Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Suma miar kątów n kąta jest równa 4680^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-10583 ⋅ Poprawnie: 281/376 [74%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Trójkąt równoramienny prostokątny ma przeciwprostokątną długości 5+8\sqrt{2}.

Oblicz pole powierzchni tego trójkąta.

Odpowiedź:
P_{\triangle}= + \cdot
(wpisz cztery liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10604 ⋅ Poprawnie: 186/262 [70%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{5}{12}, |DC|=\frac{5}{6} i |DE|=\frac{1}{2}:

Oblicz długość odcinka AB.

Odpowiedź:
|AB|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11568 ⋅ Poprawnie: 36/58 [62%] Rozwiąż 
Podpunkt 4.1 (0.5 pkt)
 W trapezie podstawy mają długość 1 i 21, a wysokość ma długość 20. Wyznacz odległości punktu przecięcia się przekątynych tego trapezu od jego podstaw.

Podaj krótszą z tych odległości.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 4.2 (0.5 pkt)
 Podaj dłuższą z tych odległości.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-11394 ⋅ Poprawnie: 208/324 [64%] Rozwiąż 
Podpunkt 5.1 (0.5 pkt)
 Dany jest punkt B=(-1,0) oraz wektor \overrightarrow{AB}=[1, -3]. Wyznacz środek odcinka S_{AB}=(x_S, y_S).

Podaj x_S.

Odpowiedź:
x_S=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_S.
Odpowiedź:
y_S=
(wpisz dwie liczby całkowite)
Zadanie 6.  2 pkt ⋅ Numer: pp-20779 ⋅ Poprawnie: 139/337 [41%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « W trójkącie ABC dane są: A=(2,5), B=(-7,4) i C=(-3,0). Oblicz długości boków tego trójkąta.

Podaj długość boku najkrótszego.

Odpowiedź:
min= \cdot
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj długość boku najdłuższego.
Odpowiedź:
max= \cdot
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20868 ⋅ Poprawnie: 36/78 [46%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Wysokość trójkąta prostokątnego poprowadzona z wierzchołka kąta prostego dzieli przeciwprostokątną na dwa odcinki, z których jeden jest o 6 krótszy od tej wysokości, a drugi o 15 od niej dłuższy.

Oblicz długość przeciwprostokątnej tego trójkąta.

Odpowiedź:
c= (wpisz liczbę całkowitą)
Podpunkt 7.2 (1 pkt)
 Oblicz długość najkrótszej wysokości tego trójkąta.
Odpowiedź:
h= (wpisz liczbę całkowitą)
Zadanie 8.  2 pkt ⋅ Numer: pp-20875 ⋅ Poprawnie: 65/108 [60%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 « W trójkącie prostokątnym najkrótszy bok ma długość 10, a najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o 4.

Oblicz długość dłuższej przyprostokątnej tego trójkąta.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 9.  2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 33/50 [66%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 W trójkącie ABC poprowadzono trzy proste równoległe do podstawy AB, które podzieliły bok BC na cztery odcinki równej długości. Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o 14 większa od długości jego podstawy AB.

Oblicz |AB|.

Odpowiedź:
|AB|= (wpisz liczbę całkowitą)
Zadanie 10.  2 pkt ⋅ Numer: pp-20244 ⋅ Poprawnie: 59/154 [38%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 W trójkącie prostokątnym najkrótszy bok ma długość 10, a najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o 4.

Oblicz długość dłuższej przyprostokątnej tego trójkąta.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 10.2 (1 pkt)
 Oblicz odległość punktu przecięcia się środkowych tego trójkąta od wierzchołka kąta prostego.
Odpowiedź:
d=
(wpisz dwie liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 «« Trójkąt na rysunku jest równoramienny o podstawie AB o długości |AB|=48 i ramieniu |BC|=40:

Oblicz |MN|.

Odpowiedź:
|MN|=
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Oblicz |MP|.
Odpowiedź:
Wpisz odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « W trójkącie dane są: |AC|=10 oraz |BC|=12. Środkowe tego trójkata AM i BN przecinają się pod kątem prostym.

Oblicz długość boku AB tego trójkąta.

Odpowiedź:
|AB|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm