Podgląd testu : lo2@sp-08-planimetria-pr-3
Zadanie 1. 1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 1.1 (1 pkt)
Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych
jest równa
33 boków.
Ile boków ma wielokąt o mniejszej liczbie boków?
Odpowiedź:
n=
(wpisz liczbę całkowitą)
Zadanie 2. 1 pkt ⋅ Numer: pp-11463 ⋅ Poprawnie: 173/256 [67%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Dwa boki trójkąta maja długość
26 i
53 . Trzeci bok tego trójkąta należy do przedziału
(a,b) .
Wyznacz liczby a i b .
Odpowiedzi:
Zadanie 3. 1 pkt ⋅ Numer: pp-10595 ⋅ Poprawnie: 273/425 [64%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
Zielone odcinki na rysunku sa równoległe, przy czym
|AP|=\frac{3}{2} ,
|BP|=\frac{7}{6} i
|CP|=3 :
Oblicz długość odcinka DP .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 4. 1 pkt ⋅ Numer: pp-11522 ⋅ Poprawnie: 569/1176 [48%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
(1 pkt)
W trójkącie prostokątnym
ABC przyprostokątna
AC ma długość
\sqrt{85} , a wysokość
AD opuszczona z wierzchołka kąta prostego
A ma długość
7 :
Oblicz pole powierzchni tego trójkąta.
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-11604 ⋅ Poprawnie: 29/31 [93%]
Rozwiąż
Podpunkt 5.1 (0.5 pkt)
« Dane są punkty
A=(4,9) i
B=(9,4) .
Na odcinku
AB wyznacz taki punkt
P ,
aby
\overrightarrow{AP}=\overrightarrow{PB} . Wyznacz współrzędne punktu
P .
Podaj x_P .
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 5.2 (0.5 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 6. 2 pkt ⋅ Numer: pr-20833 ⋅ Poprawnie: 0/0
Rozwiąż
Podpunkt 6.1 (1 pkt)
Punkty
A=(x_A, y_A) i
B=(x_B, y_B)
są końcami odcinka, do którego należy punkt
P=(x_P, y_P)
taki, że
|PB|:|AP|=1:3 .
Podaj x_P .
Dane
x_A=8
y_A=-2
x_B=2
y_B=10
Odpowiedź:
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 7. 2 pkt ⋅ Numer: pp-20724 ⋅ Poprawnie: 65/356 [18%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
«« Punkt
M dzieli bok
AB
trójkąta na rysunku w stosunku
1:2 . Ponadto
|AC|=24
i
|BC|=40 :
Oblicz |BN|:|CN| .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 2 pkt ⋅ Numer: pp-20714 ⋅ Poprawnie: 93/160 [58%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
« Czworokąt na rysunku jest prostokątem, w którym
|DP|:|PC|=\frac{1}{6} :
Oceń, czy kąt
\alpha jest prosty, ostry czy rozwarty:
Jeśli kąt \alpha jest prosty wpisz
0 , jeśli ostry wpisz 1 ,
jeśli rozwarty wpisz 2 .
Odpowiedź:
Wpisz odpowiedź:
(wpisz liczbę całkowitą)
Zadanie 9. 2 pkt ⋅ Numer: pp-20878 ⋅ Poprawnie: 32/49 [65%]
Rozwiąż
Podpunkt 9.1 (2 pkt)
W trójkącie
ABC poprowadzono trzy proste równoległe do podstawy
AB , które podzieliły bok
BC na cztery
odcinki równej długości.
Suma długości odcinków tych prostych zawartych wewnątrz tego trójkąta jest o
38 większa od długości jego podstawy
AB .
Oblicz |AB| .
Odpowiedź:
|AB|=
(wpisz liczbę całkowitą)
Zadanie 10. 2 pkt ⋅ Numer: pr-20881 ⋅ Poprawnie: 86/65 [132%]
Rozwiąż
Podpunkt 10.1 (2 pkt)
W trójkącie równoramiennym
ABC podstawa
AB
ma długość
30 , a wysokość
CD ma
taką samą długośc jak odcinek łączący punkt
D ze środkiem boku
BC .
Oblicz długość wysokości CD .
Odpowiedź:
Zadanie 11. 4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%]
Rozwiąż
Podpunkt 11.1 (4 pkt)
« W trójkąt prostokątny wpisano okrąg, który jest styczny do
przeciwprostokątnej w punkcie
M .
Oblicz |AM| .
Odpowiedź:
Zadanie 12. 4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%]
Rozwiąż
Podpunkt 12.1 (4 pkt)
« W trójkącie dane są:
|AC|=34 oraz
|BC|=32 . Środkowe tego trójkata
AM i
BN
przecinają się pod kątem prostym.
Oblicz długość boku AB tego trójkąta.
Odpowiedź:
Rozwiąż