Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11566  
Podpunkt 1.1 (1 pkt)
 Kąt zewnętrzny wielokąta foremnego ma miarę 20^{\circ}.

Ile przekątnych ma ten wielokąt?

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11462  
Podpunkt 2.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2\sqrt{2}, jest:
Odpowiedzi:
A. jest rozwartokątny B. jest prostokątny
C. jest ostrokątny D. nie istnieje
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10594  
Podpunkt 3.1 (1 pkt)
 W trójkącie ABC poprowadzono odcinek DE równoległy do boku AB, przy czym |AB|=3 i |BE|:|EC|=4:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10589  
Podpunkt 4.1 (1 pkt)
«« Pięciokąt ABCDE jest foremny.

Który z trójkątów nie jest podobny do trójkąta ABD:

Odpowiedzi:
A. BGI B. ABG
C. EDB D. ABI
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11605  
Podpunkt 5.1 (0.5 pkt)
 Punkt S=\left(-\frac{1}{2},-\frac{3}{2}\right) jest punktem wspólnym odcinka AB i jego symetralnej, przy czym \overrightarrow{BS}=[-2,5]. Wyznacz współrzędne punktu A.

Podaj x_A.

Odpowiedź:
x_A=
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
 Podaj y_A.
Odpowiedź:
y_A=
(wpisz dwie liczby całkowite)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20573  
Podpunkt 6.1 (1 pkt)
 Dane sa wektory: \vec{a}=[a_x, a_y], \vec{b}=[b_x, b_y] i \vec{c}=[c_x, c_y]. Wyznacz liczby rzeczywiste i p i q takie, że p\cdot\vec{a}+q\cdot\vec{b}=\vec{c}.

Podaj p.

Dane
a_x=3
a_y=4
b_x=-1
b_y=-1
c_x=-5
c_y=10
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20725  
Podpunkt 7.1 (2 pkt)
 « Trójkąt ABC na rysunku jest równoramienny, a zielony czworokąt jest kwadratem:

Oblicz pole powierzchni tego kwadratu.

Dane
|AB|=16
|BC|=17
Odpowiedź:
P=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20713  
Podpunkt 8.1 (1 pkt)
 « Długości dwóch najkrótszych boków trójkąta prostokątnego pozostają w stosunku 35:12, a obwód tego trójkąta ma długość 840.

Wyznacz długość najkrótszego boku tego trójkąta.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Wyznacz długość najdłuższego boku tego trójkąta.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20026  
Podpunkt 9.1 (2 pkt)
 « Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny o podstawie długości a i jest prostokątem:

Oblicz jego obwód.

Dane
a=20
b=26
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20871  
Podpunkt 10.1 (2 pkt)
 Podstawa trójkąta równoramiennego ma długość 20, a punkt przecięcia się środkowych tego trójkąta znajduje się w odległości 8 od tej podstawy.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30021  
Podpunkt 11.1 (4 pkt)
 « W trójkąt prostokątny wpisano okrąg, który jest styczny do przeciwprostokątnej w punkcie M.

Oblicz |AM|.

Dane
|AC|=8
|AB|=15
Odpowiedź:
|AM|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30299  
Podpunkt 12.1 (2 pkt)
 « Wyznacz długości środkowych trójkąta ABC.

Podaj długość najkrótszej z środkowych tego trójkąta.

Dane
|AC|=26
|BC|=26
|AB|=20
Odpowiedź:
d_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
d_{max}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm