(2 pkt)
« W trójkącie równoramiennym ABC o podstawie
AB, wysokość AD
tworzy z jego podstawą kąt o mierze
\alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku
A w stosunku 1:k.
Wiedząc, że liczby k i \alpha
są naturalne dodatnie wykaż, że miara kąta \alpha
jest dzielnikiem liczby 90.
Podaj, ile rozwiązań ma to zadanie.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7.2 pkt ⋅ Numer: pp-20246 ⋅ Poprawnie: 80/121 [66%]
Odcinki AD i BE
przecinają się w punkcie C. W trójkątach
ABC i CDE zachodzą
związki: |\sphericalangle CAB|=|\sphericalangle CED|,
|AC|=5, |BC|=3,
|CE|=10, jak na rysunku.
Oblicz długość boku CD.
Odpowiedź:
|CD|=(wpisz liczbę całkowitą)
Zadanie 8.2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%]
» Wysokości trójkąta prostokątnego mają długości
\frac{24}{5}, 6 i
8. Wyznacz długości odcinków, na jakie wysokość
opuszczona na przeciwprostokątną podzieliła tę przeciwprostokątną.
Podaj długość krótszego z tych odcinków.
Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 11.4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%]