Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Podgląd testu : lo2@sp-09-trygonom-1-pp-1

Zadanie 1.  1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Kąt \alpha jest kątem ostrym w trójkącie prostokątnym. Przeciwprostokątna tego trójkąta ma długość 10, a \cos\alpha=\frac{1}{5}.

Wynika z tego, że:

Odpowiedzi:
A. przyprostokatna tego trójkąta ma długość 1 B. \sin\alpha=\frac{4}{5}
C. jedna z przyprostokątnych jest 5 razy krótsza od przeciwprostokątnej D. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
Zadanie 2.  1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 « Kąt \alpha jest kątem ostrym oraz \tan\alpha=\frac{4}{5}.

Oblicz wartość wyrażenia w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha}.

Odpowiedź:
w=
(wpisz dwie liczby całkowite)
Zadanie 3.  1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « W trójkącie prostokątnym przyprostokątne mają długość 3\sqrt{3} i 5.

Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.

Odpowiedź:
\cos\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 4.  1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 116/177 [65%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 » W trójkącie równoramiennym ABC poprowadzono wysokość AS, która utworzyła z podstawą kąt o mierze 24^{\circ} (zobacz rysunek).

Ramię tego trójkąta ma długość 10. Długość wysokości AS jest liczbą z przedziału:

Odpowiedzi:
A. \left(\frac{15}{2}, \frac{17}{2}\right\rangle B. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
C. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle D. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
Zadanie 5.  1 pkt ⋅ Numer: pp-10680 ⋅ Poprawnie: 165/243 [67%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 « Oblicz sinus kąta ostrego utworzonego w trójkącie prostokątnym przez boki o długościach 3 i 4.
Odpowiedź:
\sin\alpha= \cdot
(wpisz trzy liczby całkowite)
Zadanie 6.  1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Przekątna równoległoboku o kącie ostrym \alpha o mierze 60^{\circ} i wysokości o długości 10\sqrt{3}, tworzy kąt prosty z jego bokiem.

Oblicz obwód tego równoległoboku.

Odpowiedź:
L= (wpisz liczbę całkowitą)
Zadanie 7.  1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
 Kąt \alpha jest ostry oraz \tan\alpha=\frac{2\sqrt{3}}{7}.

Oblicz wartość wyrażenia \frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha}.

Odpowiedź:
Wpisz odpowiedź:  + \cdot
(wpisz cztery liczby całkowite)
Zadanie 8.  1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 » Kąty \alpha i \beta trójkata prostokątnego są ostre. Wówczas wyrażenie \frac{2\cos\alpha\cdot (3-3\sin^2\beta)\cdot \tan\alpha} {4\sin^2\alpha\cdot \cos\beta} jest równe:
Odpowiedzi:
A. \frac{3}{2} B. \frac{3}{2}\cos\alpha
C. \frac{1}{2}\sin\alpha D. \frac{3}{2}\tan\alpha


☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm