Podgląd testu : lo2@sp-08-planimetria-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-11566 ⋅ Poprawnie: 36/66 [54%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt zewnętrzny wielokąta foremnego ma miarę
12^{\circ} .
Ile przekątnych ma ten wielokąt?
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 8 , 10 , 12
T/N : 2\sqrt{10} , 2\sqrt{6} , 2\sqrt{5}
T/N : 4 , 6 , 8
Zadanie 3. 1 pkt ⋅ Numer: pp-10601 ⋅ Poprawnie: 640/862 [74%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Odcinki
BC i
EF
na rysunku są równoległe, przy czym
|AC|=\frac{9}{2} i
|BC|=19 :
Oblicz długość odcinka EF .
Odpowiedź:
|EF|=
(wpisz liczbę całkowitą)
Zadanie 4. 1 pkt ⋅ Numer: pp-10592 ⋅ Poprawnie: 248/297 [83%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
Oblicz długość odcinka
x :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11605 ⋅ Poprawnie: 29/52 [55%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
Punkt
S=\left(\frac{5}{2},\frac{33}{2}\right) jest punktem wspólnym odcinka
AB i jego symetralnej, przy czym
\overrightarrow{BS}=[-2,-4] . Wyznacz współrzędne punktu
A .
Podaj x_A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pp-20853 ⋅ Poprawnie: 55/757 [7%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
(2 pkt)
« W trójkącie równoramiennym
ABC o podstawie
AB , wysokość
AD
tworzy z jego podstawą kąt o mierze
\alpha i dzieli kąt wewnętrzny tego trójkąta przy wierzchołku
A w stosunku
1:k .
Wiedząc, że liczby
k i
\alpha
są naturalne dodatnie wykaż, że miara kąta
\alpha
jest dzielnikiem liczby
90 .
Wyznacz największą możliwą wartość k , która jest kwadratem liczby naturalnej.
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 7. 2 pkt ⋅ Numer: pp-20247 ⋅ Poprawnie: 38/58 [65%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Punkt
D jest środkiem boku
AB oraz
|DC|=|CB|=|BE| .
Wiedząc, że |AC|=2 oblicz
|DE| .
Odpowiedź:
|DE|=
(wpisz liczbę całkowitą)
Zadanie 8. 2 pkt ⋅ Numer: pp-20873 ⋅ Poprawnie: 42/59 [71%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Obwód trójkąta prostokątnego ma długość
12 , a
stosunek długość przyprostokątnych tego trójkąta jest równy
3:4 .
Oblicz długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20250 ⋅ Poprawnie: 107/211 [50%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
» W trapezie
ABCD ,
AB\parallel CD oraz dane są długości trzech odcinków:
|AB|=21 ,
CD=\frac{39}{4} i
|AD|=12 :
O ile należy wydłużyć ramię AD , aby przecięło
się z przedłużeniem ramienia BC :
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pp-20711 ⋅ Poprawnie: 132/271 [48%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
« W trójkącie
ABC kąt przy wierzchołku
A jest prosty oraz
|AB|=20 i
|AC|=21 .
Oblicz odległość środka ciężkości trójkąta ABC
od punktu A .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30301 ⋅ Poprawnie: 25/71 [35%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
«« Trójkąt na rysunku jest równoramienny o podstawie
AB
o długości
|AB|=24 i ramieniu
|BC|=20 :
Oblicz |MN| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 11.2 (2 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 12. 4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« W trójkącie dane są:
|AC|=50 oraz
|BC|=60 . Środkowe tego trójkata
AM i
BN
przecinają się pod kątem prostym.
Oblicz długość boku AB tego trójkąta.
Odpowiedź:
Rozwiąż