Na płaszczyźnie zaznaczono n punktów w taki sposób, że żadne
trzy nie należą do tej samej prostej. Liczba wszystkich odcinków, których końcami są
dwa dowolne z tych punktów jest równa 666.
Wynacz liczbę n.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Na ramieniu kąta ostrego o wierzchołku A zaznaczono
odcinki AB i BC, na
drugim ramieniu odcinki AD i
DE. Odcinki mają długości:
|AB|=4, |BC|=\frac{68}{3},
|AD|=10 i |DE|=\frac{2}{3}.
Wyznacz skalę podobieństwa trójkątów ACD i
ABE.
Podaj skalę k\in(0,1].
Odpowiedź:
k=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20712 ⋅ Poprawnie: 62/136 [45%]
W trójkącie ABC poprowadzono trzy proste równoległe do podstawy
AB, które podzieliły bok BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
30 większa od długości jego podstawy AB.
Oblicz |AB|.
Odpowiedź:
|AB|=(wpisz liczbę całkowitą)
Zadanie 10.2 pkt ⋅ Numer: pr-20024 ⋅ Poprawnie: 7/10 [70%]