Podgląd testu : lo2@sp-09-trygonom-1-pp-1
Zadanie 1. 1 pkt ⋅ Numer: pp-10638 ⋅ Poprawnie: 1013/1633 [62%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
Kąt
\alpha jest kątem ostrym w trójkącie prostokątnym.
Przeciwprostokątna tego trójkąta ma długość
10 , a
\cos\alpha=\frac{1}{5} .
Wynika z tego, że:
Odpowiedzi:
A. przyprostokatna tego trójkąta ma długość 1
B. \sin\alpha=\frac{4}{5}
C. jedna z przyprostokątnych jest 5 razy krótsza od przeciwprostokątnej
D. przeciwprostokątna tego trójkąta jest dwa razy dłuższa od przyprostokątnej
Zadanie 2. 1 pkt ⋅ Numer: pp-10614 ⋅ Poprawnie: 684/1059 [64%]
Rozwiąż
Podpunkt 2.1 (1 pkt)
« Kąt
\alpha jest kątem ostrym oraz
\tan\alpha=\frac{4}{5} .
Oblicz wartość wyrażenia
w=\frac{3\cos\alpha-2\sin\alpha}{\sin\alpha-5\cos\alpha} .
Odpowiedź:
(wpisz dwie liczby całkowite)
Zadanie 3. 1 pkt ⋅ Numer: pp-10671 ⋅ Poprawnie: 254/401 [63%]
Rozwiąż
Podpunkt 3.1 (1 pkt)
« W trójkącie prostokątnym przyprostokątne mają długość
3\sqrt{3} i
5 .
Oblicz cosinus tego kąta ostrego, którego cosinus jest mniejszy.
Odpowiedź:
Zadanie 4. 1 pkt ⋅ Numer: pp-10658 ⋅ Poprawnie: 116/177 [65%]
Rozwiąż
Podpunkt 4.1 (1 pkt)
» W trójkącie równoramiennym
ABC poprowadzono
wysokość
AS , która utworzyła z podstawą kąt o mierze
24^{\circ} (zobacz rysunek).
Ramię tego trójkąta ma długość 10 . Długość wysokości
AS jest liczbą z przedziału:
Odpowiedzi:
A. \left(\frac{15}{2}, \frac{17}{2}\right\rangle
B. \left(\frac{13}{2}, \frac{15}{2}\right\rangle
C. \left\langle\frac{11}{2}, \frac{13}{2}\right\rangle
D. \left\langle\frac{7}{2}, \frac{9}{2}\right\rangle
Zadanie 5. 1 pkt ⋅ Numer: pp-10680 ⋅ Poprawnie: 165/243 [67%]
Rozwiąż
Podpunkt 5.1 (1 pkt)
« Oblicz sinus kąta ostrego utworzonego w trójkącie prostokątnym przez boki o długościach
3 i
4 .
Odpowiedź:
Zadanie 6. 1 pkt ⋅ Numer: pp-10674 ⋅ Poprawnie: 264/697 [37%]
Rozwiąż
Podpunkt 6.1 (1 pkt)
« Przekątna równoległoboku o kącie ostrym
\alpha o mierze
60^{\circ} i wysokości o długości
10\sqrt{3} , tworzy kąt prosty z jego bokiem.
Oblicz obwód tego równoległoboku.
Odpowiedź:
L=
(wpisz liczbę całkowitą)
Zadanie 7. 1 pkt ⋅ Numer: pp-11507 ⋅ Poprawnie: 415/985 [42%]
Rozwiąż
Podpunkt 7.1 (1 pkt)
Kąt
\alpha jest ostry oraz
\tan\alpha=\frac{2\sqrt{3}}{7} .
Oblicz wartość wyrażenia
\frac{2\sin\alpha-\cos\alpha}{\cos\alpha+2\sin\alpha} .
Odpowiedź:
Zadanie 8. 1 pkt ⋅ Numer: pp-10630 ⋅ Poprawnie: 191/451 [42%]
Rozwiąż
Podpunkt 8.1 (1 pkt)
» Kąty
\alpha i
\beta
trójkata prostokątnego są ostre. Wówczas wyrażenie
\frac{2\cos\alpha\cdot (3-3\sin^2\beta)\cdot \tan\alpha}
{4\sin^2\alpha\cdot \cos\beta}
jest równe:
Odpowiedzi:
A. \frac{3}{2}
B. \frac{3}{2}\cos\alpha
C. \frac{1}{2}\sin\alpha
D. \frac{3}{2}\tan\alpha
Rozwiąż