Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pr-10374 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Różnica liczby boków dwóch wielokątów jest równa jeden, a różnica ilości ich przekątnych jest równa 15 boków.

Ile boków ma wielokąt o mniejszej liczbie boków?

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11560 ⋅ Poprawnie: 51/76 [67%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Które z podanych trójek są długościami boków trójkąta ostrokątnego?
Odpowiedzi:
T/N : 2, 3, 4 T/N : 7, 7, 10
T/N : 4, 5, 6  
Zadanie 3.  1 pkt ⋅ Numer: pp-10603 ⋅ Poprawnie: 211/361 [58%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{1}{6}, |DC|=\frac{5}{12} i |AB|=\frac{5}{12}:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-11464 ⋅ Poprawnie: 62/94 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Trójkąt ABC ma obwód o długości 27. Punkty A_1, B_1 i C_1 są środkami boków trójkąta ABC.
Trójkąt PQR, podobny do trójkąta A_1B_1C_1 w skali \frac{3}{2}.

Oblicz długość obwodu trójkąta PQR.

Odpowiedź:
L_{\triangle PQR}=
(wpisz dwie liczby całkowite)
Zadanie 5.  1 pkt ⋅ Numer: pp-10664 ⋅ Poprawnie: 97/158 [61%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Kąt trójkąta prostokątnego ma miarę 47^{\circ}. Z wierzchołka kąta prostego poprowadzono środkową i wysokość tego trójkąta.

Oblicz miarę stopniową kąta między nimi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  2 pkt ⋅ Numer: pr-20833 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Punkty A=(x_A, y_A) i B=(x_B, y_B) są końcami odcinka, do którego należy punkt P=(x_P, y_P) taki, że |PB|:|AP|=1:3.

Podaj x_P.

Dane
x_A=-4
y_A=-8
x_B=-10
y_B=4
Odpowiedź:
x_P=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj y_P.
Odpowiedź:
y_P=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20723 ⋅ Poprawnie: 101/159 [63%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dane są punkty na okręgu takie, że |AP|=\frac{12}{13}, |PB|=\frac{13}{8} i |CP|=\frac{1}{2}:

Oblicz |PD|.

Odpowiedź:
|PD|=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20714 ⋅ Poprawnie: 93/160 [58%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Czworokąt na rysunku jest prostokątem, w którym |DP|:|PC|=\frac{1}{4}: Oceń, czy kąt \alpha jest prosty, ostry czy rozwarty:

Jeśli kąt \alpha jest prosty wpisz 0, jeśli ostry wpisz 1, jeśli rozwarty wpisz 2.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  3 pkt ⋅ Numer: pp-20252 ⋅ Poprawnie: 118/349 [33%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 W trójkącie ABC odcinek EF jest symetralną boku AB oraz |AD|=2, |DB|=56 i |BC|=65:

Wyznacz długości odcinków CF i FB. Podaj długość krótszego z tych odcinków.

Odpowiedź:
min=
(wpisz dwie liczby całkowite)
Podpunkt 9.2 (2 pkt)
 Podaj długość dłuższego z tych odcinków.
Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20709 ⋅ Poprawnie: 77/246 [31%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Dane są długości boków trójkąta 34, 50 i 56. Zbadaj, czy trójkąt ten jest prostokątny, ostrokątny czy rozwartokątny.

Jeśli trójkąt jest prostokątny wpisz 1, jeśli ostrokątny wpisz 2, jeśli rozwartokątny wpisz 3.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Podpunkt 10.2 (1 pkt)
 Wyznacz długość wysokości opuszczonej na najdłuższy bok tego trójkąta.
Odpowiedź:
h= \cdot
(wpisz trzy liczby całkowite)
Zadanie 11.  4 pkt ⋅ Numer: pp-30302 ⋅ Poprawnie: 11/68 [16%] Rozwiąż 
Podpunkt 11.1 (2 pkt)
 « Trójkąt na rysunku jest równoboczny i obwód trójkąta SEF spełnia warunek L_{SEF}=2:

Wyznacz skalę podobieństwa \triangle EFS do \triangle AEF.

Odpowiedź:
k= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (2 pkt)
 Obwód trójkąta SEF jest równy 2. Wyznacz |AB| i wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b,c\in \mathbb{Z} i c jest najmniejsze możliwe.

Podaj liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 12.  4 pkt ⋅ Numer: pp-30022 ⋅ Poprawnie: 39/115 [33%] Rozwiąż 
Podpunkt 12.1 (4 pkt)
 « W trójkącie dane są: |AC|=34 oraz |BC|=32. Środkowe tego trójkata AM i BN przecinają się pod kątem prostym.

Oblicz długość boku AB tego trójkąta.

Odpowiedź:
|AB|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm