W trapezie podstawy mają długość 15 i
24, a wysokość ma długość 10.
Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.
Podaj krótszą z tych odległości.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
Podaj dłuższą z tych odległości.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 5.1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%]
Punkt S=\left(\frac{13}{2},\frac{5}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[-1,-2]. Wyznacz współrzędne punktu A.
Podaj x_A.
Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.2 pkt ⋅ Numer: pp-20778 ⋅ Poprawnie: 74/249 [29%]
«« W prostokącie ABCD punkt M należy do boku
CD i jest tak położony, że AM\perp BD.
Przekątna BD przecina odcinek AM
w punkcie N oraz |AN|=36 i
|NM|=4.
Oblicz długość przekątnej AC.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (1 pkt)
Oblicz obwód tego prostokąta.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8.2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%]
W trójkącie ABC poprowadzono trzy proste równoległe do podstawy
AB, które podzieliły bok BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
10 większa od długości jego podstawy AB.
Oblicz |AB|.
Odpowiedź:
|AB|=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-20024 ⋅ Poprawnie: 7/10 [70%]