Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  1 pkt ⋅ Numer: pp-10480 ⋅ Poprawnie: 375/476 [78%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Suma miar kątów n kąta jest równa 4320^{\circ}.

Wyznacz n.

Odpowiedź:
n= (wpisz liczbę całkowitą)
Zadanie 2.  1 pkt ⋅ Numer: pp-11462 ⋅ Poprawnie: 195/348 [56%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Trójkąt o bokach długości \sqrt{2}+1, \sqrt{2}+1, 2\sqrt{2}, jest:
Odpowiedzi:
A. nie istnieje B. jest rozwartokątny
C. jest ostrokątny D. jest prostokątny
Zadanie 3.  1 pkt ⋅ Numer: pp-11383 ⋅ Poprawnie: 645/838 [76%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Odcinek AB o długości 25 jest równoległy do odcinka CD, przy czym: |PA|=10 i |AC|=30:

Oblicz długość odcinka CD.

Odpowiedź:
|CD|= (wpisz liczbę całkowitą)
Zadanie 4.  1 pkt ⋅ Numer: pp-10578 ⋅ Poprawnie: 111/248 [44%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 W trójkącie równoramiennym ABC o wysokościach CD i AE podstawa AB ma długość 48, a odcinek BE ma długość \frac{576}{37}.

Oblicz długość odcinka AC.

Odpowiedź:
|AC|= (wpisz liczbę całkowitą)
Zadanie 5.  1 pkt ⋅ Numer: pp-10791 ⋅ Poprawnie: 231/298 [77%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Punkt S=\left(\frac{1}{2},\frac{5}{2}\right) jest środkiem odcinka AB, przy czym A=(-4,-2), a punkt B ma współrzędne (x_B, y_B).

Wyznacz współrzędne punktu B.

Odpowiedzi:
x_B= (wpisz liczbę całkowitą)
y_B= (wpisz liczbę całkowitą)
Zadanie 6.  2 pkt ⋅ Numer: pr-20573 ⋅ Poprawnie: 0/0 Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Dane sa wektory: \vec{a}=[a_x, a_y], \vec{b}=[b_x, b_y] i \vec{c}=[c_x, c_y]. Wyznacz liczby rzeczywiste i p i q takie, że p\cdot\vec{a}+q\cdot\vec{b}=\vec{c}.

Podaj p.

Dane
a_x=2
a_y=-1
b_x=-7
b_y=4
c_x=-4
c_y=4
Odpowiedź:
p=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj q.
Odpowiedź:
q=
(wpisz dwie liczby całkowite)
Zadanie 7.  2 pkt ⋅ Numer: pp-20723 ⋅ Poprawnie: 101/159 [63%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dane są punkty na okręgu takie, że |AP|=\frac{3}{11}, |PB|=\frac{11}{6} i |CP|=\frac{1}{4}:

Oblicz |PD|.

Odpowiedź:
|PD|=
(wpisz dwie liczby całkowite)
Zadanie 8.  2 pkt ⋅ Numer: pp-20714 ⋅ Poprawnie: 93/160 [58%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Czworokąt na rysunku jest prostokątem, w którym |DP|:|PC|=\frac{1}{4}: Oceń, czy kąt \alpha jest prosty, ostry czy rozwarty:

Jeśli kąt \alpha jest prosty wpisz 0, jeśli ostry wpisz 1, jeśli rozwarty wpisz 2.

Odpowiedź:
Wpisz odpowiedź:  (wpisz liczbę całkowitą)
Zadanie 9.  2 pkt ⋅ Numer: pp-20863 ⋅ Poprawnie: 40/169 [23%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 (2 pkt) W trójkącie równoramiennym ABC dane są długości boków: |AC|=|BC|=40 i |AB|=48. Na przedłużeniu boku AB zaznaczono taki punkt D, że |DB|=84. Przez punkt A poprowadzono prostą równoległą do boku BC, która przecięła odcinek DC w punkcie E (zobacz rysunek):

Oblicz |DE|.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 10.  2 pkt ⋅ Numer: pp-20234 ⋅ Poprawnie: 51/183 [27%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Z wierzchołków kątów ostrych trójkąta prostokątnego poprowadzono dwie środkowe o długościach 5 i 6.

Podaj długość krótszej z przyprostokątnych tego trójkąta.

Odpowiedź:
min= (liczba zapisana dziesiętnie)
Podpunkt 10.2 (1 pkt)
 Podaj długość przeciwprostokątnej tego trójkąta.
Odpowiedź:
c= (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pp-30021 ⋅ Poprawnie: 28/146 [19%] Rozwiąż 
Podpunkt 11.1 (4 pkt)
 « W trójkąt prostokątny wpisano okrąg, który jest styczny do przeciwprostokątnej w punkcie M.

Oblicz |AM|.

Odpowiedź:
|AM|= \cdot
(wpisz trzy liczby całkowite)
Zadanie 12.  4 pkt ⋅ Numer: pp-30299 ⋅ Poprawnie: 51/137 [37%] Rozwiąż 
Podpunkt 12.1 (2 pkt)
 « W trójkącie ABC dane są: |AC|=41, |BC|=41 i |AB|=80. Wyznacz długości środkowych trójkąta ABC.

Podaj długość najkrótszej z środkowych tego trójkąta.

Odpowiedź:
d_{min}= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 12.2 (2 pkt)
 Podaj długość najdłuższej z środkowych tego trójkąta.
Odpowiedź:
d_{max}= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm