Na płaszczyźnie zaznaczono n punktów w taki sposób, że żadne
trzy nie należą do tej samej prostej. Liczba wszystkich odcinków, których końcami są
dwa dowolne z tych punktów jest równa 780.
Wynacz liczbę n.
Odpowiedź:
n=(wpisz liczbę całkowitą)
Zadanie 2.1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
Trójkąt ABC ma obwód o długości
61. Punkty A_1,
B_1 i C_1 są środkami
boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta
A_1B_1C_1 w skali \frac{3}{2}.
Oblicz długość obwodu trójkąta PQR.
Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 5.1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 29/31 [93%]
« Podstawa AB trójkąta ostrokątnego ma długość 40 cm,
a wysokość opuszczona na tę podstawę ma długość 38 cm. W ten trójkąt
wpisano kwadrat tak, że dwa jego wierzchołki należą do jego podstawy AB,
a dwa - do boków AC i BC.
Oblicz długość boku tego kwadratu.
Odpowiedź:
a=
(wpisz dwie liczby całkowite)
Zadanie 8.2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%]
(2 pkt)
W trójkącie równoramiennym ABC dane są długości boków:
|AC|=|BC|=80 i |AB|=96.
Na przedłużeniu boku AB zaznaczono taki punkt D,
że |DB|=168. Przez punkt A
poprowadzono prostą równoległą do boku BC, która przecięła odcinek
DC w punkcie E (zobacz rysunek):
Oblicz |DE|.
Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.2 pkt ⋅ Numer: pp-20871 ⋅ Poprawnie: 29/41 [70%]