Podgląd testu : lo2@sp-08-planimetria-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pp-10477 ⋅ Poprawnie: 368/443 [83%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Wielokąt wypukły ma
16 boków.
Wyznacz ilość przekątnych tego wielokąta.
Odpowiedź:
k=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Trójkąt o bokach długości
\sqrt{2}+1 ,
\sqrt{2}+1 ,
2\sqrt{2} , jest:
Odpowiedzi:
A. jest rozwartokątny
B. jest ostrokątny
C. jest prostokątny
D. nie istnieje
Zadanie 3. 1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AP|=\frac{5}{4} ,
|BP|=\frac{17}{12} i
|CP|=\frac{55}{12} :
Oblicz długość odcinka DP .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-10588 ⋅ Poprawnie: 343/509 [67%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
«« Prostokąt
ABCD o przekątnej długości
4\sqrt{13} jest podobny do prostokąta o bokach
długości
2 i
3 .
Oblicz obwód prostokąta ABCD .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 96/157 [61%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
Kąt trójkąta prostokątnego ma miarę
52^{\circ} .
Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.
Oblicz miarę stopniową kąta między nimi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 2 pkt ⋅ Numer: pr-20574 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
P=(x_p, y_p) ,
Q=(x_q, y_q) i
R=(x_r, y_r) są środkami boków odpowiednio
AB ,
BC i
AC trójkąta
ABC .
Wierzchołek
C tego trójkąta ma współrzędne
C=(x_c, y_c) .
Podaj y_c .
Dane
x_p=-1=-1.0000000000
y_p=\frac{9}{4}=2.25000000000000
x_q=\frac{29}{4}=7.25000000000000
y_q=5=5.0000000000
x_r=\frac{5}{4}=1.25000000000000
y_r=\frac{35}{4}=8.75000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Punkt
S=(x_s, y_s) jest środkiem ciężkości
tego trójkąta.
Podaj x_s .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20238 ⋅ Poprawnie: 125/170 [73%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
Na boku
AC trójkąta równobocznego
ABC wybrano punkt
M
w taki sposób, że
|AM|=|CN| oraz
|MB|=3\sqrt{3} .
Oblicz |MN|.
Odpowiedź:
|MN|=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20243 ⋅ Poprawnie: 98/237 [41%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Boki trójkąta prostokątnego mają długości:
a ,
6 i
8 .
Podaj najmniejszą możliwą wartość a .
Odpowiedź:
a_{min}=
\cdot √
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
Podaj największą możliwą wartość
a .
Odpowiedź:
a_{max}=
\cdot √
(wpisz dwie liczby całkowite)
Zadanie 9. 2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
(2 pkt)
W trójkącie równoramiennym
ABC dane są długości boków:
|AC|=|BC|=30 i
|AB|=36 .
Na przedłużeniu boku
AB zaznaczono taki punkt
D ,
że
|DB|=63 . Przez punkt
A
poprowadzono prostą równoległą do boku
BC , która przecięła odcinek
DC w punkcie
E (zobacz rysunek):
Oblicz |DE| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 10. 2 pkt ⋅ Numer: pr-20024 ⋅ Poprawnie: 7/10 [70%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
» Punkt
E dzieli bok
AB trójkąta
ABC w stosunku
|AE|:|EB|=p . Odcinek
CE
przecina środkową tego trójkąta
AF w punkcie
S .
Oblicz \frac{|SE|}{|CS|} .
Wskazówka: dorysuj na rysunku taki odcinek, który umożliwi korzystanie
z twierdzenia Talesa
Dane
p=\frac{3}{5}=0.60000000000000
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 11. 4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%]
Rozwiąż
Podpunkt 11.1 (2 pkt)
« Trójkąt na rysunku jest równoboczny i obwód trójkąta
SEF
spełnia warunek
L_{SEF}=4 :
Wyznacz skalę podobieństwa \triangle EFS
do \triangle AEF .
Odpowiedź:
Podpunkt 11.2 (2 pkt)
Obwód trójkąta
SEF jest równy
4 . Wyznacz
|AB| i wynik
zapisz w postaci
a+b\sqrt{c} , gdzie
a,b,c\in \mathbb{Z} i
c
jest najmniejsze możliwe.
Podaj liczby a i b .
Odpowiedzi:
Zadanie 12. 4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%]
Rozwiąż
Podpunkt 12.1 (2 pkt)
« W trójkącie
ABC dane są:
|AC|=37 ,
|BC|=37 i
|AB|=24 .
Wyznacz długości środkowych trójkąta
ABC .
Podaj długość najkrótszej z środkowych tego trójkąta.
Odpowiedź:
Podpunkt 12.2 (2 pkt)
Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
Rozwiąż