Podgląd testu : lo2@sp-09-trygonom-1-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10626 ⋅ Poprawnie: 175/279 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąty ostre
\alpha i
\beta trójkąta prostokątnego spełniają warunek
\frac{\sin \alpha}{\sin\beta}=\frac{\sqrt{7}}{7} .
Oblicz
\cos\alpha i zapisz wynik w najprostszej nieskracalnej
postaci
\frac{a\sqrt{b}}{c} .
Podaj liczby a , b i
c .
Odpowiedź:
Zadanie 2. 1 pkt ⋅ Numer: pp-10641 ⋅ Poprawnie: 517/732 [70%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
Wiadomo, że kąt
\alpha jest ostry oraz.
\sin\alpha=\frac{3\sqrt{10}}{10} .
Oblicz \cos\alpha .
Odpowiedź:
Zadanie 3. 1 pkt ⋅ Numer: pp-10670 ⋅ Poprawnie: 319/560 [56%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« Trapez na rysunku jest prostokątny:
Miara kąta \alpha spełnia warunek:
Odpowiedzi:
A. 50^{\circ} \lessdot \alpha < 60^{\circ}
B. \alpha=45^{\circ}
C. 30^{\circ} \lessdot \alpha < 35^{\circ}
D. \alpha=30^{\circ}
Zadanie 4. 1 pkt ⋅ Numer: pp-10663 ⋅ Poprawnie: 395/648 [60%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» Trójkąt
ABC jest prostokątny, a kąt
BCA jest prosty. Wiadomo, że
\cos\sphericalangle CAB=\frac{21}{29} i
|AB|=\frac{29}{2} .
Oblicz długość boku BC .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 5. 1 pkt ⋅ Numer: pp-10648 ⋅ Poprawnie: 354/567 [62%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Oblicz długość wysokości trapezu równoramiennego o kącie ostrym
45^{\circ} i ramieniu długości
10\sqrt{3} .
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-10660 ⋅ Poprawnie: 145/192 [75%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
» W trapezie prostokątnym
ABCD długość
ramienia
BC jest dwa razy większa od różnicy
długości jego podstaw.
Wyznacz miarę stopniową kąta ABC .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 1 pkt ⋅ Numer: pp-10618 ⋅ Poprawnie: 415/624 [66%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Kąt
\alpha jest ostry i
\sin\alpha=\frac{\sqrt{3}}{9} .
Oblicz wartość wyrażenia \cos^2\alpha-2 .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 8. 1 pkt ⋅ Numer: pp-10635 ⋅ Poprawnie: 220/350 [62%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
Dana jest równość
\sin^2\alpha(1+\cos^2\alpha)+\cos^4\alpha-2=m
gdzie
\alpha jest kątem ostrym.
Oblicz m .
Odpowiedź:
(wpisz dwie liczby całkowite)
Rozwiąż