Matury CKE SprawdzianyZadaniaZbiór zadań RankingiPomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-08-planimetria-pr-3

Zadanie 1.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10477  
Podpunkt 1.1 (1 pkt)
 Wielokąt wypukły ma 14 boków.

Wyznacz ilość przekątnych tego wielokąta.

Odpowiedź:
k= (wpisz liczbę całkowitą)
Zadanie 2.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-11463  
Podpunkt 2.1 (1 pkt)
 Dwa boki trójkąta maja długość 6 i 13. Trzeci bok tego trójkąta należy do przedziału (a,b).

Wyznacz liczby a i b.

Odpowiedzi:
a= (wpisz liczbę całkowitą)
b= (wpisz liczbę całkowitą)
Zadanie 3.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10603  
Podpunkt 3.1 (1 pkt)
 Zielone odcinki na rysunku sa równoległe, przy czym |AD|=\frac{1}{6}, |DC|=\frac{5}{6} i |AB|=\frac{2}{3}:

Oblicz długość odcinka DE.

Odpowiedź:
|DE|=
(wpisz dwie liczby całkowite)
Zadanie 4.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pp-10588  
Podpunkt 4.1 (1 pkt)
 «« Prostokąt ABCD o przekątnej długości \frac{7}{2}\sqrt{13} jest podobny do prostokąta o bokach długości 2 i 3.

Oblicz obwód prostokąta ABCD.

Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 5.  (1 pkt) [ Dodaj do testu ]  Numer zadania: pr-11597  
Podpunkt 5.1 (1 pkt)
 Wektory \vec{u}=[m-n-8,-m+10] oraz \vec{v}=[m+n-8, n+4] są przeciwne.

Wyznacz wartości parametrów m i n.

Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20831  
Podpunkt 6.1 (1 pkt)
 Dane są punkty: A=(1, -1), B=(4,-2) i C=(x_C,y_C). Wyznacz taki punkt D=(x_D, y_D), aby zachodziła równość 2\cdot\overrightarrow{AB}-3\cdot\overrightarrow{CD}=\overrightarrow{AC} .

Podaj x_D.

Dane
x_C=-8
y_C=4
Odpowiedź:
x_D=
(wpisz dwie liczby całkowite)
Podpunkt 6.2 (1 pkt)
 Podaj y_D.
Odpowiedź:
y_D=
(wpisz dwie liczby całkowite)
Zadanie 7.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20869  
Podpunkt 7.1 (1 pkt)
 Boki trójkąta rozwartokątnego ABC mają długości: |AB|=34, |BC|=20 i |AC|=18. Na boku AB zaznaczono punkt D w taki sposób, że |\sphericalangle CDB|=|\sphericalangle ACB|.

Oblicz długość odcinka CD.

Odpowiedź:
|CD|=
(wpisz dwie liczby całkowite)
Podpunkt 7.2 (1 pkt)
 Oblicz długość odcinka DB.
Odpowiedź:
|BD|=
(wpisz dwie liczby całkowite)
Zadanie 8.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20875  
Podpunkt 8.1 (1 pkt)
 « W trójkącie prostokątnym najkrótszy bok ma długość \frac{7}{2}, a najdłuższy bok jest dłuższy od dłuższej przyprostokątnej o \frac{1}{2}.

Oblicz długość dłuższej przyprostokątnej tego trójkąta.

Odpowiedź:
max=
(wpisz dwie liczby całkowite)
Podpunkt 8.2 (1 pkt)
 Oblicz obwód tego trójkąta.
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 9.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pr-20026  
Podpunkt 9.1 (2 pkt)
 « Zielony czworokąt na rysunku jest wpisany w trójkąt równoramienny o podstawie długości a i jest prostokątem:

Oblicz jego obwód.

Dane
a=32
b=34
Odpowiedź:
L=
(wpisz dwie liczby całkowite)
Zadanie 10.  (2 pkt) [ Dodaj do testu ]  Numer zadania: pp-20871  
Podpunkt 10.1 (2 pkt)
 Podstawa trójkąta równoramiennego ma długość 14, a punkt przecięcia się środkowych tego trójkąta znajduje się w odległości 8 od tej podstawy.

Oblicz długość obwodu tego trójkąta.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 11.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30302  
Podpunkt 11.1 (2 pkt)
 « Trójkąt na rysunku jest równoboczny:

Wyznacz skalę podobieństwa \triangle EFS do \triangle AEF.

Dane
L_{SEF}=2
Odpowiedź:
k= \cdot
(wpisz trzy liczby całkowite)
Podpunkt 11.2 (1 pkt)
 Obwód trójkąta SEF jest równy L. Wyznacz |AB| i wynik zapisz w postaci a+b\sqrt{c}, gdzie a,b,c\in \mathbb{C} i c jest najmniejsze możliwe.

Podaj a.

Dane
L_{SEF}=2
Odpowiedź:
a= (wpisz liczbę całkowitą)
Podpunkt 11.3 (1 pkt)
 Podaj b.
Odpowiedź:
b= (wpisz liczbę całkowitą)
Zadanie 12.  (4 pkt) [ Dodaj do testu ]  Numer zadania: pp-30022  
Podpunkt 12.1 (4 pkt)
 « Środkowe trójkata AM i BN przecinają się pod kątem prostym.

Oblicz długość boku AB tego trójkąta.

Dane
|AC|=34
|BC|=32
Odpowiedź:
|AB|= \cdot
(wpisz trzy liczby całkowite)


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm