójkąta.
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W trójkąt prostokątny wpisano okrąg, który jest styczny do
przeciwprostokątnej w punkcie
M .
Oblicz |AM| .
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« W trójkącie
ABC dane są:
|AC|=50 ,
|BC|=50 i
|AB|=28 .
Wyznacz długości środkowych trójkąta
ABC .
Podaj długość najkrótszej z środkowych tego trójkąta.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
Rozwiąż